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Abstract

Several propositional fragments have been considered so far
as target languages for knowledge compilation and used for
improving computational tasks from major AI areas (like in-
ference, diagnosis and planning); among them are the (quite
influential) ordered binary decision diagrams, prime impli-
cates, prime implicants, “formulae” in decomposable nega-
tion normal form. On the other hand, the validity problem
QBF for Quantified Boolean Formulae (QBF) has been ac-
knowledged for the past few years as an important issue for
AI, and many solvers have been designed for this purpose.
In this paper, the complexity of restrictions ofQBF obtained
by imposing the matrix of the input QBF to belong to such
propositional fragments is identified. Both tractability and
intractability results (PSPACE-completeness) are obtained.

Introduction
Compiling “knowledge” has been used for the past few
years to improve (from the computational point of view) ba-
sic tasks from major AI areas, like inference (both classi-
cal and nonmonotonic, see among others (Selman & Kautz
1996; del Val 1994; Schrag 1996; Boufkhadet al. 1997;
Coste-Marquis & Marquis 2001; 2004; Darwiche & Mar-
quis 2004)), diagnosis (see e.g. (Darwiche 1999)) and plan-
ning (see e.g. (Cimmatiet al. 1997; Geffner 2004)). These
approaches typically consist in turning, during an off-line
phase, some pieces of information encoded as a proposi-
tional formula into a formula from a “more tractable” frag-
ment. “More tractable” means that tasks required by the ap-
plication under consideration becomes computationally eas-
ier, and if possible, feasible in polynomial time (Darwiche
& Marquis 2002). Such tasks usually contain deciding sat-
isfiability, the famousSAT problem (determining whether
the formula has or not a model), which isNP-complete for
propositional formulae. Among the “ tractable” fragments
considered so far are the (quite influential) ordered binary
decision diagrams, prime implicates, prime implicants, “
formulae” in decomposable negation normal form.

On the other hand,QBF, the validity problem for QBFs,
has a growing importance in AI. This can be explained by
the fact that, as the canonicalPSPACE-complete problem,
many AI problems can be polynomially reduced toQBF
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(see e.g., (Fargier, Lang, & Marquis 2000; Rintanen 1999a;
Pan, Sattler, & Vardi 2002; Pan & Vardi 2003; Besnardet
al. 2005)); in particular, it includesSAT as a specific case;
furthermore, there is some empirical evidence from various
AI fields (including among others planning, nonmonotonic
reasoning, paraconsistent inference) that a translation-based
approach can prove more “efficient” than domain-dependent
algorithms dedicated to such AI tasks. Accordingly, many
QBF solvers have been designed and evaluated for the past
few years (see among others (Cadoli, Giovanardi, & Schaerf
1998; Rintanen 1999b; Feldmann, Monien, & Schamberger
2004; Giunchiglia, Narizzano, & Tacchella 2001; Letz 2002;
Zhang & Malik 2002; Pan & Vardi 2004; Audemard & Saı̈s
2004)).

In this paper, we consider several tractable fragments for
SAT, used as target languages for knowledge compilation.
For each fragmentC under consideration, we focus on the
restriction of theQBF problem obtained by imposing the
matrix of the input formula to belong to the fragment. A
similar investigation has already been done w.r.t. somein-
completepropositional fragments (Schaefer 1978; Creignou,
Khanna, & Sudan 2001). Thus, in his well-known paper
where a dichotomy theorem forSAT is presented (Schaefer
1978), Schaefer also gave an analogue dichotomy theorem
for QBF (Theorem 6.1); roughly, this theorem shows that the
only tractable classes for the restrictions ofQBF among those
“characterized locally” (i.e., by the nature of the “clauses”
from the matrix) are the Krom one (binary clauses), the Horn
one, the reverse Horn one and the affine one (sets of lin-
ear equations over the field{0, 1}, or equivalently, conjunc-
tions of XOR-clauses). Accordingly, several polytime algo-
rithms for the restriction ofQBF to such incomplete frag-
ments can be found in the literature (see (Aspvall, Plass,
& Tarjan 1979; Kleine-B̈uning, Karpinski, & Fl̈ogel 1995;
Gent & Rowley 2002)).

