Propositional Fragments for Knowledge Compilation
and Quantified Boolean Formulae

Sylvie Coste-Marquis and Daniel Le Berre and Florian Letombe and Pierre Marquis
CRIL/CNRS, Universi¢ d'Artois,
F-62307 Lens, France
{coste,leberre,letombe,margb@cril.univ-artois.fr

Abstract (see e.g., (Fargier, Lang, & Marquis 2000; Rintanen 1999a;
Pan, Sattler, & Vardi 2002; Pan & Vardi 2003; Besnatd

as target languages for knowledge compilation and used for ?I‘ f21005)); In r;])artlc_;ular, It mclucje.SAIT asda spe?ﬂc case,
improving computational tasks from major Al areas (like in- urthermore, there Is some empirical evidence from various

ference, diagnosis and planning); among them are the (quite Al fields (including among others planning, nonmonotonic

Several propositional fragments have been considered so far

influential) ordered binary decision diagrams, prime impli- reasoning, paraconsistent inference) that a translation-based
cates, prime implicants, “formulae” in decomposable nega- approach can prove more “efficient” than domain-dependent
tion normal form. On the other hand, the validity problem algorithms dedicated to such Al tasks. Accordingly, many
QBF for Quantified Boolean Formulae (QBF) has been ac-  QBF solvers have been designed and evaluated for the past

knowledged for the past few years as an importarjt issue for  few years (see among others (Cadoli, Giovanardi, & Schaerf
Al, and many solvers have been designed for this purpose. 1998; Rintanen 1999b; Feldmann, Monien, & Schamberger

L”ytmspgzﬁ‘;r't;*;enﬁg[;}g 'ﬁ}‘ittry]e"fnrslffrgg‘;”tso"feﬁ gr?éatiges‘tch 2004 Giunchiglia, Narizzano, & Tacchella 2001 Letz 2002;
propositional fragments is identified. Both tractability and Zhang & Malik 2002; Pan & Vardi 2004; Audemard & 8a
intractability resultsPSPACE-completeness) are obtained. 2004)).

In this paper, we consider several tractable fragments for

; SAT, used as target languages for knowledge compilation.
- Introduction For each fragmenf under consideration, we focus on the
Compiling “knowledge” has been used for the past few restriction of theQBF problem obtained by imposing the
years to improve (from the computational point of view) ba-  matrix of the input formula to belong to the fragment. A
sic tasks from major Al areas, like inference (both classi- similar investigation has already been done w.r.t. sime
cal and nonmonotonic, see among others (Selman & Kautz completgropositional fragments (Schaefer 1978; Creignou,
1996; del Val 1994; Schrag 1996; Boufkhatal. 1997; Khanna, & Sudan 2001). Thus, in his well-known paper
Coste-Marquis & Marquis 2001; 2004; Darwiche & Mar-  where a dichotomy theorem feaT is presented (Schaefer
quis 2004)), diagnosis (see e.g. (Darwiche 1999)) and plan- 1978), Schaefer also gave an analogue dichotomy theorem
ning (see e.g. (Cimmaét al. 1997; Geffner 2004)). These  for QBF (Theorem 6.1); roughly, this theorem shows that the
approaches typically consist in turning, during an off-ine  only tractable classes for the restrictionsxafF among those
phase, some pieces of information encoded as a proposi-“characterized locally” (i.e., by the nature of the “clauses”
tional formula into a formula from a “more tractable” frag-  from the matrix) are the Krom one (binary clauses), the Horn
ment. “More tractable” means that tasks required by the ap- one, the reverse Horn one and the affine one (sets of lin-
plication under consideration becomes computationally eas- ear equations over the fiefd, 1}, or equivalently, conjunc-
ier, and if possible, feasible in polynomial time (Darwiche  tions of XOR-clauses). Accordingly, several polytime algo-
& Marquis 2002). Such tasks usually contain deciding sat- rithms for the restriction ofBF to such incomplete frag-
isfiability, the famoussaT problem (determining whether  ments can be found in the literature (see (Aspvall, Plass,
the formula has or not a model), whichNg>-complete for & Tarjan 1979; Kleine-Bining, Karpinski, & Fbgel 1995;
propositional formulae. Among the “ tractable” fragments  Gent & Rowley 2002)).
considered so far are the (quite influential) ordered binary In the following, the complexity oBBF is investigated

