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Abstract. This paper is centered on the family of Dung’s finite argumentation
frameworks when the attacks relation is symmetric (and nonempty and irreflex-
ive). We show that while this family does not contain any well-founded frame-
work, every element of it is both coherent and relatively grounded. Then we focus
on the acceptability problems for the various semantics introduced by Dung, yet
generalized to sets of arguments. We show that only two distinct forms of accept-
ability are possible when the considered frameworks are symmetric. Those forms
of acceptability are quite simple, but tractable; this contrasts with the general case
for which all the forms of acceptability are intractable (except for the ones based
on grounded or naive extensions).

1 Introduction

Modelling argumentation is known as a major issue of many AI problems, including
defeasible reasoning and some forms of dialogue between agents (see e.g., [1–5]). In a
nutshell, argumentative reasoning is concerned with the interaction of arguments. A key
notion for any theory of argumentation is the acceptability one: intuitively, an argument
is considered acceptable if it can be argued successfully against attacking arguments.
Formally, the acceptability of an argument (resp. a set of arguments taken as a whole)
is characterized by the membership (resp. the containment) of it to some selected sets
of arguments, referred to as extensions.

Several theories of argumentation have been proposed so far (see among others
[6–10]). In Elvang-Gøransson et al.’s theory (refined and extended by several authors,
including [7, 11–19]), one considers in the beginning a set of assumptions and some
background knowledge; then an argument is a pair consisting of a statement (the con-
clusion of the argument) and a (often minimal) subset of assumptions (the support of
the conclusion) which is consistent with the background knowledge and such that the
conclusion is a logical consequence of it and the background knowledge. Several forms
of interaction between arguments have been investigated, including among others the
rebuttal relation (an argument rebuts a second one when the conclusion of the former is
equivalent to the negation of the conclusion of the latter). In Dung’s approach1 [6], no
assumption is made about the nature of an argument (it can be a statement supported
�
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by some assumptions like in the theory introduced by Elvang-Gøransson et al. but this
is not mandatory). What really matters is the way arguments interact w.r.t. the attacks
relation. In contrast to Elvang-Gøransson et al.’s theory, Dung’s theory of argumenta-
tion is not concerned with the generation of arguments; arguments and the way they
interact are considered as initial data of any argumentation framework. Several notions
of extensions have been defined by Dung, reflecting several reasons according to which
arguments can be taken together. A major feature of Dung’s theory is that it encom-
passes many approaches to nonmonotonic reasoning and logic programming as special
cases.

In this paper, we focus on the family of finite argumentation frameworks obtained by
requiring the attacks relation to be symmetric; we also assume that the attacks relation
is not empty (which is not so strong an assumption since the argumentation frameworks
which violate it are trivial ones: no interactions between arguments exist) and that it is
irreflexive; the latter assumption is also sensible since an argument which attacks itself
is in some sense paradoxical and the problem of reasoning with paradoxical statements
is hard by itself but mainly independent from the argumentation issue. Thus, paradoxi-
cal statements are typically not viewed as arguments (for instance, it cannot be the case
that the support of a conclusion contradicts the conclusion in Elvang-Gøransson et al.’s
approach). The symmetry requirement is also not so strong; for instance, the rebuttal
relation in Elvang-Gøransson et al.’s theory is clearly symmetric.

Our contribution is twofold. We show that while no symmetric argumentation frame-
work is also well-founded, every symmetric argumentation framework is both coherent
and relatively grounded. Then we focus on the acceptability problems for the various
semantics introduced by Dung, yet generalized to sets of arguments. We show that only
two distinct forms of acceptability are possible when considering symmetric frame-
works. Finally, we show that those forms of acceptability are quite simple, but tractable
for symmetric frameworks, while they are intractable in the general case (except for the
ones based on grounded or naive extensions).

The rest of this paper is organized as follows. In Section2, we recall the main defi-
nitions and results pertaining to Dung’s theory of argumentation. In Section 3, we focus
on symmetric argumentation frameworks and present our contribution. Finally, Section
4 concludes the paper.

2 Dung’s Theory of Argumentation

Let us present some basic definitions at work in Dung’s theory of argumentation [6].
We restrict them to finite argumentation frameworks.