In the following, the complexity ofQBF is investigated
for completepropositional fragments, where a propositional
fragmentC is complete if and only if every propositional
formula has an equivalent fromC. We mainly focus on
fragments considered in (Darwiche & Marquis 2002):DNF,
d-DNNF, DNNF, OBDD<, FBDD, PI , IP , MODSwhose sig-
nificance for many AI tasks (as well as for problems per-
taining to other fields) is acknowledged. We complete the
results given in (Darwiche & Marquis 2002) by focusing on



an additional query, theQBF one. We draw the complexity
picture forQBF when restricted to those fragments.

Both tractability and intractability results have been de-
rived. Like for theDNFfragment and its supersets including
the DNNFfragment and the disjunctions of Horn CNF for-
mulae, theQBF problem for theOBDD< fragment (and its
superset, theFBDDfragment and thed-DNNF fragment) is
PSPACE-complete in the general case, while inP whenever
the prefix of the instance is compatible with the total, strict
ordering< associated with theOBDD< “formula”; we also
show that theQBF problem for theMODSfragment is inP as
well. We finally show that theQBF problem for prime im-
plicates formulae and (resp. prime implicants formulae) is
PSPACE-complete as well, while the complexity falls down
to P when the prefix is of the form∀X ∃Y (resp.∃X ∀Y ).

Formal Preliminaries
Definition 1 (syntax of a quantified boolean formula)
Let PS be a finite set of propositional symbols. The set
QPROPPS of quantified boolean formulae(QBFs) over
PS is the smallest set of words defined inductively as
follows:1

1. true, false and every variable fromPS belong to
QPROPPS .

2. ifφ andψ belong toQPROPPS , then¬(φ), (φ∧ψ), (φ∨
ψ), (φ⇒ ψ), (φ⇔ ψ), (φ⊕ ψ) belong toQPROPPS .

3. if φ belongs toQPROPPS and x belongs toPS, then
∀x(φ) and∃x(φ) belong toQPROPPS .

V ar(Σ) is the set of all symbols fromPS occurring in a
QBF Σ. A QBF Σ is said to be quantifier-free if and only
if it does not contain any quantification (obviously enough,
such formulae can easily be considered as “standard” propo-
sitional formulae). The subset ofQPROPPS containing
only quantifier-free formulae is notedPROPPS .

Before defining the semantics of QBFs, we need the
following notation. For every QBFΣ and every variable
x ∈ PS, Σx←0 (resp.Σx←1) denotes the formula obtained
by replacing every free occurrence ofx in Σ by false (resp.
true).

Definition 2 (semantics of a quantified boolean formula)
Let I be an interpretation overPS (i.e., a total function
fromPS toBOOL = {0, 1}). Thesemanticsof a QBFΣ in
I is the truth value[[Σ]](I) fromBOOL defined inductively
as for propositional formulae, except that the inductive
definition contains in addition the two rules:

• if Σ = ∀x(φ),
then[[Σ]](I) = min({[[φx←0]](I), [[φx←1]](I)}).

• if Σ = ∃x(φ),
then[[Σ]](I) = max({[[φx←0]](I), [[φx←1]](I)}).

An interpretationI is a said to be amodelof Σ, noted
I |= Σ, if and only if [[Σ]](I) = 1. If Σ has a model, it is

1In order to simplify the syntax, we feel free to omit some
parentheses when this does not affect equivalence.

satisfiable; otherwise, it isunsatisfiable. If every interpreta-
tion I overPS is a model ofΣ, Σ is valid. If every model of
a QBFΣ is a model of a QBFµ, thenµ is a logical conse-
quenceof Σ, notedΣ |= µ. Finally, when bothΣ |= µ and
µ |= Σ hold,Σ andµ areequivalent, notedΣ ≡ µ. Because
every connective is truth-functional and truth is captured by
a unique truth value (1), a replacement theorem holds for
QBFs: if a QBFφ is equivalent to a QBFψ andφ is a sub-
formula of a QBFΣ, replacing occurrences ofφ by ψ in Σ
leads to a QBF equivalent toΣ.

