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Abstract

We present a generalization of Dung’s theory of ar-
gumentation enabling to take account for some addi-
tional constraints on the admissible sets of arguments,
expressed as a propositional formula over the set of ar-
guments. We point out several semantics for such con-
strained argumentation frameworks, and compare the
corresponding inference relations w.r.t. cautiousness.
We show that our setting encompasses some previous
approaches based on Dung's theory as specific cases.
We also investigate the complexity issue for the infer-
ence relations in the extended setting. Interestingly, we
show that our generalization does not lead to a complex-
ity shift w.r.t. inference for several semantics.

Introduction

Despite the simplicity of the setting, several inference re
lations can be defined within Dung’s theory. Usually, in-
ference is defined at the argument level, and an argument
is considered derivable when it belongs to one (credulous
consequence) (resp. all (skeptical consequence)) egtensi
of AF under some semantics, where an extensiod Bfis
an admissible set of arguments (i.e., a conflict-free arfd sel
defending set) that is maximal for a given criterion (made
precise by the semantics under consideration). Inferegite ¢
also be easily defined for sets of arguments by asking them
to be included into one or all extensions. For the credu-
lous consequence relations, this is not equivalent in the ge
eral case to asking each argument to be derivable (see e.g.
(Coste-Marquis, Devred, & Marquis 2005c)).

The notion of admissibility for a set of arguments in
Dung’s theory relies only on the interaction of arguments.

Argumentation is a general approach for nonmonotonic rea- Especially, Dung’s approach does not offer a way to spec-
soning, in which the main issues are the generation of argu- fy further requirements on the sets of arguments which are
ments and their use to draw some conclusions based on thEexpected as extensions, like “extensions must contain argu

way arguments interact (see e.g., (Toulmin 1958; Prakken mentq when they contaif” or “extensions must not contain
& Vreeswijk 2002; Bondarenket al. 1997; Kakas & Toni  one ofc or d when they contaim but do not contai”. Ac-
1999)). Among the many theories of argumentation pointed tyally, when they are not consequences of the interaction of
out so far (see e.g., (Dung 1995; Pollock 1992; Simari arguments, there is no way to enforce such constraints with-
& Loui 1992; Elvang-Ggransson, Fox, & Krause 1993a; out revising the given argumentation framework, i.e. pro-
1993b; Elvang-Ggransson & Hunter 1995; Vreeswijk 1997; ducing a new argumentation framework for which the con-
Besnard & Hunter 2001; Amgoud & Cayrol 2002a; 2002b;  straint is satisfied. However, revision does not always @rov
Cayrol 1995; Dimopoulos, Nebel, & Toni 2002)) Dung's  sufficient to ensure that every constraint is satisfied.Hewrt
theory (Dung 1995) has received much attention since it more, there are usually many ways to revise an argumenta-
encompasses many approaches to nonmonotonic inferencetion framework, and the choice of a revision strategy must be
and logic programming as specific cases; especially, it has guided by the reasons which underly the revision operation.
been refined and extended by several authors, including (Ba- The problem is that such reasons are not always available.
roni, Giacomin, & G.Guida 2000; Baroni & Giacomin 2003;  For instance, considetF = (A = {a,b}, R = {(a,b)})
2004; Cayrokt al. 2002; Cayrol & Lagasquie-Schiex 2002).  and the constraint “extensions must not contéin There

In Dung’s approach, no assumption is made about the na- are several ways to ensure it: addifiga) to R, adding a
ture of an argument and the argument generation issue is notnew, fictitious argument to A and adding(c, ¢) and(c, a)
considered: arguments and the way they interact w.r.t. the to R ... If one does not know why “extensions must not
attack relation are considered as initial data of any argume  containa”, some arbitrary choices must be made, which is
tation framework, which can thus be viewed as a labeled not Satisfactory:(a7a) c R has the strong meaning that
digraphAF = (A, R). is self-conflicting, which is not necessarily believed; isim
R ————— larly, adding(c, ¢) and(c, a) to R leaves unexplained what
means, hence whyis self-conflicting, why attacksa, why
a does not attack, and so on. The situation is even worse
when the reasons why “extensions must not contaimave
nothing to do with the attack relation (e @is grounded on
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beliefs that are not plausible); in such a case, there cdrenot
any meaningful revision strategy.

In this paper, a generalization of Dung'’s theory of argu-
mentation, obtained by taking advantage of additional in-
formation which constrain the sets of arguments which are
eligible for admissibility, is presented. Such a constrain
takes the form of a propositional formula over the set of

inference principle;, either credulousq = 3) or skeptical
(g =").

For instanceS C A is a consequence ofF' = (A, R)
w.rt. %P, notedAFRY-FS, indicates thats is included
in every preferred extension ofF'.

In order to define a notion of extension, a first important

symbols used to represent the arguments. This gives rise "otion is the notion of acceptability: an argumenis ac-
to new semantics based on the further information conveyed CePtable w.r.t. a set of argumerftsvhenever it is defended

by the constraint — which cannot always be captured by the
attack relatiort. To be more precise, we show how the var-

ious semantics considered by Dung (preferred, stable and

by the set, i.e., every argument which attaakis attacked
by an element of.

grounded) can be extended in a natural way so as to take ac-Definition 2 (acceptable sets).et AF' = (A, R) be an ar-
count for such constraints, and how a new semantics, called 9umentation framework. An arguments A is acceptable
the weak one, can be obtained. We compare the inference W-I't. @ subsetS of A if and only if for everyb € A s.t.

relations induced by those semantics w.r.t. cautiousness.

We also show how our setting incorporates some previous
approaches based on Dung’s theory. We finally investigate
the computational issue for the inference relations in ihe e
tended setting. Interestingly, we show that our generaliza
tion does not lead to a complexity shift w.r.t. inference for
several semantics, though the inference relations take pla
in a strictly more expressive setting than Dung’s one.

The rest of this paper is organized as follows. First, we
recall the main definitions pertaining to Dung’s theory of ar
gumentation. Then, we present our contribution before con-
cluding the article.