Definition 1 (finite argumentation frameworks).
A finite argumentation framework is a pair

���������
	���
where

�
is a finite set of

so-called arguments and
�

is a binary relation over
�

(a subset of
�����

), the attacks
relation.

Clearly enough, the set of finite argumentation frameworks is a proper subset of
the set of Dung’s finitary argumentation frameworks, where every argument must be
attacked by finitely many arguments.



The definition above clearly shows that a finite argumentation framework is nothing
but a finite digraph.

Example 1. Let
����������	���

be a finite argumentation framework with��������	���	���	� �	�!#"
and

�$���&%'!#	��)(*	+%��,	�!,(*	-%.��	��-(*	-%'�,	��)(*	-%.��	� /(*	+%'��	� &(0	-%'�,	� /(*	+%� �	��)(*"
.���

is depicted on Figure 1. One can observe that
�

is a symmetric relation; clearly,
this is not always the case for Dung’s frameworks but this choice is motivated by the
desire to take advantage of

���
as a running example throughout the paper.
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Fig. 1. Digraph for 687 .

A first important notion is the notion of acceptability: an argument
�

is acceptable
w.r.t. a set of arguments whenever it is defended by the set, i.e., every argument which
attacks

�
is itself attacked by an element of the set.

Definition 2 (acceptability w.r.t. a set).
Let
���9�9���
	���

be a finite argumentation framework. An argument
�;:<�

is accept-
able w.r.t. a subset = of

�
if and only if for every

�;:>�
s.t.
%'��	��/(?:>�

, there exists��: = s.t.
%���	��0(@:A�

. A set of arguments is acceptable w.r.t. = when each of its elements
is acceptable w.r.t. = .

In the graph theory literature, a set of vertices which is acceptable w.r.t. itself is
semidominant.

A second important notion is the notion of absence of conflicts. Intuitively, two
arguments should not be considered together whenever one of them attacks the other
one.

Definition 3 (conflict-free sets).
Let
�������'�
	��B

be a finite argumentation framework. A subset = of
�

is conflict-free
if and only if for every

��	��C: = , we have
%'��	��0(�D:A�

.

The conflict-free subsets of
�

which are maximal w.r.t. E are called the naive ex-
tensions of

���
in [3]. In the graph theory literature, such conflict-free sets are also

called independent sets.
Requiring the absence of conflicts and the form of autonomy captured by self-

acceptability leads to the notion of admissible set.

Definition 4 (admissible sets).
Let
���F�G����	���

be a finite argumentation framework. A subset = of
�

is admissible
if and only if = is conflict-free and acceptable w.r.t. = .



In the graph theory literature, a set of vertices admissible (i.e. independent and
semidominant) is called a semikernel.

Example 2 (Example 1 (cont’ed)).
�+!&	� H"

,
��!#	��+"

,
����"

are admissible sets given
���

.

The significance of the concept of admissible sets is reflected by the fact that ev-
ery extension of an argumentation framework under the standard semantics introduced
by Dung (preferred, stable, complete and grounded extensions) is an admissible set,
satisfying some form of optimality:

Definition 5 (extensions).
Let
�����I���
	���

be a finite argumentation framework.

– A subset = of
�

is a preferred extension of
���

if and only if it is maximal w.r.t. E
among the set of admissible sets for

���
.

– A subset = of
�

is a stable extension of
���

if and only if it is admissible and for
every argument

�
from

�KJ = , there exists
��: = s.t.

%'�,	��L(@:;�
.

– A subset = of
�

is a complete extension of
���

if and only if it is admissible and it
coincides with the set of arguments acceptable w.r.t. itself.

– A subset = of
�

is the grounded extension of
���

if and only if it is the least element
w.r.t. E among the complete extensions of

���
.

Example 3 (Example 1 (cont’ed)). Let MBN �O����"
, MCP �Q�+�R	�!&	���"

, M�S �Q���R	���"
and

MUT �9�+�R	� �	�!#" . M�N is the grounded extension of
���

. M�P , MCS and MCT are the preferred
extensions of

���
and the stable extensions of

���
. MBN , M�P , MCS and MUT are the complete

extensions of
���

.