TheQBF problem is concerned with the validity of prenex,
closed and polite formulae fromQPROPPS ; formally, the
language of its instances is the set of all QBFsΣ of the
formQx1 . . . Qxnφ where each occurrence ofQ stands for
a quantifier∀ or∃, φ is a quantifier-free QBF andV ar(φ) =
{x1, . . . , xn}. The sequenceQx1 . . . Qxnφ is called the
prefix of Σ, while φ is its matrix. The set of positive in-
stances ofQBF contains the set of valid prenex, closed and
polite QBFs.

Tractable vs. Intractable Classes forQBF

In the following, the complexity of several restrictions of
QBF is investigated. A propositional fragment is said to be
tractable forQBF if and only if the membership to the frag-
ment can be decided in polynomial time, and there also ex-
ists a polytime decision algorithm for the validity problem of
(closed, polite, prenex) quantified boolean formulae whose
matrix is from the fragment.

Let us start with intractability results. First, it is well-
known that the restriction ofQBF obtained by imposing
the matrix to be aCNFformula is stillPSPACE-complete.
Indeed, every propositional formulaΣ over {x1, . . . , xn}
can be associated in linear time to aCNF formula Σ′ over
{x1, . . . , xn, y1, . . . , ym} s.t.Σ ≡ ∃{y1, . . . , ym}Σ′.2 Such
a reduction which preserves satisfiability (and much more)
is typically used to show thatCIRCUIT-SAT can be reduced
to SAT restricted toCNFformulae (the idea is to introduce a
new variableyi per gate).

Let us now consider the restriction ofQBF when matri-
ces belong to a target fragment for knowledge compilation;
many such fragments have been identified in the literature:
DNF, d-DNNF, DNNF, FBDD, OBDD<, MODS, PI , IP , ... As
we will see,QBF remains typically intractable under such re-
strictions.

First, sincePSPACE is closed under complementation
and the negation of a QBF with aCNF matrix is a QBF
with a DNFmatrix, it follows directly that the restriction of
QBF where the matrix is aDNFformula also isPSPACE-
complete. This prevents many tractable fragments forSAT
to be considered as interesting candidates forQBF. Among
them are all the supersets ofDNF including theDNNFfrag-
ment and the disjunctions of HornCNFformulae which are

2Since it is possible to switch two successive quantifications of
the same nature in a QBF without affecting equivalence, for ev-
ery finite, non empty subsetS = {x1, . . . , xn} of PS, we note
∀S(φ) (resp. ∃S(φ)) as a short for∀x1(. . .∀xn(φ) . . .) (resp.
∃x1(. . .∃xn(φ) . . .)).



target classes for knowledge compilation (see (Schrag 1996;
Boufkhadet al. 1997; Darwiche & Marquis 2002)).

Let us now turn to complete DAG-based propositional
fragments. Abusing words, a “formula” inNNFPS is a
rooted, directed acyclic graph where each leaf node is la-
beled withtrue, false, x or ¬x, x ∈ PS; and each internal
node is labeled with∧ or ∨ and can have arbitrarily many
children. IfC is a node in anNNFPS formula, thenV ar(C)
denotes the set of all variables that label the descendants of
nodeC. Moreover, ifφ is anNNFPS formula rooted atC,
thenV ar(φ) is defined asV ar(C). Interesting fragments
of NNFPS are obtained by imposing some of the following
requirements (Darwiche 2001):

• Decomposability: An NNFPS formula satisfies this
property if for each conjunctionC in the formula,
the conjuncts ofC do not share variables. That is,
if C1, . . . , Cn are the children of and-nodeC, then
V ar(Ci) ∩ V ar(Cj) = ∅ for i 6= j.

• Determinism: An NNFPS formula satisfies this prop-
erty if for each disjunctionC in the formula, each two
disjuncts ofC are logically contradictory. That is, if
C1, . . . , Cn are the children of or-nodeC, thenCi∧Cj |=
false for i 6= j.