?ecisilon "d_iagrams, primbel implic?tes, primtlafimplicants, - for completepropositional fragments, where a propositional
ormulaein decomposaple negation normal form. fragmentC is complete if and only if every propositional
On the other handQsF, the validity problem for QBFs, formula has an equivalent frod. We mainly focus on

has a growing importance in Al. This can be explained by : : ; i ‘
the fact that, as the canoniddSEPACE-complete problem, gag&nﬁgt%ﬁﬁélgeégtanégggvgr elg‘ Ml\/?(r)qlglssrvﬁggezz);liz-

many Al problems can be polynomially reduced qaF nificance for many Al tasks (as well as for problems per-

Copyright © 2005, American Association for Artificial Intelli- taining to other fields) is acknowledged. We complete the
gence (www.aaai.org). All rights reserved. results given in (Darwiche & Marquis 2002) by focusing on



an additional query, thesr one. We draw the complexity
picture forQBF when restricted to those fragments.

Both tractability and intractability results have been de-
rived. Like for theDNFfragment and its supersets including
the DNNFfragment and the disjunctions of Horn CNF for-
mulae, theQBF problem for theOBDD fragment (and its
superset, th&BDDfragment and the-DNNF fragment) is
PSPACE-complete in the general case, whilédinwhenever
the prefix of the instance is compatible with the total, strict
ordering< associated with th©BDD “formula”; we also
show that the&ysF problem for theMODSragment is inP as
well. We finally show that th&BsF problem for prime im-
plicates formulae and (resp. prime implicants formulae) is
PSPACE-complete as well, while the complexity falls down
to P when the prefix is of the fori X 3Y (resp.3X VY).

Formal Preliminaries

Definition 1 (syntax of a quantified boolean formula)

Let PS be a finite set of propositional symbols. The set
QPROPpg of quantified boolean formulagQBFs) over
PS is the smallest set of words defined inductively as
follows:*

1. true, false and every variable fromPS belong to

QPROPps.

if ¢ andy belong toQQ PRO Ppg, then—(¢), (¢AY), (¢V
V), (0= 1), (¢ & 1), (¢ ) belong toQ PROPps.
if ¢ belongs toQ PROPpg and x belongs toPS, then
V() and3z(¢) belong toQ PRO Ppg.

2.

3.

Var(X) is the set of all symbols fron®S occurring in a
QBF X. A QBF X is said to be quantifier-free if and only
if it does not contain any quantification (obviously enough,
such formulae can easily be considered as “standard” propo-
sitional formulae). The subset @) PROPpg containing
only quantifier-free formulae is notddRO Ppg.

Before defining the semantics of QBFs, we need the
following notation. For every QBFE: and every variable
x € PS, X, ¢ (resp.X,. 1) denotes the formula obtained
by replacing every free occurrencexin X by false (resp.
true).

Definition 2 (semantics of a quantified boolean formula)
Let I be an interpretation ovePS (i.e., a total function
from PSto BOOL = {0, 1}). Thesemantic®f a QBFX in
I'is the truth valugx](I) from BOOL defined inductively
as for propositional formulae, except that the inductive
definition contains in addition the two rules:

o if ¥ =Va(e),
then[X](1) = min({[pz—o] (1), [pz—1](I)})-
o if X =32(e),

An interpretation/ is a said to be anodelof X, noted
I = %, ifand only if [£](I) = 1. If ¥ has a model, it is

Yn order to simplify the syntax, we feel free to omit some
parentheses when this does not affect equivalence.

satisfiable otherwise, it isunsatisfiable If every interpreta-
tion I over PS is a model of, ¥ is valid. If every model of

a QBFX is a model of a QBHR:, theny is alogical conse-
quenceof ¥, notedX | u. Finally, when both: | 1 and

p = X hold, X andy areequivalentnotedX = . Because
every connective is truth-functional and truth is captured by
a unique truth valuel(, a replacement theorem holds for
QBFs: if a QBF¢ is equivalent to a QBk) and¢ is a sub-
formula of a QBFX, replacing occurrences gfby ¢ in X
leads to a QBF equivalent to.