In the graph theory literature, sets = of vertices s.t. every vertex outside = is in
the direct image of at least one element of = are also called dominating sets. Sets of
vertices that are both independent and dominating are referred to as the kernels of the
graph

���
. The sets of vertices which are the maximal semikernel of the graph

���
are

the preferred extensions of
���

.
Formally, complete extensions of

���
can be characterized as the fixed points of

its characteristic function V�WYX , and among them, the grounded extension of
���

is the
least element [6]:

Definition 6 (characteristic functions).
The characteristic function, denoted V�WYX , of an argumentation framework

���Z�
���
	���

is defined as follows:
VCWYX\[#] W_^ ] W

VCWYX % = (`���+�ba�� is acceptable w.r.t. = "

Finally, several notions of acceptability of an argument (or more generally a set of
arguments) can be defined by requiring the membership to one (credulous acceptability)
or every extension (skeptical acceptability) of a specific kind. Obviously enough, cred-
ulous acceptability and skeptical acceptability w.r.t. the grounded extension coincide,
since the grounded extension of an argumentation framework is unique.

Among other things, Dung has shown that every argumentation framework
���

has
at least one preferred extension, while it may have zero, one or many stable extensions.



The purest argumentation frameworks
���

in Dung’s theory are those for which
all the notions of acceptability coincide. This means that

���
has a unique complete

extension (the grounded one), which is also stable and preferred.

Definition 7. An argumentation framework
���c�c����	���

is well-founded if and only
if there does not exist an infinite sequence

�Lde	�� Ngf)f)f �&h f-f)f of arguments from
�

, such
that for each i , %��Ljlk N 	��/j.(m:;� .

Proposition 1. Every well-founded argumentation framework has exactly one com-
plete extension which is grounded, preferred and stable.

Dung has provided a sufficient condition for an argumentation framework
���

to
satisfy this requirement, the well-foundation of

���
:

Proposition 2. Let
���O�n����	���

be a finite argumentation framework.
���

is well-
founded if there is no cycle in the digraph

�'�
	��B
.

Dung has also shown that every stable extension is preferred and every preferred
extension is complete; however, none of the converse inclusions holds. When all the
preferred extensions of an argumentation framework are stable ones, the framework is
said to be coherent:

Definition 8 (coherent argumentation frameworks).
Let
���c�o����	���

be a finite argumentation framework.
���

is coherent if and only if
every preferred extension of

���
is also stable.

Example 4 (Example 1 (cont’ed)). Every preferred extension of
���

is a stable exten-
sion as well. Hence

���
is coherent.

This is particularly interesting since for any coherent
���

, the notion of credulous
(resp. skeptical) acceptability w.r.t. the preferred arguments coincides with the notion
of credulous (resp. skeptical) acceptability w.r.t. the stable arguments.

Since the grounded extension of
���

is the least complete extension of it, it is in-
cluded in every preferred extension of

���
(hence in every stable extension of

���
).

This shows that the notion of acceptability w.r.t. the grounded extension is always at
least as demanding as any form of credulous or skeptical acceptability w.r.t. the pre-
ferred extensions or the stable ones (except for credulous acceptability w.r.t. the stable
extensions when no such extensions exist since no argument can be accepted in that
case for such semantics — note that such an exception cannot be the case when

���
is

coherent).
Nevertheless, the grounded extension of

���
is not always equal to the intersection

of all its preferred extensions. Interesting argumentation frameworks are those for which
this condition is satisfied:

Definition 9 (relatively grounded argumentation frameworks).
Let

���p�q���
	���
be a finite argumentation framework.

���
is relatively grounded

if and only if its grounded extension is equal to the intersection of all its preferred
extensions.

Example 5 (Example 1 (cont’ed)). M�P-rgMCS�rgMUT � M�N . Hence
���

is relatively grounded.

In this case, the notion of skeptical acceptability w.r.t. the preferred extensions co-
incides with the notion of acceptability w.r.t. the grounded extension.



3 Symmetric Argumentation Frameworks

3.1 Definitions and properties

Let us now make precise the argumentation frameworks we are interested in.

Definition 10 (symmetric argumentation frameworks).
A symmetric argumentation framework is a finite argumentation framework

���s�
���
	���

where
�

is assumed symmetric, nonempty and irreflexive.

Example 6 (Example 1 (cont’ed)).
���

is a symmetric argumentation framework.

First of all, it is easy to show that no symmetric argumentation framework is among
the purest ones:

Proposition 3. No symmetric argumentation framework is well-founded.