Dung’s Theory of Argumentation

Let us present some basic definitions at work in Dung’s the-
ory of argumentation (Dung 1995). We restrict them to finite
argumentation frameworks.

Definition 1 ((finite) argumentation frameworks) A
(finite) argumentation frameworis a pair AF' = (A, R)
where A is a finite set of so-called arguments aritlis
a binary relation overA (a subset ofA x A), the attack
relation.

Clearly enough, the set of finite argumentation frame-
works is a proper subset of the set of Dung’s finitary argu-
mentation frameworks, where every argument must be at-
tacked by finitely many arguments.

Formally, we notedF'|~S whereAF = (A, R) is an ar-
gumentation framework antl C A, to state that is a con-
sequence oAF" under}~. In the following, an inference
relation |~ is based on a notion of extension, and an infer-
ence principle (credulous or skeptical), so tHdt|~S holds
if and only if S is included in all (skeptical) or at least one
(credulous) extension(s) ofF, for a given semantics. For-
mally:

Notation 1 (inference relations) Let|~%* denote thénfer-
ence relatiorobtained by considering a semanticand an

Thus, unlike (Besnard & Doutre 2004), our primary concern
is not to encode existing inference relations from argumentation
frameworks using constraints, but to exploit constraints as addi-
tional inputs.

(b,a) € R, there exists € S s.t. (¢,b) € R. A setof ar-
guments is acceptable w.r.§ when each of its elements is
acceptable w.r.tS.

A second important notion is the notion of absence of con-
flicts. Intuitively, two arguments should not be considered
together whenever one of them attacks the other one.

Definition 3 (conflict-free sets)Let AF = (A, R) be an
argumentation framework. A subsebf A is conflict-freeif
and only if for every:, b € S, we have(a,b) € R.

Requiring the absence of conflicts and the form of auton-
omy captured by self-acceptability leads to the notion ef ad
missible set:

Definition 4 (admissible sets)Let AF' = (A, R) be an ar-
gumentation framework. A subsgtof A is admissiblefor
AF ifand only if S is conflict-free and acceptable w.r§.

The significance of the concept of admissible sets is re-
flected by the fact that every extension of an argumenta-
tion framework under the standard semantics introduced by
Dung (i.e., preferred, stable and grounded) is an admeéssibl
set, satisfying some form of optimality:

Definition 5 (extensions)Let AF' = (A, R) be an argu-
mentation framework and l&t C A.

e Sis a preferred extensioof AF if and only if it is maxi-
mal w.r.t. C among the set of admissible sets foF'.

e S is a stable extensioof AF if and only ifS is conflict-
free andva € A\ S,3b € Ss.t.(b,a) € R.

A more prudent, semantics is based on the characteristic
function Faor of AF":

Definition 6 (characteristic functions) The characteristic
function F4r of an argumentation frameworld F’
(A, R) is defined as follows:

Fap:24 =24

Far(S) ={a| ais acceptable w.r.tS}.

Definition 7 (grounded extensions)Let AF' = (A, R) be
an argumentation framework. Thgrounded extensioof
AF is the least fixed point of 4 .



Dung has shown that every argumentation framework has Definition 9 (completions) Let CAF = (A,R,C) be a
a (unigue) grounded extension and at least one preferred ex-constrained argumentation framework afdC A. S satis-
tension, while it may have zero, one or many stable exten- fiesC if and only if the completios = {a | a € S} U {-a |
sions. ; a3

These extensions are linked up as follows: a €A\ S} ofSisamodel of (denoted bys' = C).

Since the purpose is to restrict the sets of arguments eli-

Proposition 1 Theorem 25 in (Dung 1995) gible for extensions to those satisfyidgwe need to refine
Let AF' be an argumentation framework. Every preferred the notion of admissibility:
(resp. stable) extension d@fF' contains the grounded exten-

sion of AF'. Definition 10 (C-admissible sets)Let CAF = (A, R,C)
be a constrained argumentation framework. A sulstef

Since the grounded extension of an argumentation frame- % %" i Gibietor ' AF if and only ifS is admissible for

work is unique, we have-=¢ = ~¥:¢. Hence, we note

oG for 3G = VG (A, R) and satisfie€. We noted = {S C A | S is admis-
Let us illustrate the notions of extensions and the infer- Sible for (4, R) andS' |= C} the set of alC-admissiblesets
ence relations on a simple example: for CAF.

The presence of a constraifitcalls for a notion ofcon-

Example 1 Let AF = (A = {a,b,c,d, e, f}, R = {(a,)), sistency

(a,c), (b,d), (c,e), (e, f),(f,e)}) be the argumentation

framework depicted on Figure 1. . ) ) i
Definition 11 (consistency)A constrained argumentation

frameworkCAF = (A, R,C) is consistenwhen it has a
(b)—(a) C-admissible set fo€' AF.

Being consistent for a constrained argumentation frame-
@ work just means that the pieces of information conveyed by
its constraint and the pieces of information conveyed by its

O attack relation are compatible. Of course, this is a highly
desirable property (without it, every inference relationit
Figure 1: The digraph ofiF". alizes).

Echoing Dung’s definitions, we now introduce some def-

. initions of extensions for constrained argumentation gam
AF has two preferred extensionfsy, d, e} and{a, d, f}, works: g

which are stable extensions as well. The grounded extension

of AF is{a,d}. As a consequence, we have (for instance): Definition 12 (preferred C-extensions)Let CAF _

o AFp-%{a,d}; (A,R,C) be a constrained argumentation framework. A
o AFRYPla,d}; C-admissible se§ C A for CAF is a preferred’-extension

o AFRNYS{a,d}; of CAF if and only if 3S” € Ast. S c S and S’ is

o AFRP{a,d,e}; C-admissible folC AF.

° AF'NH’S{CL d, f1}.

Definition 13 (stableC-extensions)Let CAF = (A, R,C)

; ; be a constrained argumentation framework. A conflict-free
C;qnstramed Argumentation Frameworks subsetS of A which satisfie€ is a stableC-extensionof
Definitions CAF ifand only ifva € A\ S, 3b € S such thai(b, a) € R.