TheqQBFproblem is concerned with the validity of prenex,
closed and polite formulae fro) P RO Ppg; formally, the
language of its instances is the set of all QBEFof the
form Qx, ... Qx,¢ where each occurrence 6f stands for
a quantifietv or 3, ¢ is a quantifier-free QBF andar(¢) =
{z1,...,z,}. The sequenc&z;...Qz,¢ is called the
prefix of X, while ¢ is its matrix. The set of positive in-
stances of)BF contains the set of valid prenex, closed and
polite QBFs.

Tractable vs. Intractable Classes forQBF

In the following, the complexity of several restrictions of
QBF is investigated. A propositional fragment is said to be
tractable forQsF if and only if the membership to the frag-
ment can be decided in polynomial time, and there also ex-
ists a polytime decision algorithm for the validity problem of
(closed, polite, prenex) quantified boolean formulae whose
matrix is from the fragment.

Let us start with intractability results. First, it is well-
known that the restriction o§BF obtained by imposing
the matrix to be &NFformula is still PSPACE-complete.
Indeed, every propositional formuld over {z1,...,z,}
can be associated in linear time taCAlFformulaY’ over
{21, Tyt Y} SEE =y, -,y }Y2 Such
a reduction which preserves satisfiability (and much more)
is typically used to show thatiIRcUIT-SAT can be reduced
to SAT restricted taCNFformulae (the idea is to introduce a
new variabley; per gate).

Let us now consider the restriction @BF when matri-
ces belong to a target fragment for knowledge compilation;
many such fragments have been identified in the literature:
DNF, d-DNNF, DNNF FBDOQ OBDDR , MODSPI , IP, ... As
we will see,QBFremains typically intractable under such re-
strictions.

First, sincePSPACE is closed under complementation
and the negation of a QBF with @NF matrix is a QBF
with a DNFmatrix, it follows directly that the restriction of
QBF where the matrix is ®NFformula also iSPSPACE-
complete. This prevents many tractable fragmentssfor
to be considered as interesting candidatesfeF. Among
them are all the supersetsBNF including theDNNFfrag-
ment and the disjunctions of HolNFformulae which are

2Since it is possible to switch two successive quantifications of
the same nature in a QBF without affecting equivalence, for ev-
ery finite, non empty subs&t = {z1,...,z,} of PS, we note
VS(¢) (resp. 3S(¢)) as a short fovzi(...Vzn(p)...) (resp.
Fz1(... Tz (@) .. .)).



target classes for knowledge compilation (see (Schrag 1996; ¢ The languag®BDD is the subset dINF»g of formulae

Boufkhadet al. 1997; Darwiche & Marquis 2002)).

Let us now turn to complete DAG-based propositional

fragments. Abusing words, a “formula” iNNF-g is a

rooted, directed acyclic graph where each leaf node is la-

beled withtrue, false, x or —x, x € PS; and each internal

node is labeled with\ or v and can have arbitrarily many

children. IfC'is a node in alNNFpg formula, thenV ar(C)

satisfying decomposability, decision and ordering.

e The languageMlODSs the subset oDNFN d-DNNF of
formulae satisfying smoothness.

The FBDDlanguage corresponds teee binary decision
diagrams (FBDDs)as known in formal verification (Ger-
gov & Meinel 1994), while its subset obtained by impos-

denotes the set of all variables that label the descendants ofing the ordering property w.r.t. a given variable ordering

nodeC. Moreover, if¢ is anNNF-g formula rooted at’,
thenVar(¢) is defined ad/ar(C). Interesting fragments

of NNF>g are obtained by imposing some of the following

requirements (Darwiche 2001):

e Decomposability An NNF-g formula satisfies this
property if for each conjunctionC' in the formula,
the conjuncts ofC' do not share variables.
if Cy,...,C, are the children of and-nodé€’, then
Var(C’l-) n Var(Cj) = fori 7é J-

e Determinism: An NNF>g formula satisfies this prop-
erty if for each disjunctiorC' in the formula, each two
disjuncts of C' are logically contradictory. That is, if
Ci,...,C, are the children of or-nod€, thenC; AC; |=
false fori # j.