Proof. Since
�

is nonempty and symmetric, a cycle can always be found in
���

. t
Nevertheless, this does not prevent symmetric argumentation frameworks from ex-

hibiting interesting properties. An easy result is:

Proposition 4. Let
�����I���
	���

be a symmetric argumentation framework. =KE � is
admissible if and only if = is conflict-free.

Proof. Since
�

is symmetric, every argument
�

of
�

defends itself against all the argu-
ments which attack it, so every

�u:��
is acceptable w.r.t

�
. Hence, for all =vE � , every�w:K�

is acceptable w.r.t. =yx ����" . Hence, for all =�E � , every
�w: = is acceptable

w.r.t. = . Hence, = is admissible if = is conflict-free. t
Thus, the preferred extensions of a symmetric

���F�F����	���
are the maximal sub-

sets of
�

w.r.t. E among those which are conflict-free, i.e. the naive extensions of
���

[3]. In particular, every conflict-free subset of
�

is included in a preferred extension of���
.
Another consequence is that:

Proposition 5. Every symmetric argumentation framework is coherent.

Proof. Every preferred extension MOE � is a naive extension. Hence, each argument
not in M is in conflict with M . Since R is symmetric, each argument not in M is attacked
by M . Hence, M is a stable extension. t

Since every symmetric argumentation framework has a preferred extension, ev-
ery symmetric argumentation framework has a stable extension, which is necessarily
nonempty. Actually, this is an easy consequence of a more general result from graph
theory stating that symmetric graphs are kernel perfect. This means that every induced
subgraph of a symmetric graph has a kernel.

Proposition 6. Let
���z�z�'�
	��B

be a symmetric argumentation framework. Every�<:{�
belongs to at least one preferred (or equivalently, stable or naive) extension of���

.



Proof. Immediate, since
�

is irreflexive and symmetric. t
Example 7 (Example 1 (cont’ed)). M P xyM S xyM T �|� . Hence every argument of

�
belongs to a preferred extension of

���
.

As to the grounded extension, we can prove that:

Proposition 7. Let
�������'�
	��B

be a symmetric argumentation framework. The grounded
extension of

���
is given by

�+�}:A��a�~��C:A��	-%'�,	��L(@:;��"
.

Proof. According to definition 6, V WYX %'�#( is the set of arguments of
���

which are not
attacked. There are two cases:

1. Either every argument of
�

is attacked. Then V WYX %'�#(���� is the least complete
extension of

���
(w.r.t. E ). Hence

�
is the grounded extension of

���
.

2. Or some arguments of
�

are not attacked. Let =8� � V WYX %.�e( be the set of such
arguments. Since

�
is symmetric, if an argument is not attacked, then it does not

attack any argument. Hence, there is no
�\:���J =`� s.t.

�
is acceptable w.r.t. =�� .

Hence V PWYX %'�e(�� VCWYX % =�� (�� =�� . So, =�� is the least complete extension of
���

(w.r.t. E ). Hence =�� is the grounded extension of
���

.

t
Subsequently, the grounded extension of

���
can be computed in time linear ina ���?a

in the worst case.
We have also shown that:

Proposition 8. Let
���O�n����	���

be a symmetric argumentation framework.
��:��

belongs to every preferred (or equivalently, stable or naive) extension of
���

if and
only if there is no

��:��
s.t.
%'�,	��L(@:;�

.

Proof.� Immediate from the Proposition 7 and the fact that the grounded extension belongs
to every preferred extension.� Let

��:��
such that

%'��	��L(u:$�
. According to Proposition 6, there is a preferred

extension M such that
�A: M . But

�
belongs to M . Thus M is not conflict-free. So,

�
does not exist. t

A direct corollary of this proposition is the following one:

Proposition 9. Every symmetric argumentation framework is relatively grounded.

Proof. Immediate from Propositions 7 and 8. t
Example 8 (Example 1 (cont’ed)).

�
is not attacked.

�
belongs to every preferred ex-

tension of
���

and it is the unique argument of the grounded extension M�N of
���

.