• Decision: A decision nodeN in anNNFPS formula is one
which is labeled withtrue, false, or is an or-node having
the form(x∧α)∨ (¬x∧ β), wherex is a variable,α and
β are decision nodes. In the latter case,dVar(N) denotes
the variablex.

• Ordering : Let< be a total, strict ordering over the vari-
ablesPS. A NNFPS formula satisfies the ordering prop-
erty w.r.t.< if and only if the following condition is sat-
isfied: if N andM are or-nodes, and ifN is an ancestor
of nodeM , thendVar(N) < dVar(M).

• Smoothness: An NNF formula satisfies this property if
for each disjunctionC in the formula, each disjunct ofC
mentions the same variables. That is, ifC1, . . . , Cn are
the children of or-nodeC, thenV ar(Ci) = V ar(Cj) for
i 6= j.

We consider the following propositional fragments3 (Dar-
wiche & Marquis 2002):

Definition 3 (propositional fragments)
• The languageDNNFis the subset ofNNFPS of formulae

satisfying decomposability.
• The languaged-DNNF is the subset ofNNFPS of formu-

lae satisfying decomposability and determinism.
• The languageFBDDis the subset ofNNFPS of formulae

satisfying decomposability and decision.

3It must be noted that the five languages below are notstricto
sensusubsets ofPROPPS in the sense that its elements are rooted
DAGs, not standard tree-like formulae. Considering DAG-based
representations is just a way to enable subformulae sharing; while
this is important for the spatial efficiency point of view, this has
no impact on the semantical issue, so the definitions and properties
reported in the previous Section can be easily extended to DAG-
based formulae.

• The languageOBDD< is the subset ofNNFPS of formulae
satisfying decomposability, decision and ordering.

• The languageMODSis the subset ofDNF∩ d-DNNF of
formulae satisfying smoothness.

The FBDDlanguage corresponds tofree binary decision
diagrams (FBDDs),as known in formal verification (Ger-
gov & Meinel 1994), while its subset obtained by impos-
ing the ordering property w.r.t. a given variable ordering
contains theordered binary decision diagrams (OBDDs)
(Bryant 1986).
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Figure 1: On the left, a formula in theOBDD< language. On
the right, a more standard notation for it.

Binary decision diagrams are usually depicted using a
more compact notation: labelstrue and false are denoted

by 1 and0, respectively; and each decision node
∧

x ϕ
∧
ψ

∨

¬x

denoted byϕ ψ

x

. TheOBDD< formula on the left of Fig-
ure 1 corresponds to the binary decision diagram on the right
of Figure 1.

The MODSencoding of a propositional formula mainly
consists in the explicit representation of the set of its models.

Eliminating a single quantification within anOBDD< for-
mula can be achieved in time quadratic in the input size (an
OBDD< formula equivalent to∃x.Σ (resp. ∀x.Σ) is com-
puted asΣx←0 ∨ Σx←1, (resp. Σx←0 ∧ Σx←1), see e.g.
(Bryant 1986)). Since the size of the resulting formula may
be quadratic in the size of the inputΣ, there is no guarantee
that such an elimination process leads to a formula of size
polynomial in the input size when iterated so as to eliminate
more than a preset number of variables. Hence, there is no
guarantee that the time needed by such an elimination algo-
rithm will remain polynomial in the input size. Actually, the
next proposition shows that whatever the approach to solv-
ing QBF for OBDD< formulae, a polytime algorithm is very
unlikely:

Proposition 1 The QBF problems for DNNF, d-DNNF,
FBDDandOBDD< formulae arePSPACE-complete.

Sketch of proof:Membership directly comes from the fact
that QBF for CNFformulae is inPSPACE, the fact that the
circuit language associated toPROPPS includesNNFPS

as a proper subset, the fact that every circuit (encoding a
boolean function over{x1, . . . , xn}) can be mapped in poly-
nomial time to aCNFformula over an extended set of vari-



ables, whilst equivalent to the circuit whenever the new vari-
ables are forgotten (i.e., existentially quantified), and the fact
thatPSPACE is closed under polynomial reductions.