e Decision A decision nodeV in anNNF>g formula is one
which is labeled withirue, false, or is an or-node having
the form(z A a) V (—z A ), wherex is a variablen and
0 are decision nodes. In the latter cag®ur(N) denotes
the variabler.

e Ordering: Let < be a total, strict ordering over the vari-
ablesPS. A NNFpg formula satisfies the ordering prop-

erty w.r.t. < if and only if the following condition is sat-
isfied: if N and M are or-nodes, and iV is an ancestor
of nodeM, thendVar(N) < dVar(M).

e Smoothness An NNFformula satisfies this property if
for each disjunctiorC in the formula, each disjunct @
mentions the same variables. That isCif,...,C,, are
the children of or-nod€’, thenVar(C;) = Var(C;) for
i 7.

We consider the following propositional fragmehtBar-

wiche & Marquis 2002):

Definition 3 (propositional fragments)

e The languagedDNNFis the subset oNFpg of formulae
satisfying decomposability.

e The languagal-DNNF is the subset dNF-g of formu-
lae satisfying decomposability and determinism.

e The languagd-BDDis the subset dNF-g of formulae
satisfying decomposability and decision.

%It must be noted that the five languages below arestritto

That is,

contains theordered binary decision diagrams (OBDDs)
(Bryant 1986).
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Figure 1: On the left, a formula in tH@BDD language. On
the right, a more standard notation for it.

Binary decision diagrams are usually depicted using a
more compact notation: labetsue and false are denoted

/V\

\

by 1 and0, respectively; and each decision nade ' <&

denoted by? % The OBDD formula on the left of Fig-
ure 1 corresponds to the binary decision diagram on the right
of Figure 1.

The MODSencoding of a propositional formula mainly
consists in the explicit representation of the set of its models.

Eliminating a single quantification within &bBDD for-
mula can be achieved in time quadratic in the input size (an
OBDD formula equivalent tadz.X (resp. Vz.X) is com-
puted as¥;. o V X, 1, (resp. Y0 A X, 1), See e.g.
(Bryant 1986)). Since the size of the resulting formula may
be quadratic in the size of the inplt there is no guarantee
that such an elimination process leads to a formula of size
polynomial in the input size when iterated so as to eliminate
more than a preset number of variables. Hence, there is no
guarantee that the time needed by such an elimination algo-
rithm will remain polynomial in the input size. Actually, the
next proposition shows that whatever the approach to solv-
ing @BF for OBDD formulae, a polytime algorithm is very
unlikely:

Proposition 1 The @BF problems for DNNF d-DNNF,
FBDDand OBDD formulae arePSPACE-complete.

senswsubsets o RO Pps in the sense that its elements are rooted

DAGs, not standard tree-like formulae. Considering DAG-based L
representations is just a way to enable subformulae sharing; while thatoBF for CNFformulae is inPSPACE, the fact that the

this is important for the spatial efficiency point of view, this has  Circuit language associated 8RO Ppg includesNNFps
no impact on the semantical issue, so the definitions and properties @ @ proper subset, the fact that every circuit (encoding a

reported in the previous Section can be easily extended to DAG- boolean function ovefz,, ..., z,}) can be mapped in poly-
based formulae. nomial time to aCNFformula over an extended set of vari-

Sketch of proof:Membership directly comes from the fact



ables, whilst equivalent to the circuit whenever the new vari-
ables are forgotten (i.e., existentially quantified), and the fact
thatPSPACE is closed under polynomial reductions.