Let us now extend the notion of framework considered by _ ' ) o
Dung in order to take account for constraints over argu-  Like for Dung’s stable extensions, the definition imposes

ments: that a stabl€-extension is never empty, except in the trivial
case whem = ().
Definition 8 (constrained argumentation frameworks) In order to define more prudent inference relations, we

Let PROPpg be a propositional language defined in the Nheed a notion of characteristic function, which is suited to
usual inductive way from a sétS of propositional symbols, ~ constrained argumentation frameworks:
the boolean constant$, | and the connectives, A, V,

=, <. Aconstrained argumentation framewd&AF) is a Definition 14 (C-characteristic functions) The C-chara-
triple CAF = (A, R,C) whereA is a finite set of arguments  cteristic functionFcar of CAF = (A, R,C) is defined as
and R is a binary relation over4, the attack relation and follows:

is a propositional formula frorPROP,. Foap 24 — 24

. ) Foar(S) = {a | ais acceptable w.r.t.S and S U {a}
Each subse$ of A corresponds to an interpretation over satisfie<}.

A (i.e. atotal function fromA to {0, 1}), given by the com-
pletion of A: We also need the following notations:



Notation 2 Let CAF = (A, R,C) be a constrained argu-
mentation framework.

o Fcar,4 is the restriction ofFc 4 from A to 24 ie.,
foranyS C A, Foar a(S) = Foar(S)if S € Aand
Feoar,.a(S) is undefined otherwise.

e For any integeri and anyS € A, Fo,p4(5) =
S and Fiip a(S) = Foara(Foapa(S)), when
Fiara(S) € A, and is undefined otherwise.

We are now ready to define a notion gfoundedC-
extensiorof a constrained argumentation framework:

Definition 15 (grounded(C-extensions)Let CAF =
(A,R,C) be a constrained argumentation framework.
If the poset(A,C) has a least element anfcap 4 IS

a monotone function from4 to A, then thegrounded
C-extensionof CAF is defined as the least fixed point of
Fcar.a. Otherwise, the grounde@-extension o’ AF is
undefined.

The following proposition states that this definition is-cor
rect and explains how the groundéeextension of a con-

strained argumentation framewok can be computed when it

exists:

Proposition 2 The notion of grounded’-extension of a

least element/ w.rt. C, the weak C-extensionof CAF
is defined a lccﬁ'hA(M) wherei,,, is the least integet
such thatFy, 4, 4 (M) € Aand if F&lp (M) € A, then
fg;xlF,A(M) = féAF,A(M>-

Since A is finite, the definition of a weak-extension is
well-founded. Note that the existence of a w€akxtension
of a constrained argumentation framew@rk F' is ensured
whenevef) satisfie< (sincel) is admissible, and obviously
minimal w.r.t. ©).

In order to avoid too heavy notations, we use the same no-
tations as before for the inference relations from constiGhi
argumentation frameworks (and we consider in addition the
weak semantictl’). The context makes precise whether the
inference relation at hand concerns constrained framework
or not. For instancel AF~"-F'S means that the set of ar-
gumentsS is included into every preferre@-extension of
CAF.

Since the grounded-extension (resp. the weak-
extension) ofC AF is unique when it exists, we haye™¢
= ¢, and 3" = YW when such an extension ex-
ists. Hence, we notg-~¢ for b2¢ = K¥¢ and-" for
3" = =YW in such a case. Note that the image’td I
by ¢ (resp. ") is undefined wheneve? AF has no
grounded’-extension (resp. no wedkextension).

Let us illustrate the notions of extensions and the infer-

constrained argumentation framework is well-founded and ence relations on the running example, slightly extended:

the groundedC-extension of any constrained argumenta-

tion framework CAF can be computed agiy. ,(M)
wherei,,;, is the least integet such thatFQ;}F_’A(M) =
Féara(M), and M is the least element ¢4, C).

Proof: SinceA is finite, every chairC' = {A4;,A4,,...}
of sets from A is finite, so it has a greatest ele-
ment A, which is also the supremum of'. Since
Fcar,.a is monotone fromA to A, we also have that
sup({Feara(A1), Feara(Az),...}) = Foara(Ak),
showing thatFcar 4 is a Scott-continuous function. Fur-
thermore, sincg A, C) has a least element and is fi-

Example 1 (continued)Let us consider the constrained ar-
gumentation framework obtained by adding a constraint to
the argumentation framework of Example 1. We consider
CAF = (A = {a,bc,d,e, f},R = {(a,b), (a,¢), (b,d),
(c,e), (e, f),(f,e)}, C = —aV —~dV —e). The grounded-
extension of” AF is undefined sinc&c 4 r, 4 is not a mono-
tone function fromA to A (Fcar.a({a}) = {a,d} is not
included inFcar 4({a,e}) = {a,e}). Contrastingly, since

C AF has aleast element w.rd@ (namely), its weak exten-
sion is defined and equal {@, d}. CAF has two preferred
C-extensions{a, e}, {a,d, f}, and one stablé-extension:
{a,d, f}. We have (for instance):

nite, (A, C) is a pointed complete partial order (i.e., a par- W )
tially ordered set with a least element such that each of its ® CAFp-"H{a, d};
directed subsets has a supremum). Hence, from Knaster-e CAFRY"{a};

Tarski theorem and Scott theorem, the least fixed point of

Fear.a exists, and sinced is finite, it can be computed
as é";{;ﬁA(M) wherei,,;, is the least integei such that
Feip (M) = Fiypn 4(M), andM is the least element of
the pointed complete partial orded, C). |

As we will see later on, the groundédextension under-

lies an inference relation which is at least as cautious&s th

skeptical inference relation based on prefefesktensions
(the situation is similar in Dung’s setting when the grouhde
extension and the preferred extensions are concerned).

Now, when a constrained argumentation framework has

no grounded’-extension, it may haveweakC-extension

Definition 16 (weakC-extensions)Let CAF = (A, R,C)
be a constrained argumentation framework. Af has a

o CAFR"{a,d, f};
o CAFRP{a,el;
e CAFR3%{a,d, f}.