As to hardness, since the following inclusions hold
OBDD<⊂ FBDD⊂ d-DNNF⊂ DNNF

it is sufficient to prove that theQBF problem forOBDD< for-
mulae isPSPACE-hard. The proof is by reduction from the
QBF problem forDNFformulae. The main step is to show
that everyDNFformulaφ = γ1 ∨ . . . γn can be associated
in polynomial time to an equivalent QBF of the form∃Xψ
whereX ∩ V ar(φ) = ∅ andψ is from OBDD< (whatever
< overV ar(φ)). First, let us noteobdd(γi) theOBDD< for-
mula equivalent to the termγi (i ∈ 1 . . . n); clearly enough,
everyobdd(γi) can be computed in time polynomial in|γi|.
Let V ar(φ) = {y1, . . . , ym} and letX = {x1, . . . , xn−1}
be a set of new variables; letψ = ψ1, where the formulae
ψi (i ∈ 1 . . . n) are defined by:

• ψn = obdd(γn), and

• ψi = (obdd(γi)∧xi)∨(ψi+1∧¬xi), for i = 1, . . . , n−1.

From such definitions,ψ – which can be read as an
OBDD< formula where the new ordering< is the ex-
tension of the previous orderingy1 < . . . < ym such
that x1 < . . . < xn−1 < y1 < . . . < ym – can be
computed in time polynomial in the size ofφ. Now, since
for every pair of propositional formulaeα, β and every
variablex, we have that∃x(α ∨ β) ≡ (∃xα) ∨ (∃xβ), and
∃x(α∧x) ≡ ∃x(α∧¬x) ≡ α wheneverx 6∈ V ar(α), it im-
mediately follows thatφ ≡ ∃Y ψ. Finally, the replacement
theorem for QBFs shows that for any prefixP , the QBFPφ
is equivalent to the QBFP ∃Xψ, and this completes the
proof.

Based on this reduction, one can also show thatQBF for
OBDD< formulae spans all the polynomial hierarchy when
restrictions are put on the prefix of the input: if no alterna-
tions of quantifiers occur, the problem reduces to the satisfi-
ability problem or to the validity problem, and both of them
are inP for OBDD< formulae; if the prefix is of the form
∀S1 ∃S2, the problem isΠp

1-complete (=coNP-complete);
if the prefix is of the form∃S1 ∀S2 ∃S3, the problem is
Σp

2-complete, and so on. Since the negation of anOBDD<
formula can be computed as anOBDD< formula in constant
time, we also obtain that if the prefix is of the form∃S1 ∀S2,
the problem isΣp

1-complete (=NP-complete), if the prefix
is of the form∀S1 ∃S2 ∀S3, the problem isΠp

2-complete,
and so on.

Nevertheless, it is interesting to note that the restriction
of QBF to OBDD< formulae is tractable for the subset of in-
stances whose prefixes are compatible with the total, strict
ordering< associated with theOBDD< fragment:

Proposition 2 Let Σ = QS1 . . . QSn.φ be a prenex, po-
lite, closed QBF where eachQ stands for a quantifier and
{S1, . . . , Sn} is a partition ofV ar(φ) which does not con-
tain the empty set. The prefixQS1 . . . QSn of Σ is said to
becompatiblewith a total, strict ordering< overV ar(φ) if
and only if for eachx, y ∈ V ar(φ) s.t. x < y, if x ∈ Si,

theny ∈ Sj with j ≥ i. TheQBF problem forOBDD< for-
mulae when the prefix is compatible with< is in P.

Sketch of proof:The proof relies on the correctness of a
polytime algorithm for eliminating quantifiers as an internal
law for suchOBDD< “formulae”, so it is sufficient to apply
it from the most internal quantifier to the most external one
until all quantifiers have been eliminated; at each step the
size of the resultingOBDD< formula once a quantifier has
been eliminated is bounded by the size of the inputOBDD<
formula.