As to hardness, since the following inclusions hold

OBDD C FBDDC d-DNNFC DNNF

it is sufficient to prove that the@sF problem forOBDD for-
mulae iSPSPACE-hard. The proof is by reduction from the
QBF problem forDNFformulae. The main step is to show
that everyDNFformula¢ = v; V ...~, can be associated
in polynomial time to an equivalent QBF of the forf ¢
where X N Var(¢) = (0 andy is from OBDD (whatever
< overVar(¢)). First, let us notebdd(~y;) theOBDD for-
mula equivalent to the term; (i € 1...n); clearly enough,
everyobdd(;) can be computed in time polynomial fi;|.
LetVar(¢) = {y1,...,ym} and letX = {a1,..., 2,1}
be a set of new variables; lgt = ¢!, where the formulae
Y (i € 1...n) are defined by:

e ™ = obdd(vy,), and
o i = (obdd(v;) Ax;)V (P A=), fori =1,... n—1.

From such definitions;) — which can be read as an
OBDD formula where the new ordering: is the ex-
tension of the previous orderingy < ... < ¥, such
thatz; < ... < 21 < y1 < ... < ym, — Can be
computed in time polynomial in the size ¢f Now, since
for every pair of propositional formulae, 5 and every
variablez, we have thaBz(a Vv §) = (3za) V (320), and
Jr(anz) = Jz(aA—-x) = awhenever: & Var(a), itim-
mediately follows that) = JY¢. Finally, the replacement
theorem for QBFs shows that for any preftx the QBFP¢
is equivalent to the QBR? X1, and this completes the
proof. ]

Based on this reduction, one can also show tpet for
OBDD formulae spans all the polynomial hierarchy when
restrictions are put on the prefix of the input: if no alterna-
tions of quantifiers occur, the problem reduces to the satisfi-
ability problem or to the validity problem, and both of them
are inP for OBDD formulae; if the prefix is of the form
V.S, 352, the problem id1}-complete (=coNP-complete);
if the prefix is of the form3S; VS, 353, the problem is
Y:2-complete, and so on. Since the negation ofXBDD
formula can be computed as @BDD formula in constant
time, we also obtain that if the prefix is of the foes, V.Ss,
the problem is=?-complete (=NP-complete), if the prefix
is of the formVv.S; 35, VS5, the problem id15-complete,
and so on.

Nevertheless, it is interesting to note that the restriction
of QBFto OBDD formulae is tractable for the subset of in-
stances whose prefixes are compatible with the total, strict
ordering< associated with th@BDD fragment:

Proposition 2 Let ¥ = Q51 ...QS,.¢ be a prenex, po-
lite, closed QBF where eaoly stands for a quantifier and
{S1,...,S8,} is a partition of Var(¢) which does not con-
tain the empty set. The prefixsS; ... Q.S,, of X is said to
be compatiblewith a total, strict ordering< overVar(¢) if
and only if for eache,y € Var(¢) st. z < y, if x € S,

theny € S; with j > 4. TheQBF problem forOBDD for-
mulae when the prefix is compatible withis in P.

Sketch of proof:The proof relies on the correctness of a
polytime algorithm for eliminating quantifiers as an internal
law for suchOBDD “formulae”, so it is sufficient to apply

it from the most internal quantifier to the most external one
until all quantifiers have been eliminated; at each step the
size of the resultingdBDD formula once a quantifier has
been eliminated is bounded by the size of the iPBDD
formula. ]

The picture is similar when thdODSragment is consid-
ered:

Proposition 3 TheQ@BsF problem forMODSormulae is inP.

Again, we have a polytime algorithm for eliminating
guantifiers as an internal law fddODSormulae.

Let us now turn to two additional, important propositional
fragments in Al: the prime implicates one and the (dual)
prime implicants one (see e.g., (Marquis 2000) for a survey
of their applications in abduction, assumption-based reason-
ing, closed world reasoning and other Al areas). Formally,
aprime implicateof ¢ € PROPpg is aclause s.t. ¢ = ¢
and for every clausé’ s.t. ¢ = ¢ andé’ = 4, we have
o=4".

Definition 4 (prime implicates formulae) A prime impli-
cates formula (or Blake formula) frolR RO Ppg is a CNF
formula X where every prime implicate af appears as a
conjunct.Pl is the language of all prime implicates formu-
lae (a proper subset &ENB.