Properties and cautiousness

Let us now explain how the various notions®GeExtensions
are connected and how they relate to Dung’s extensions. We
first give the following easy result:

Proposition 3 Let CAF = (A, R,C) be a constrained ar-
gumentation framework.

e For eachC-admissible sef of C AF, there exists a pre-
ferredC-extension® of C AF such thatS C E.



o If CAF' = (A,R,C’) is a constrained argumentation
framework s.tC’ = C, thenA’ C A.

Proof: Point 1. is obvious sincd is finite. Point 2. comes
from the fact that if a set of argumentss such thats' = C’

andC’ = C, thenS |= C. |
We also have that:

Proposition 4 Let CAF = (A, R,C) be a constrained ar-
gumentation framework. For each preferréeextensiont
of CAF, there exists a preferred extensighof (A, R) such
thatE C E'.

Proof: Let E be a preferred’-extension. Ther¥ is C-
admissible forCAF. HenceE is admissible for(A, R).
Then from Theorem 1 from (Dung 1999,is included in a
preferred extensioft’ of AF. |

Furthermore, th€-admissible sets af'AF = (A, R,C)
can be easily characterized using theharacteristic func-
tion of CAF:

Proposition 5 Let CAF = (A, R,C) be a constrained ar-
gumentation framework and 16t C A be a conflict-free set
which satisfie€. S is C-admissible forC AF' if and only if
S C Foar(9).

Proof: Leta € S. SinceS is C-admissible forCAF,
S is admissible for A, R), hencea is acceptable w.r.tS.
FurthermoreS U {a} = S satisfiesC. Subsequentlyy €
Feoar(S). Conversely, letS € As.t. S C Foar(S), S
is conflict-free andS satisfiesC. By definition of Foap,
we have for anyS C A that Foar(S) € Far(S). Hence
S C Far(S). SincesS is conflict-free, we get from (Dung
1995) thatS is admissible fof A, R). SinceS satisfie<, S
is C-admissible folC AF. |

As a consequence, iff is a preferredC-extension of
CAF = <A,R,C>, thenE = fCAF(E)(: fCAF,A(E)
since E' is C-admissible forCAF when it is a preferred
C-extension). The converse does not hold in general (con-
sider Example 1 (cont'd): whilga, d} is C-admissible for
CAF and a fixed point fotFcar, 4, it is not a preferred
C-extension ofCAF).

Note that Proposition 3 does not mean that a con-
strained argumentation framework always has a prefétred
extension. Actually, this is not the case; for instancen E
ample 1 (cont'd), if one replac&sby —a A e, one obtains a
constrained argumentation framework, which does not have
any C-admissible set. In particular, the grounded extension
{a,d} of (A, R) is notC-admissible fortCAF. This situ-
ation contrasts with what happens in Dung’s setting (every
argumentation framework has an admissible set).

As to the stableC-extensions, we have the following
proposition:

Proposition 6 Let CAF = (A, R,C) be a constrained ar-
gumentation framework.

e Every stableC-extension ofC AF' also is a preferred-
extension of’ AF'. The converse does not hold.

e Every stableC-extension of ’AF also is a stable (hence
preferred) extension ofA, R). The converse does not
hold.

Proof:

e If S is a stableC-extension ofC AF' then for everya €
A\ S, there existd € S s.t. (b,a) € R. HenceS U {a}
is not admissible fof A, R) since it is not conflict-free.
Accordingly, S is aC-admissible subset fat'AF" of A
which is maximal w.r.tC, i.e. a preferred-extension of
CAF. Example 1 (cont'd) shows that the converse does
not hold.

e Obvious from the definition of a stab{&extension. For
the converse, consider again Example 1 (contd).

Like in Dung's setting when stable extensions are con-
sidered, a constrained argumentation framewGkF =
(A, R,C) may have zero, one or many stallextensions.
Note that the existence of a stable extensior{ forR) is not
sufficient to ensure the existence of a stablextension in
the general case (consider again Example 1 (cont’d), aonjoi
C with —f to get a new constraint: while the corresponding
argumentation frameworkA, R) has two stable extensions
({a,d, e} and{a,d, f}), it has no stabl€-extensions).

Let us now turn to the grounded-extension and the
weak C-extension of a constrained argumentation frame-
work. Contrariwise to the grounded extension of an argu-
mentation framework, the groundédextension of a con-
strained argumentation framework does not always exist
(and this is also the case for the wezlextension of a con-
strained argumentation framework). A reason is thatoes
not always have a least element w.rii. For instance, in
Example 1 (cont'd), conjoining with a VV f to get a new
constraint leads to a new constrained argumentation frame-
work which does not have a leastadmissible set.

The grounded-extension of a constrained argumentation
frameworkC' AF is connected to the preferred (and to the
stable)C-extensions o0 AF":

Proposition 7 Let CAF = (A, R,C) be a constrained ar-
gumentation framework. If the groundedextension of

C AF exists, itis included in every preferred (hence in every
stable)C-extension o0’ AF'.

Proof:  This result easily comes from the fact that ev-
ery preferredC-extension of a constrained argumentation
framework CAF is a fixed point ofFcar 4, and that the
groundedC-extension of CAF is the least fixed point of
Foar,A- u

As to the wealC-extension, we have the following easy
result:

Proposition 8 Let CAF' = (A, R,C) be a constrained ar-
gumentation framework. If the ground€Hdextension of
CAF exists, then it coincides with the we@lextension of
CAF.



Proof: Comes immediately from the definition of the weak
C-extension and the groundé&dextension of a constrained
argumentation framework. |

Note that some constrained argumentation frameworks

may have a weak-extension, without having a grounded

C-extension (see Example 1 (cont'd)). Note also that it is

not the case that the we@kextension of a constrained ar-
gumentation frameworkC AF is included into every pre-
ferredC-extension oiC AF' (again, see Example 1). Never-

P T RFP [ R%S [R5 [ W
1) 2 3) (4) (5)
MNP o C C C C Z
Mo | Z C Z Z Z
“3) g C C C Z
e | C Z C Z
W (5 [ C C C C

Table 1: Cautiousness links between inference relations

theless the weak-extension of a constrained argumentation from CAFs

frameworkC AF is connected to every stalifeextension of
CAF:

Proposition 9 Let CAF = (A, R,C) be a constrained ar-
gumentation framework. If the we@kextension ofCAF
exists, then it is included in every stalfeextension of
CAF.