The picture is similar when theMODSfragment is consid-
ered:

Proposition 3 TheQBF problem forMODSformulae is inP.

Again, we have a polytime algorithm for eliminating
quantifiers as an internal law forMODSformulae.

Let us now turn to two additional, important propositional
fragments in AI: the prime implicates one and the (dual)
prime implicants one (see e.g., (Marquis 2000) for a survey
of their applications in abduction, assumption-based reason-
ing, closed world reasoning and other AI areas). Formally,
a prime implicateof φ ∈ PROPPS is a clauseδ s.t. φ |= δ
and for every clauseδ′ s.t. φ |= δ′ andδ′ |= δ, we have
δ ≡ δ′.

Definition 4 (prime implicates formulae) A prime impli-
cates formula (or Blake formula) fromPROPPS is a CNF
formula Σ where every prime implicate ofΣ appears as a
conjunct.PI is the language of all prime implicates formu-
lae (a proper subset ofCNF).

For instance, the following is a prime implicates formula:

(a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (a ∨ c ∨ d).

The set of prime implicates formulae is a tractable frag-
ment forSAT since (1) a CNF formulaΣ is a prime implicate
one if and only no clause of it is properly entailed by another
clause ofΣ and every resolvent from two clauses fromΣ is
entailed by a clause ofΣ (this shows that the problem of
deciding whether a propositional formula is a prime impli-
cate one can be decided in polynomial time), and (2) a prime
implicate formulaΣ is satisfiable if and only if it does not
reduce to the empty clause.

Proposition 4 The QBF problem for prime implicates for-
mulae isPSPACE-complete.

Sketch of proof:Membership comes directly from the fact
that QBF is in PSPACE for CNF formulae, and everyPI
formula also isCNF. As to hardness, let us give a polytime
reduction from QBF for CNF formulae QS1 . . . QSkφ
to QBF for PI formulae. Letφ be a CNF formula over
{x1, . . . , xn}, viewed as the setS of its clauses. We take
advantage of the following property, which results directly
from the correctness of resolution-based prime implicates
algorithms (like Tison’s one (Tison 1967)): a setS of
clauses contains all its prime implicates if and only if



whenever two clauses fromS have a resolventδ, there
exists a clausePI ∈ S s.t. PI |= δ. Let δi andδj be two
clauses fromS with i < j; whenδi andδj have a resolvent,
replaceδ1 by δ1 ∨ yi,j andδ2 by δ2 ∨ ¬yi,j ; doing it in a
systematic way for every ordered pair of clauses fromS
leads to generate in polynomial time aCNFformulaψ over
an extended vocabulary{x1, . . . , xn}∪Y whereO(n2) new
variablesyi,j are introduced. By construction, every binary
resolvent from clauses ofψ is tautologous, hence implied
by any clause ofψ. As a consequence,ψ contains all its
prime implicates, and a prime implicates formula equivalent
to ψ can be computed in time polynomial in|ψ|, just by
removing every clause ofψ which is properly implied.
Now, for every pair of formulaeα andβ and every variable
x ∈ PS, we have∀x(α∧β) ≡ (∀xα)∧(∀xβ); furthermore,
for every nontautologous clauseδ (viewed as the set of its
literals) and every variablex ∈ PS, ∀xδ is equivalent to the
clauseδ \ {x,¬x}. As a consequence, we haveφ ≡ ∀Y ψ.
Finally, the replacement theorem for QBFs shows that
QS1 . . . QSkφ is equivalent toQS1 . . . QSk∀Y ψ, and this
concludes the proof.

Based on this reduction, one can also show thatQBF for
PI formulae hits every level from the polynomial hierar-
chy when restrictions are put on the prefix: if no alterna-
tions of quantifiers occur, the problem is inP, if the pre-
fix is of the form∃S1 ∀S2, the problem isΣp

1-complete (=
NP-complete), if the prefix is of the form∀S1 ∃S2 ∀S3, the
problem isΠp

2-complete, and so on.
Now, what’s about QBF forPI formulae when the right-

most quantification of the prefix is existential? Contrari-
wise toOBDD< formulae, the negation ofPI formula cannot
be computed in polynomial time (and even inpolynomial
space) as aPI formula, hence the same argument cannot be
used again. It is easy to show that a rightmost existential
quantification does not lead to a complexity shift:

Proposition 5 The QBF problem for prime implicates for-
mulae with prefixes of the form∀S1 ∃S2 is in P.