For instance, the following is a prime implicates formula:
(aVh)A(=bVeVd)A(aVeVd).

The set of prime implicates formulae is a tractable frag-
ment forsAT since (1) a CNF formul& is a prime implicate
one if and only no clause of it is properly entailed by another
clause ofx and every resolvent from two clauses frains
entailed by a clause of: (this shows that the problem of
deciding whether a propositional formula is a prime impli-
cate one can be decided in polynomial time), and (2) a prime
implicate formulaX is satisfiable if and only if it does not
reduce to the empty clause.

Proposition 4 The QBF problem for prime implicates for-
mulae isPSPACE-complete.

Sketch of proof:Membership comes directly from the fact
that @BF is in PSPACE for CNFformulae, and everyl
formula also iSCNF. As to hardness, let us give a polytime
reduction from QBF for CNF formulae QS ... QSk¢

to @BF for Pl formulae. Let¢ be aCNF formula over
{z1,...,z,}, viewed as the set of its clauses. We take
advantage of the following property, which results directly
from the correctness of resolution-based prime implicates
algorithms (like Tison’s one (Tison 1967)): a st of
clauses contains all its prime implicates if and only if



whenever two clauses frorf have a resolvent, there
exists a clauseI € S s.t. PI = 6. Letd; andd; be two
clauses front with 7 < j; whend; andd; have a resolvent,
replaced; by 6, V y; ; andéds by 2 V —y; ;; doing itin a
systematic way for every ordered pair of clauses fr6m
leads to generate in polynomial timeCd\NFformulat) over
an extended vocabulafy, . .., z, } UY whereO(n?) new
variablesy; ; are introduced. By construction, every binary
resolvent from clauses af is tautologous, hence implied
by any clause of). As a consequence); contains all its
prime implicates, and a prime implicates formula equivalent
to ¢ can be computed in time polynomial {@]|, just by
removing every clause ofy which is properly implied.
Now, for every pair of formulae: and /5 and every variable
x € PS,wehavevz(aAf) = (Vza) A (Vz5); furthermore,
for every nontautologous clauge(viewed as the set of its
literals) and every variable € PS, Vx4 is equivalent to the
claused \ {z,—~z}. As a consequence, we haye= VY.
Finally, the replacement theorem for QBFs shows that
QS ...QS,¢ is equivalent toQ) S . .. QSEVYy, and this
concludes the proof. [ ]

Based on this reduction, one can also show tye# for
Pl formulae hits every level from the polynomial hierar-
chy when restrictions are put on the prefix: if no alterna-
tions of quantifiers occur, the problem is I if the pre-
fix is of the form3S; V.S,, the problem ist)-complete (=
NP-complete), if the prefix is of the formiS; 35, VS3, the
problem isII5-complete, and so on.

Now, what’s about QBF foP| formulae when the right-
most quantification of the prefix is existential? Contrari-
wise toOBDD formulae, the negation &l formula cannot
be computed in polynomial time (and evenpolynomial
space as aPl formula, hence the same argument cannot be
used again. It is easy to show that a rightmost existential
quantification does not lead to a complexity shift:

Proposition 5 The QBF problem for prime implicates for-
mulae with prefixes of the formS; 355 isin P.

Sketch of proofThe proof comes from the fact that variable
forgetting (i.e., eliminating existential quantifiers) can be
achieved in polynomial time as an internal law in Rk
fragment (Darwiche & Marquis 2002). ]

From the previous reduction, we obtain that if the pre-
fix is of the form 35; VSy 353, the QBF problem for
Pl formulae isX}-complete, if the prefix is of the form
VS; 35, VS5 354, the problem id15-complete, and so on.
The following dual class also is interesting. Léte
PROPpg. A prime implicantof ¢ is atermy s.t. v = ¢
and for every termy’ s.t. v/ = ¢ andy = 4/, we have

v=7.

Definition 5 (prime implicants formulae) A prime impli-
cants formula fromPROPpg is a DNF formulaX where
every prime implicant of appears as a disjunctP is the
language of all prime implicants formulae (a proper subset
of DNB.