Proof: The result trivially holds ifC AF' has no stablé€-
extensions. Otherwise, we show by inductionioft i,
that for any stableC-extensionS of C'AF, the inclusion
Féapa(M) C S holds. The base case is when= 0:
Féapa(M) = M is included inS sinces is C-admissible
for CAF and M is the leastC-admissible set folC' AF.
Now, we assume that the property holds for eveéry.t.

1 < k < 1.y and show that it still holds foi = & + 1.
Assume that there exists € ]-"gj}’A(M) which does not
belong to a stabl€-extensionS of CAF. Sincea ¢ S,
there existd € S such that attacksa. Sincea is accept-
able w.r.t. F& 4 4(M), a is defended againstby an ele-
mentc € F§ - 4(M). But the induction hypothesis shows
thatc € S, henceS is not conflict-free, which is impossible
sincesS is a stableC-extension.

has a stablé-extension (hence a preferréeextension from
Proposition 6)C in cells(1, 3) and(4, 2) come from Propo-
sition 6. C in cell (5, 3) comes from Proposition & in cell
(5,3) comes fromC in cell (5,3) sinceCAF has a stable
C-extensionC in cell (5,2) comes fromC in cell (5,4) and
Proposition 6. The remaining (in cells (1,4) and(3,2))
come immediately from the previous and the transitivity
of cautiousness.

All the ¢ in the table come from Example 1 (cont'd), ex-
ceptincellg1, 5) and(4, 3). For them, it is sufficient to con-
siderCAF = ({a,b,¢,d},{(a,c), (b, c),(c,d)}, —a V —b).

? is the least element afl w.r.t. C, henceCAF has a
weakC-extension, namelf). It does not have a ground€d
extension sinc&car a(0) = {a,b} ¢ A (henceFcar,a
is not from.A to A). {a,d} and{b,d} are the preferred-
extensions o AF' (and they are the stable ones as wdll).

When a constrained argumentation framewOtk F' has
a groundedC-extension, we have--¢ = W and the
only difference is thak-~"V C ~¥:F (from Proposition 7).
Thus, in this case, the cautiousness picture is similareo th

From the previous propositions, the cautiousness picture one relating the corresponding inference relations in Bung
for the inference relations can be easily drawn. We say that Setting.

5 is at least as cautious @s? ¢, noted~9s C 4 if
and only if for everyCAF = (A, R,C) and everyS C A, if
CAF95S thenCAFR 'S,

We first focus on constrained argumentation frameworks

C AF having a wealC-extension and a stablaextension.
Indeed, ifC AF has no weak-extension, its image by

is undefined so the relation cannot be compared with any

other inference relation w.r.t. cautiousnessCWF has no
stableC-extension, then botp-"-% and ~37 trivialize: ev-
ery set of argument belongs to the imageCot ' by Y9,
and no set of argument belongs to the image’ofF by

Generality of the approach

Let us now turn to the expressiveness issue. It is easy to

prove that the theory of constrained argumentation frame-
works generalizes Dung’s theory of (finite) argumentation
frameworks?

Proposition 11 Let AF = (A, R) be an argumentation
framework . LetCAF = (A, R,C) be a constrained ar-
gumentation framework whetzis any valid formula over
A. Then:

5. In such a pathological scenario, credulous inference 1. the preferred extensions off" are the preferredC-

W.I.t.
skeptical inference w.r.t. the stable semantics, whichmis u
expected.

Proposition 10 The cautiousness relations given in Table 1

hold for any constrained argumentation framewarkd F’
having a wealC-extension and a stablg-extension, but no
groundedC-extension.

Proof: Cin cells (i,i) (i € 1...5) are obvious. C in
cells(1,2) and(3,4) come from the assumption th@tA F’

the stable semantics is strictly more cautious than

extensions o AF'.

2. the stable extensions dff” are the stabl&-extensions of

CAF.

3. the grounded extension oflF' is the groundedC-

extension of” AF' (which coincides with the weak exten-
sion of CAF).

2Observe that the converse does not hold; in particular, though
every argumentation framework is consistefhiig an admissible
set) this is not the case of every constrained framewbdogs not
satisfy evenyC).



Proof: Points 1. and 2. are easy; point 3. comes from the

fact that(A, C) is a complete partial order a4, 4 is
continuous fromA to .4 when( is valid (Theorem 1 from
(Dung 1995)). |

In the same way, some bipolar argumentation frame-
works (Amgoud, Cayrol, & Lagasquie-Schiex 2004; Cay-

We have the following translation result:

Proposition 12 Let BAF = (A, Rgey, Roup € A x A)

be a bipolar (finite) argumentation framework. LG4 F' =

(A, Rqey,C) be the constrained argumentation framework
suchthaC = A, ; cp,, (@ =b). Then:

rol & Lagasquie-Schiex 2005a; 2005b; Mardi, Cayrol, & 1. the weakly c-preferred extensions BHF' are the pre-

Lagasquie-Schiex 2005) can be efficiently translated into

“equivalent” constrained argumentation frameworks:

Definition 17 (bipolar argumentation frameworks) A bi-
polar (finite) argumentation framewoik a triple BAF =
(A, Rief, Rsup © A x A). R,y is a support relation be-
tween arguments.

Several notions of admissibility can be envisioned in this

ferredC-extensions o AF".

2. the weakly c-stable extensions®f F' are the stableC-

extensions o AF.