As a consequence, there are at most two distinct forms of acceptability for symmet-
ric argumentation frameworks: all the forms of skeptical acceptability coincide with
the notion of acceptability w.r.t. the grounded extension; credulous acceptability w.r.t.
preferred extensions and credulous acceptability w.r.t. stable extensions coincide with
credoulous acceptability w.r.t. naive extensions. Nevertheless, according to Proposition
6 credulous acceptability for single arguments is not so interesting since it trivializes
for symmetric argumentation frameworks.

Accordingly, one has to consider more general acceptability problems if one wants
to get more than one semantics, which is expected here; indeed, skeptical acceptability
is rather poor since it characterizes as acceptable only those arguments of

�
which are

not attacked.

3.2 Acceptability problems and complexity issues

This is why we turn to acceptability problems for sets of arguments, i.e., the question is
now to determine whether or not it is reasonable to accept some arguments together:

Definition 11 (acceptability problems).
ACCEPTABILITY �-� � is the following decision problem (also viewed as the language of
its positive instances in the usual way):

– Input: A finite argumentation framework
���n������	���

and a set of arguments
=KE � .

– Question: Is = included into:
I= � : every M extension of

���
?

I= � : at least one M extension of
���

?
where M is either � (naive), � (preferred), = (stable), � (complete) or � (grounded).

For instance, ACCEPTABILITY � � � denotes the skeptical acceptability problem under
the stable semantics. We also use the notation ACCEPTABILITY � � � to denote the accept-
ability problem under the grounded semantics (obviously enough, ACCEPTABILITY � � �
= ACCEPTABILITY � � � = ACCEPTABILITY ��� � since an argumentation framework al-
ways has a unique grounded extension).

We can easily complete previous complexity results for skeptical acceptability of
single arguments [25, 26]:

Proposition 10. The following complexity results hold:2

– ACCEPTABILITY � � � is �;�P -complete.
– ACCEPTABILITY � � � is coNP-complete.
– ACCEPTABILITY � � � = ACCEPTABILITY � � � is in P.
– ACCEPTABILITY � � � is in P.

2 We assume the reader acquainted with basic notions of complexity theory; see e.g., [27] oth-
erwise.



Proof. Clearly enough, considering sets of arguments has no impact w.r.t. skeptical
acceptability whatever the underlying semantics: a set = of arguments is skeptically
acceptable if and only if = is a subset of all the extensions under consideration if and
only if every element of = is skeptically acceptable. Hence the complexity of skepti-
cal acceptability for sets of arguments coincides with the corresponding complexity of
skeptical acceptability for single arguments, as identified by Dunne and Bench-Capon
(when the set of arguments is finite and the attacks relation is not empty) [26]. Since
the grounded extension of an argumentation framework

���
is the intersection of all

its complete extensions, it also comes that the two languages ACCEPTABILITY � � � and
ACCEPTABILITY � � � coincide. A set of arguments = is included into every naive exten-
sion of

�������'�
	���
if and only if = is conflict-free and for every argument

�u:;�{J =
and every argument

�;: = if
%��R	��)(}:��

then
%��R	��L(�:>�

. This can be tested in time
polynomial in

a ���?a- �a = a .
The picture is not the same when credulous acceptability is considered since it can

be the case that both arguments
�

and
�

are credulously acceptable (this is always the
case in presence of symmetric argumentation frameworks) but that the set

���R	��+"
does

not belong to any of the selected extensions.

Example 9 (Example 1 (cont’ed)).
��: M�S and

 I: MUT . Hence each of
�

and
 

is
credulously acceptable. However, it is not cautious to believe in the set of arguments�+�,	� �"

because this set is not conflict-free.

Nevertheless, considering sets of arguments instead of arguments alone does not
lead to a complexity shift:

Proposition 11. The following complexity results hold:

– ACCEPTABILITY �,� � = ACCEPTABILITY �,� � is NP-complete.
– ACCEPTABILITY �,� � is NP-complete.
– ACCEPTABILITY �,� � is in P.