Prime implicants formulae are duals of prime implicates
formulae in the sense that every prime implicant of a for-
mula¢ is (up to logical equivalence) the negation of a prime
implicate of—¢. Taking advantage of duality, we also obtain
that:

Proposition 6 The QBF problem for prime implicants for-
mulae isSPSPACE-complete.

Proposition 7 The @BF problem for prime implicants for-
mulae with prefixes of the for@S; V.S is in P.

Exploiting duality, it is easy to show that the clas3&s
andII? of the polynomial hierarchy that were not “hit” by
restrictions ofoBF for Pl formulae are “hit” by restrictions
of QeFfor IP formulae: if no alternations of quantifiers oc-
cur, the problenBF for IP formulae is inP, if the pre-
fix is of the formV.S; 355 or V.S, 355 V.S3, the problem is
I17-complete, if the prefix is of the formS; V.S, 355 or
35, VSy 353 VS, the problem it -complete, and so on.

Conclusion

In this paper, we have presented new tractability and new in-
tractability results for the validity problems for QBFs whose
matrices belong to a target class for knowledge compilation.
In the light of our study, the complexity landscape &@BF

can be completed as reported on Table 1.

| Fragment | Complexity |
PROPpg (general case) | PSPACE-c
CNF PSPACE-c
DNF PSPACE-c
d-DNNF PSPACE-c
DNNF PSPACE-c
FBDD PSPACE-c
OBDD PSPACE-c
OBDD (compatible prefix) epP
PI PSPACE-c
IP PSPACE-c
MODS eP

Table 1: Complexity results fapBF.

In (Darwiche & Marquis 2002), the authors have also in-
vestigated the spatial efficiency of many complete proposi-
tional fragments, including those considered in this paper.
A given fragmentC; is considered at least as concise than
a second fragmenrd, whenever there exists a polynomial
p(.) s.t. for every formulax € C,, there exists an equiva-
lent formulag € C; s.t. |5] < p(|a]). Our results show
QBF difficult even when limited to instances whose matrices
belong to fragments which are not efficient from the spatial
point of view (i.e., theOBDD one, thePl fragment and
the IP fragment). Tractability is achieved without restric-
tions only for theMODSragment which is among the least
efficient one (as to spatial efficiency). Under the compati-
bility assumption, tractability is also achieved for the more
conciseOBDD fragment; this fragment appears as the best



candidate among the classes considered in this paper which del Val, A. 1994. Tractable databases: how to make propo-

enable tractable QBF queries.

Acknowledgements

The authors have been partly supported by thegien
Nord/Pas-de-Calais through the IRCICA Consortium and
the COCOA Project, by the European Community FEDER
Program and by the IUT de Lens. Many thanks to the anony-
mous reviewers for their helpful comments.

References

Aspvall, B.; Plass, M.; and Tarjan, R. 1979. A linear-time
algorithm for testing the truth of certain quantified boolean
formulas. Information Processing Lette&121-123. Er-

ratum: Information Processing Letters 14(4): 195 (1982).

Audemard, G., and $& L. 2004. SAT based BDD solver
for Quantified Boolean Formulas. IGTAI'04, 82—89.

Besnard, P.; Schaub, T.; Tompits, H.; and Woltran, S.
2005. Inconsistency Tolerangevolume 3300 ofLNCS
State-of-the-Art SurveySpringer-Verlag. chapter Repre-
senting Paraconsistent Reasoning via Quantified Proposi-
tional Logic, 84-118.

Boufkhad, Y.; Gégoire, E.; Marquis, P.; Mazure, B.; and
Sds, L. 1997. Tractable cover compilations. IBICAI'97,
122-127.

Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Trans. on Computer€-
35(8):677-692.

Cadoli, M.; Giovanardi, A.; and Schaerf, M. 1998. An
algorithm to Evaluate Quantified Boolean Formulae. In
AAAI'98, 262—-267.

Cimmati, A.; Giunchiglia, E.; Giunchiglia, F.; and
Traverso, P. 1997. Planning via model checking: a de-
cision procedure for AR. lECP’97, 130-142.