Proof: Obvious from that fact that ensuring that a set of
argumentsS is such that for every, b € A, if (a,b) € Rsyp
anda € S, thenb € S amounts exactly to ensuring that

SEcC. ]

setting, reflecting the various ways one can take advantage A notion of weakly c-grounded extension of a bipolar

of the support relation. Among them, a set of argumehts

argumentation framework could be also easily defined and

can be considered as admissible for a bipolar argumentation Computed as the groundéeextension of the corresponding

framework BAF when it is admissible fokA4, R,.,) and
such that for every, b € A, if (a,b) € Rsyp anda € S,
thenb € S. This leads immediately to the following notions
of extensions:

Definition 18 (set closed forR,,,) Let BAF = (A, Rcf,
Rsup € A x A) be a bipolar (finite) argumentation frame-
work. A subse$ of A is closedfor Ry, if and only if it con-
tains every argument such that there existse S, (b,a) €
Rup-

Definition 19 (weakly c-admissible)Let BAF = (A,
Ricf, Reup € A x A) be a bipolar (finite) argumenta-
tion framework. A subsef of A is weakly c-admissibléor
BAF ifand only if S is admissible fof A, R, ;) and closed
for Reup.

Definition 20 (weakly c-preferred extensions)Let

BAF = (A, Rgey, Rsup € A x A) be a bipolar (fi-
nite) argumentation framework. Aveakly c-preferred
extensiorof BAF' is a subset of A such thatS' is maximal
w.r.t. € among the set of weakly c-admissible setsfarF'.

Definition 21 (weakly c-stable extensions).et BAF =
(A, Rgey, Rsup € A x A) be a bipolar (finite) argumen-
tation framework. Aweakly c-stable extensioof BAF' is
a subsetS of A such thatS is conflict-free, closed for the
relation R, andVa € A\ S,3b € S s.t.(b,a) € Ryey.

Example 2 Let BAF = (A, Rgey, Rsup) With A =

{a,b,c}, Raey = {(a,b),(b,a)} and Rsyp = {(c,b)}.
BAF is depicted on Figure 2E, = {b, c} is the weakly c-

080,.0

Figure 2: The digraph aBAF'.

stable extension adBAF. E; andE; = {a} are the weakly
c-preferred extensions @3 AF'.

constrained argumentation framework. The existence of a
grounded’-extension in such a case comes from the slightly
more general result, as follows:

Proposition 13 LetCAF = (A, R,C) be a constrained ar-
gumentation framework. & is equivalent to a conjunction
of clauses of the formz vy, then(A, C) has a least element
and Fcar, 4 is a monotone function from to A.

Proof: First,C has a least element sintés admissible for
(A, R) and it satisfie€. As to monotony, let us consider
two subsetsS and S’ of A such thatS C S’. Leta €
Feoar,a(S). By definition,a is acceptable w.r.tS. Hence,
a is also acceptable w.r.8’. FurthermoreS U {a} satisfies
C. Assume now tha$’ U {a} does not satisf¢. Then there
exists an implicate-x V y of C which is not satisfied by’ U
{a}. SinceS’ satisfie<, it must be the case that= « and

y ¢ S'. Thereforey ¢ S. As a consequencé,U {a} does
not satisfy—a V y, contradiction. Finally, it remains to show
that for anyS € A, we haveFc4r 4(S) € A. Since Dung’s
fundamental lemma (Dung 1995) ensures thatir 4(.5)

is admissible fok A, R), it remains to show thakc 4, 4(S)
satisfie’. Assume that this is not the case. Then there exists
an implicate—z Vv y of C such thatFoap 4(S) satisfiese
and does not satisfy. This is equivalent to state that
Foara(S) andy ¢ Foar a(S). Hencer is acceptable
w.r.t. S andS U {z} satisfie<. As a consequencé,U {x}
satisfies—z Vy. Soy € S. Now, for anyS € A, we
haveS C Fcar 4(S); indeed, ifa belongs taS, thena is
acceptable w.r.t.S sinceS € A; besides,SU {a} = S
satisfie< sinceS € A. Finally, sincey € S, we must have
y € Foar,a(S), contradiction. [ |

We can also show that the prudent semantics and the
careful semantics for argumentation frameworks as given
in (Coste-Marquis, Devred, & Marquis 2005b; 2005a) can
be recovered as the semantics for some correspondings con-
strained argumentation frameworks (in a nutshell, indirec
conflitcs and controversies can be computed and translated
into constraints in polynomial time). To be more precise, we
need the following definitions:



Definition 22 (controversial arguments) Let AF' = (A,
R) be an argumentation framework.

e Leta,b € A. a indirectly attacks if and only if there
exists an odd-length path fromto b in the digraph for
AF.

e Leta,b € A. a indirectly defends if and only if there
exists an even-length path framto b in the digraph for
AF. The length of this path is not zero.

e Leta,b € A. ais controversialw.rt. b if and only ifa
indirectly attacks anda indirectly defend$.

e Leta,b,c € A. (a,b) is super-controversial.r.t. ¢ if and
only if a indirectly attacks: andb indirectly defends.

Both the prudent semantics and the careful semantics for
argumentation frameworkd F' aim at restricting the set of
admissible sets foAF', so as to prevent any pair of argu-

mentsa and b such thata is controversial w.r.t. b from

O

Qe

Figure 3: The digraph foAF.

Example 3 Let AF' = (A, R) with A = {a,b,¢c,d,e} and
R = {(b,a),(e,b),(c,b),(d,c)}. The digraph forAF is
depicted on Figure 3.

Let E = {a,d,e}. E is the grounded extension &fF’,
the unique preferred extension Af" and the unique stable
extension ofA .

Sinced indirectly attacks:, a« andd cannot belong to the

belonging to the same extension, which is not the case for same p-extension. The preferred p-extensionsi bf are

Dung’s semantics.

Definition 23 (p-admissible sets)Let AF' = (A, R) be a
(finite) argumentation framework.S C A is p(rudent)-
admissiblefor AF if and only if everya € S is acceptable

w.rt. S and .S is without indirect conflicts, i.e., there is no

pair of arguments: andb of S s.t. a indirectly attacks.

Definition 24 (c-admissible sets)Let AF' = (A, R) be a
(finite) argumentation framework.S C A is c(areful)-
admissiblefor AF if and only if everya € S is acceptable
w.r.t. S and S is conflict-free and controversial-free fatF’,

i.e. for everya,b € S and every € A, (a,b) is not super-
controversial w.r.t.c.