Sketch of proof:The proof comes from the fact that variable
forgetting (i.e., eliminating existential quantifiers) can be
achieved in polynomial time as an internal law in thePI
fragment (Darwiche & Marquis 2002).

From the previous reduction, we obtain that if the pre-
fix is of the form ∃S1 ∀S2 ∃S3, the QBF problem for
PI formulae isΣp

1-complete, if the prefix is of the form
∀S1 ∃S2 ∀S3 ∃S4, the problem isΠp

2-complete, and so on.
The following dual class also is interesting. Letφ ∈

PROPPS . A prime implicantof φ is a termγ s.t. γ |= φ
and for every termγ′ s.t. γ′ |= φ andγ |= γ′, we have
γ ≡ γ′.

Definition 5 (prime implicants formulae) A prime impli-
cants formula fromPROPPS is a DNF formulaΣ where
every prime implicant ofΣ appears as a disjunct.IP is the
language of all prime implicants formulae (a proper subset
of DNF).

Prime implicants formulae are duals of prime implicates
formulae in the sense that every prime implicant of a for-
mulaφ is (up to logical equivalence) the negation of a prime
implicate of¬φ. Taking advantage of duality, we also obtain
that:

Proposition 6 The QBF problem for prime implicants for-
mulae isPSPACE-complete.

Proposition 7 The QBF problem for prime implicants for-
mulae with prefixes of the form∃S1 ∀S2 is in P.

Exploiting duality, it is easy to show that the classesΣp
i

andΠp
i of the polynomial hierarchy that were not “hit” by

restrictions ofQBF for PI formulae are “hit” by restrictions
of QBF for IP formulae: if no alternations of quantifiers oc-
cur, the problemQBF for IP formulae is inP, if the pre-
fix is of the form∀S1 ∃S2 or ∀S1 ∃S2 ∀S3, the problem is
Πp

1-complete, if the prefix is of the form∃S1 ∀S2 ∃S3 or
∃S1 ∀S2 ∃S3 ∀S4, the problem isΣp

2-complete, and so on.

Conclusion
In this paper, we have presented new tractability and new in-
tractability results for the validity problems for QBFs whose
matrices belong to a target class for knowledge compilation.
In the light of our study, the complexity landscape forQBF
can be completed as reported on Table 1.

Fragment Complexity
PROPPS (general case) PSPACE-c

CNF PSPACE-c
DNF PSPACE-c

d-DNNF PSPACE-c
DNNF PSPACE-c
FBDD PSPACE-c

OBDD< PSPACE-c
OBDD< (compatible prefix) ∈ P

PI PSPACE-c
IP PSPACE-c

MODS ∈ P

Table 1: Complexity results forQBF.

In (Darwiche & Marquis 2002), the authors have also in-
vestigated the spatial efficiency of many complete proposi-
tional fragments, including those considered in this paper.
A given fragmentC1 is considered at least as concise than
a second fragmentC2 whenever there exists a polynomial
p(.) s.t. for every formulaα ∈ C2, there exists an equiva-
lent formulaβ ∈ C1 s.t. |β| ≤ p(|α|). Our results show
QBF difficult even when limited to instances whose matrices
belong to fragments which are not efficient from the spatial
point of view (i.e., theOBDD< one, thePI fragment and
the IP fragment). Tractability is achieved without restric-
tions only for theMODSfragment which is among the least
efficient one (as to spatial efficiency). Under the compati-
bility assumption, tractability is also achieved for the more
conciseOBDD< fragment; this fragment appears as the best



candidate among the classes considered in this paper which
enable tractable QBF queries.
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