Coste-Marquis, S., and Marquis, P. 2001. Knowledge com-
pilation for circumscription and closed world reasonidg.
of Logic and Computatioh1(4):579-607.

Coste-Marquis, S., and Marquis, P. 2004. On Stratified
Belief Base CompilationAnnals of Mathematics and Ar-
tificial Intelligence42(4):399-442.

Creignou, N.; Khanna, S.; and Sudan, M. 2001. Complex-
ity classification of boolean constraint satisfaction prob-
lems. InSIAM Monographs on Discrete Mathematics and
Applications volume 7. SIAM.

Darwiche, A., and Marquis, P. 2002. A Knowledge Com-
pilation Map.J. of Artificial Intelligence Researchr:229—
264.

Darwiche, A., and Marquis, P. 2004. Compiling proposi-
tional weighted base®rtificial Intelligencel57(1-2):81—
113.

Darwiche, A. 1999. Compiling devices into decomposable
negation normal form. IWJCAI'99, 284—289.

Darwiche, A. 2001. Decomposable negation normal form.
J. of the ACMA8(4):608—647.

sitional unit resolution complete through compilation. In
KR'94, 551-561.

Fargier, H.; Lang, J.; and Marquis, P. 2000. Propositional
Logic and One-stage Decision Making. KR'00, 445—
456.

Feldmann, R.; Monien, B.; and Schamberger, S. 2004. A
distributed algorithm to evaluate quantified boolean formu-
las. INAAAI'00, 285-290.

Geffner, H. 2004. Planning graphs and knowledge compi-
lation. INKR’04, 662—-672.

Gent, I. P, and Rowley, A. G. D. 2002. Solving 2-CNF
Quantified Boolean Formulae using Variable Assignment
and Propagation. IQBF wks at SAT'0217-25.

Gergov, J., and Meinel, C. 1994. Efficient analysis and
manipulation of OBDDs can be extended to FBDIEEE
Trans. on Computer43(10):1197-1209.

Giunchiglia, E.; Narizzano, M.; and Tacchella, A. 2001.
Backjumping for Quantified Boolean Logic Satisfiability.
In IJCAI'01, 275-281.

Kleine-Buning, H.; Karpinski, M.; and FEigel, A. 1995.
Resolution for quantified boolean formulagnformation
and Computatior117(1):12-18.

Letz, R. 2002. Lemma and Model Caching in De-
cision Procedures for Quantified Boolean Formulas. In
Tableaux'02160-175.

Marquis, P. 2000. Consequence finding algorithms. In
Gabbay, D., and Smets, P., edslgorithms for Uncertain
and Defeasible Reasoningolume 5 ofHandbook of De-
feasible Reasoning and Uncertainty Management Systems
Kluwer Academic Publishers. 41-145.

Pan, G., and Vardi, M. 2003. Optimizing a BDD-Based
Modal Solver. INCADE'02 75-89.

Pan, G., and Vardi, M. 2004. Symbolic Decision Proce-
dures for QBF. IMCP’04, 453—-467.

Pan, G.; Sattler, U.; and Vardi, M. 2002. BDD-Based
Decision Procedures for K. IBADE’'02 16-30.

Rintanen, J. 1999a. Constructing Conditional Plans by
a Theorem-Prover.J. of Artificial Intelligence Research
10:323-352.

Rintanen, J. 1999b. Improvements to the Evaluation of
Quantified Boolean Formulae. 14CAI'99, 1192-1197.

Schaefer, T. J. 1978. The complexity of satisfiability prob-
lems. INSTOC'78 216-226.

Schrag, R. 1996. Compilation for critically constrained
knowledge bases. IAAAI'96, 510-515.

Selman, B., and Kautz, H. 1996. Knowledge compilation
and theory approximationl. of the ACM43:193-224.

Tison, P. 1967. Generalization of consensus theory and
application to the minimization of boolean functiohSEE
Trans. on Electronic ComputeESC-16:446—-456.

Zhang, L., and Malik, S. 2002. Towards a symmetric treat-

ment of satisfaction and conflicts in quantified boolean for-
mula evaluation. IrCP’02, 200-215.