On this ground, notions of preferred p-extension (resp.

preferred c-extension) and of stable p-extension (reaplest
c-extension) can be easily defined:

Definition 25 (preferred p-extensions)Let AF = (A, R)

be a (finite) argumentation framework. A p-admissible set

S C Afor AF is a preferred p-extensioof AF if and only
if 45’ C As.t.S c S and S’ is p-admissible foA F.

Definition 26 (preferred c-extensions)Let AF = (A, R)

{a, e} and{d} and AF has no stable p-extension.

(d, e) is super-controversial w.r.ta. {a,e} and{d} are
the preferred c-extensions dfF', and AF' has no stable c-
extension.

We have the following translation results:

Proposition 14 Let AFF = (A,R) be a (finite) argu-
mentation framework LetCAF = (A, R,C) be the
constrained argumentation framework such thét =

N(apyeax 4 | o indirectly attacks, (¢ = —b). Then:

1. the p-preferred extensions ofF are the preferredC-
extensions o' AF'.

2. the p-stable extensions 4" are the stable’-extensions
of CAF.

Proof: Direct from the fact that prevents arguments
andb from belonging to the sam&admissible set fo’ AF'
exactly wheru indirectly attacks. |

Proposition 15 Let AFF = (A, R) be a (finite) argu-
mentation framework LetCAF = (A, R,C) be the
constrained argumentation framework such thét =

be a (finite) argumentation framework. A c-admissible set /\(a,b)eAxA | 3eeA,(a,b) i SUPEr-cONtroversial wrkle =

S C Afor AF is a preferred c-extensiaof AF' if and only
if 45’ C As.t.S c S’ andS’ is c-admissible forA F.

Definition 27 (stable p-extensions)Let AF = (A, R) be a
(finite) argumentation framework. A subsebf A without
indirect conflictsS is astable p-extensioaf AF' if and only
if S attacks every argument fror \ S.

Definition 28 (stable c-extensionsjet AF' = (A, R) be

a (finite) argumentation framework. A conflict-free and

controversial-free subsef of A is a stable c-extensioof
AF if and only if S attacks every argument frorh \ S.

—b). Then:

1. the c-preferred extensions ofF are the preferredC-
extensions o AF'.

2. the c-stable extensions 4ft" are the stable&’-extensions
of CAF.

Proof: Direct from the fact that prevents arguments
andb from belonging to the sam@&admissible set fo€ AF
exactly when(a, b) is super-controversial w.r.t. some argu-
mentc. |



Computational aspects
Finally, we have investigated the complexity of inference,

and related problems, in the theory of constrained argumen-

tation frameworks. A firstimportant complexity issue when
dealing with constrained argumentation frameworks is the
consistency one. Indeed, inference from an inconsistemt co
strained argumentation framewo(kAF trivializes: ¢

and " are undefined, and singé8AF has no preferred
C-extensionsC AF"-*S holds for everyS C A whens

is P or S, while CAF~S holds for noS C A whens

is P or S. While this problem is obvious when argumenta-
tion frameworks are considered (since argumentation frame
works are consistent!), it is computationally hard in tha-ge

admissible for( A, R) if and only if S satisfie< 4. Subse-
quently, S C A is C-admissible forC AF if and only if S
satisfie€ 4 A C. Hence, A has a least element if and only
if Car A C has aleast model w.r.€. This holds if and only
if the closureCW A(Car A C) of Car A C W.rt. the closed
world assumption has a model; furthermore, the least model
M of Car A C is the uniqgue model o€ W A(Car A C),
which can be computed a88WA(Cap A C) = Car A

C A Naea | carnciea @ (se€ Lemma 5 in (Eiter & Gott-
lob 1992)). Accordingly, determining whethgrhas a least
element amounts to determining whetld& A(Car A C)

is consistent, which is i®% (and not incoBH, unless the
polynomial hierarchy collapses) (Eiter & Gottlob 1992)rFo

eral case. Furthermore, the complexity does not come solely point 2., adding the further requirement et 4 4 is a

from the satisfiability problem faf:

Proposition 16 Deciding whetherC AF (A,R,C) is
consistent iNP-complete, even & is a positive CNF for-
mula or a negative CNF formula.

Proof: Membership is easy. Hardness is obtained by re-
duction from 3€NF-SAT. To every3 — C'NF formula

Y over {xi,...,2,}, We associate in polynomial time a
constrained argumentation framewosAF' where A =
{l'lv-uaxnawllv"'al';z}’ R {(‘Ela‘[;)a(x;ﬂxl) | i
1...n} and(C is the positive (resp. negative formula) ob-
tained by replacing i every negative literabz; by 2]
(resp. every positive literat; by —a}). ¥ is satisfiable if
and only ifCAF is consistent. |

Consistency is necessary and sufficient to ensure that

P and 7 do not trivialize. However, it is not suffi-
cient to ensure that~“ and~" are well-defined and that
7% and~7° do not trivialize. As to non-trivialization, we
have derived the following results:

Proposition 17 LetCAF = (A, R,C) be a constrained ar-
gumentation framework.

1. Determining whethed has a least element&®NP-hard
and in©%.

Determining whether has a least element anBlc 4, 4
is a monotone function frod to A is coNP-hard and in
ob.

Determining whethe€C'AF' has a stableC-extension is
NP-complete (even if’ AF is known as consistent).

2.

Proof: For points 1. and 2., in (Beshard & Doutre 2004)

(Proposition 6), it is shown how an argumentation frame-
work AF' = (A, R) can be associated in polynomial time

to a propositional formul& 4 over A such thatS C A is

3We assume the reader acquainted with basic notions of com-
plexity theory, especially the polynomial hierarchy. See e.g. (Pa-
padimitriou 1994) otherwise.

A positive (resp. negative) formula is a formula in negation
normal form in which only positive (resp. negative) literals occur.