Proof. The equality ACCEPTABILITY ��� � = ACCEPTABILITY �,� � comes easily from the
fact that the preferred extensions of an argumentation framework

���
are exactly the

complete extensions of
���

which are maximal w.r.t. E (this is a straightforward con-
sequence of the fact that every preferred extension of

���
is a complete extension of���

(Theorem 2 from [6]) and that every admissible set of arguments of
���

(includ-
ing its complete extensions) is included in a preferred extension of

���
(Theorem 2

from [6])). Then the membership results come from the following nondeterministic al-
gorithms running in time polynomial in the input size: guess = � E � then check that
=�� is a complete (resp. stable) extension of

���
and that =KE�=8� . It is easy to show that

the check step can be done in (deterministic) polynomial time. The hardness results are
direct consequences of the fact that their restrictions to the case = contains a single
argument are already NP-hard [25, 26]. Finally checking whether a set = of argument
belongs to a naive extension is equivalent to checking whether = is conflict-free, which
can be done easily in polynomial time. t



One can observe that the notion of complete extensions does not lead to semantics
which differ from semantics obtained when some other extensions are considered (thus,
skeptical acceptability w.r.t. complete extensions coincides with acceptability w.r.t. the
grounded extension while credulous acceptability w.r.t. complete extensions coincides
with credulous acceptability w.r.t. preferred extensions); this explains why in Dung’s
work the notion of complete extension is viewed more as a link between preferred
extensions and the grounded one than as a semantics per se.

Now, considering symmetric frameworks leads complexity to decrease in a signifi-
cant way:

Proposition 12. Let us consider the restriction of ACCEPTABILITY �-� � when
���

is
symmetric. Under this requirement, one can prove that:

– ACCEPTABILITY � � � = ACCEPTABILITY � � � = ACCEPTABILITY � � �
= ACCEPTABILITY � � � = ACCEPTABILITY � � � is in P.

– ACCEPTABILITY �,� � = ACCEPTABILITY �,� � = ACCEPTABILITY ��� �
= ACCEPTABILITY ��� � is in P.

Proof. The first point is a direct consequence of Propositions 7 and 8. The equalities at
the second point come from Propositions 4 and 5 and from the facts that the preferred
extensions of an argumentation framework

���
are exactly the complete extensions of���

which are maximal w.r.t. E and that every admissible set of arguments of
���

(including its complete extensions) is included in a preferred extension of
���

(see the
proof of Proposition 11). Tractability comes from Proposition 4: =KE � is included in a
preferred extension of

���
– or equivalently, included in a stable extension or included

in a complete extension or included in a naive extension – if and only if = is conflict-
free. Note that while credulous acceptability can be decided easily, the notion does not
trivialize when = is not a singleton (which means that the set of positive instances is not
always the set of all instances of the problem). t

To sum up, the various semantics in Dung’s theory applied to symmetric frame-
works lead to consider a set of arguments as acceptable when (1) every element of it is
not attacked (the skeptical acceptability) or (2) it is conflict-free (the credulous accept-
ability). In both cases, acceptability can be decided in an efficient way.

4 Conclusion

We have studied the properties offered by symmetric argumentation frameworks, un-
der the (quite realistic) assumptions that the set of arguments is finite and the attacks
relation is nonempty and irreflexive. Such frameworks are shown coherent and rela-
tively grounded. This ensures that the various notions of acceptability proposed so far
reduce at most to two. Extending them to sets of arguments, one obtains two notions
of acceptability which are rather simple in essence but tractable; we have shown that
this contrasts with the general case for which all the generalized forms of acceptability
are intractable (under the usual assumptions of complexity theory), except for the ones
based on grounded or naive extensions.



This work calls for several perspectives. One of them consists in investigating other
preference criteria as a basis for additional semantics for argumentation frameworks.
Indeed, refining preferred extensions can prove valuable whenever skeptical (resp. cred-
ulous) acceptability w.r.t. preferred extensions is considered too cautious (resp. too lib-
eral). For instance, one can select the preferred extensions which are maximal w.r.t.
cardinality. On can also associate to every preferred set = of arguments of

���
the sum

(or the maximum) of the numbers of attacks against each element of = ; on this ground,
one can prefer the admissible sets associated to the least numbers if one thinks that a set
of arguments which is not attacked is better than a set of arguments which is massively
attacked. One can also adhere to the opposite point of view and prefer in a Popperian
style sets of arguments which are robust enough to survive to many attacks. A sec-
ond perspective consists in investigating the acceptability issue from the complexity
point of view whenever a limited amount of non symmetric attacks is allowed. Finally,
it would be interesting to point out other graph-theoretic properties for argumentation
frameworks which would ensure tractable inference under various semantics.
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