Such formulas are always satisfiable when propositional constants

are not included in the morphology of the propositional language.
Positive (resp. negative) CNF formulas form a proper subset of the
reverse Horn CNF formulas (resp. Horn CNF formulas).

monotone function fromA4 to .4 does not lead to a com-
plexity shift since determining whethéfc ar 4 iS @ mono-
tone function fromA to .A can be easily shown inoNP.
For point 1.,coNP-hardness comes from the fact that de-
termining whether the closure of a propositional formkila
over A is consistent icoNP-hard (Eiter & Gottlob 1992).
For point 2., we exhibit a reduction fromNSAT. Let ¥ be

a propositional formula ovefzy,...,z,}. We can asso-
ciate toX in polynomial time the constrained argumentation
framework{{z1,...,Zn,y1,¥2},0,C = (XA (31 V y2) A
(=1 V=y2))V (A~ A=y A-ye)). If is unsatisfiable
then A = {0}; sinceFcar 4(0) = 0, Fcar, 4 is a mono-
tone function fromA to A. If ¥ is satisfiable, then there ex-
istsS C {z1,...,x,} s.t.S satisfiess. SinceR = 0, every
subset of{z1,...,z,,y1,y2} is admissible fof A, R) and
every argument ofxy,...,z,,y1,y2} iS acceptable w.r.t.
it. By construction,SU{y, } andSU{y,} satisfie< but for
eVeryS/ Cc {xh s 7x’nay17y2} st Su {ylvyZ} - Slu

S’ does not satisfyC. Hence Foara(S) ¢ A. For
point 3., membership is easy (guessC A and check in
polynomial time that it is a stablé-extension ofCAF)
and hardness comes from (Dimopoulos & Torres 1996;
Dunne & Bench-Capon 2002) in the restricted case when
C is valid. [ |

Proposition 18 LetCAF = (A, R,C) be a constrained ar-
gumentation framework anfl C A. The complexity of de-
termining whetherC AF|~%*S holds (and is well-defined
whens = G or s = W) is as reported in Table 2.

VP I15-complete
R NP-complete
VoS coNP-complete
N NP-complete
% | coNP-hard and inA?
" | coNP-hard and inA}

Table 2: Complexity of inference from constrained argu-
mentation frameworks

Proof:  Let us first focus on the first four rows of Ta-
ble 2. All hardness results come directly from Proposition
11 and results from (Dimopoulos & Torres 1996; Dunne



& Bench-Capon 2002) and hold even in the restricted case e S C A is a preferredC-extension of” AF if and only if
the constrained argumentation framewarkl ' is known S is a maximal model of the formula
as consistent. As to membership, we have shown in (Coste-
Marquis, Devred, & Marquis 2005c) that considerisets ( /\ ((a = /\
of argumentsS as queries (instead of arguments) does not acA b| (ba)ER
lead to a complexity shift for the inference issue in Dung’s
A CV
b| (b,a)eR c| (c,b)eR

—b)

setting; similar membership proofs can be derived here, tak ANa = ¢)))) AC.
ing advantage of the fact that deciding whetHesatisfies”
can be easily done in time polynomial in the input size (i.e.
|CAF| + |S]). Let us now consider the last two rows of Ta-
ble 18. Since deciding whethérsatisfies is easy for any °
S C A, Foar,a(S) can be computed in time polynomial in

|C AF|; subsequently, computing the ground&éxtension

of CAF and computing the weak-extension ofC AF' is .
just as hard as computing the least modélof C (which
requires to determining whether it exists). Indeed, ohte the correspondingl F', satisfyingC, and the preferred-
is available, it is enough to apply iterativel§icar, 4 to it, extensions o’ AF are the maximat-admissible sets of
until either (1) reaching a fixed point or (2) obtaining a set it.

which does not satisf¢. SinceFcar 4(S) can be com- n
puted in time polynomial iNC AF|, deciding whetherS

Proof:

Direct from Proposition 5.1 from (Creignou 1995) since a
stableC-extension ofCAF is a stable extension ¢f AF
which satisfie€, and the converse also holds.

Direct from Proposition 6 from (Besnard & Doutre 2004)
since aC-admissible set o AF' is an admissible set of

satisfiesC is easy and the number of iterations is bounded
by | A|, the process can be achieved in time polynomial in
|CAF| when M is given. In case (1), the fixed point is
the grounded’-extension ofC' AF (which coincides with its
weakC-extension), while in case (2); AF has no grounded

Such polytime translations allow for taking advantage
of many results from automated reasoning (includazrg
solvers) so as to decide our inference relations.

Conclusion and Perspectives

C-extension but the set obtained after the last iteratiohds t
weak(C-extension ofCAF. Finally, sinceM is the unique
model of CWW A(C), computing it can be easily achieved us-
ing O(]A|) calls to anNP oracle (this is immediate from the
definition of CW A(C)). |

We have presented a generalization of Dung’s theory of ar-
gumentation, which takes account for additional constsain

on admissible sets. We have pointed out several semantics
for such constrained argumentation frameworks, and com-
pared the corresponding inference relations w.r.t. castio
ness. While it encompasses some previous approaches based

Itis noticeable to observe that the four inference rel&ion Dung’s theory as specific cases, we have shown that our
based on the preferred or the stable semantics in the con-generglization does not lead to a complexity shift w.r.t. in
strained setting are just as hard as the corresponding rela-ference for several semantics.

_tions in Dung’s setting. It is unlikely to be the case for the This paper calls for several perspectives. One of them
inference relations based on the grounded (or the wéak)  ¢onsists in identifying additional restrictions on coasits
extension since the grounded extension of an argumentation - o which the existence of the weakextension (or of

framework can be computed in polynomial time. _ the grounded’-extension) would be ensured. Another one
From the computational point of view, it is interesting  consists in pointing out restrictions on constrained argiim
to note that the translation approach proposed by Creignou tatjon frameworks for which deciding the inference relasio

Besnard and Doutre (Besnard & Doutre 2004) for encod-

ing extensions as logical interpretations can be applied as
well to constrained frameworks. Such a translation apgroac
shows how to reduce the inference issue from argumenta-
tion frameworks to logic-based inference. The idea cossist
in associating to any constrained argumentation framework
CAF a propositional formula the models (resp. the maxi-
mal models) of which encode exactly the stablextensions
(resp. the preferre@-extensions) o0 AF":
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