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Abstract

We study an abstract form of service composition where
Web services are represented as nondeterministic commu-
nicating automata. Considering the case in which commu-
nication is done via channels able to hold at most one mes-
sage at a time, the service composition problem consists,
given a client service, a goal service and a community of
available services, to determine whether there exists a me-
diator service able to communicate with the client and the
services of the given community in such a way that their
global behavior satisfies the client service request expressed
as the given goal service. We demonstrate the decidability
of this problem via a reduction to a decidable control prob-
lem.

1. Introduction

Actual development of web services and service-
oriented programming motivates the development and the
use of formal methods for the interaction between electronic
agents. Web services are distributed applications available
to the users of a network by means of communication pro-
tocols. These protocols involve three classes of electronic
agents: available services, potential clients, and mediators
which relate the need of clients to the available services.
Access to a unique service through an interface allowing
information exchange with one unique client may prove
useful. However the composition of electronic services of-
fers the possibility to generate new services and to satisfy
queries that no service can individually answer. The Web
service composition problem is thus the one of abstract rep-
resentation and algorithmic treatment of communication be-
tween agents within the setting of service oriented program-
ming. We focus on the following problem: how do the po-
tential clients express their needs and how do the mediators
manage to relate available services and client needs. Tools
for solving this problem are not yet completely defined.

In this paper, services are abstracted as non-deterministic
finite communicating automata. A set of available ser-

vices constitutes the community of services. A client is a
query/answer based service. A mediator is a service which
role is to be the interface between the client and the avail-
able services: it exchanges messages with the client and
with services in the community. The composition synthe-
sis problem we consider is, given a community of services
and a goal service, to synthesize a mediator such that the
triplet client/mediator/community is equivalent to the goal
service; the equivalence is given by a bisimulation relation
modulo some hidden internal actions and communications.
Our main result is that automatic synthesis is decidable. We
prove that it reduces into a control problem. The control
problem is, given an automaton and a logical formula, to
find an automaton called the controller satisfying some con-
trollability and observability constraints and such that the
synchronous product between the automaton and the con-
troller satisfies the formula.

The composition problem we consider, namely the syn-
thesis one, differs from the orchestration one addressed
in [2] in the following way: in the orchestration problem,
the objective is to find a proper scheduling for the services
of the community to match the goal services, while in the
synthesis problem the objective is to build a mediator which
communicates with the services. The second difference is
that in our approach we consider communicating services.

However, studies where services are able to send and to
receive messages already exists [7, 5, 4]. In these studies,
client specification is given by a logical formula which rep-
resents the client’s goals. By communicating together, ser-
vices modify their knowledge and those of their client. It is
the approach considered by [7]. In all cases, to compose ser-
vices together is to interleave their actions sequences in ac-
cordance with a client specification. The composition prob-
lem is difficult to solve, as shown by theoretical complexity
results obtained in the papers mentioned above [2, 7, 5, 4].

In this paper, communication is done via a set of ports
which are communication channels able to hold at most one
message at a time. Thus the communication process is asyn-
chronous. Note that this setting allows to encode any kind
of bounded communication channels. In our case, the inter-
nal actions are not necessarily hidden actions as in [5, 4].



The paper is organized as follows. In section 2, we for-
mally present the synthesis composition problem and we
show a reduction into a simpler composition problem. In
Section 3, we present the controller synthesis problem and
recalls the decidability results. In Section 4, we show that
the simplified composition problem is decidable by a reduc-
tion into control problem. Finally, in Section 5, we compare
this approach to related work and we conclude.

2. Services composition

The composition problem for services is to decide
whether for a given client service, a goal service and a set of
available services, there exists a mediator service that when
combined to the available services and the client service has
the same behavior as the client service combined with the
goal service. Here, the client service can only communicate
and the goal service represents the request of the client. The
purpose of this section is to give the definition of all notions
needed to define formally the notion of service and service
composition problem.

2.1. Finite automata

First we present the classical model of finite automaton.

Definition 1. A finite automaton is a structure A =
(Q, q0, Σ, δ) where

• Q is a finite set of states,

• q0 is the initial state,

• Σ is a finite set of actions,

• δ : Q × Σ → 2Q is the transition function.

We write q
a−→A q′ instead of q′ ∈ δ(q, a). Let q and q′

be two states in Q and Θ be a finite set of actions. We say

that q′ is Θ-accessible in A from q, in symbols q
Θ−→A q′ iff

there exists τ ∈ Θ such that q
τ−→A q′. Let

Θ−→A

∗
be the

smallest reflexive and transitive relation containing
Θ−→A.

We write q
a,Θ�A q′ iff there exist q1, q2 ∈ Q such that

q
Θ−→A

∗
q1 a−→A q2 Θ−→A

∗
q′. We define two equivalence rela-

tions between automata: isomorphism and Θ-bisimulation.
Let A1 = (Q1, q

0
1 , Σ1, δ1) and A2 = (Q2, q

0
2 , Σ2, δ2) be

two finite automata.

Definition 2. We say that A1 is isomorphic to A2 if Σ1 =
Σ2 and there exists a bijection g : Q1 → Q2, such that
g(q0

1) = q0
2 and for all q1, q

′
1 ∈ Q1 and for all a ∈ Σ1,

q1
a−→A1 q′1 iff g(q1)

a−→A2 g(q′1).

Definition 3. Let Θ ⊆ Σ1∪Σ2 be a set of actions. We shall
say that a binary relation Z ⊆ Q1 ×Q2 is a Θ-bisimulation
from A1 to A2 iff for all q1 ∈ Q1 and for all q2 ∈ Q2, if
(q1, q2) ∈ Z then for all a ∈ Σ1 ∪ Σ2,

• if, for some q′1 ∈ Q1, q1
a,Θ�A1 q′1 then, for some q′2 ∈

Q2, q2
a,Θ�A2 q′2 and (q′1, q

′
2) ∈ Z ,

• if, for some q′2 ∈ Q2, q2
a,Θ�A2 q′2 then, for some q′1 ∈

Q1, q1
a,Θ�A1 q′1 and (q′1, q

′
2) ∈ Z .

A1 and A2 are Θ-bisimilar if (q0
1 , q

0
2) ∈ Z for some Θ-

bisimulation Z . We introduce the notion of synchronous
product of automata, needed in next sections. Let A1 =
(Q1, q

0
1 , Σ1, δ1) and A2 = (Q2, q

0
2, Σ2, δ2) be two finite

automata.

Definition 4. The synchronous product of A1 and A2 is the
finite automaton A1 × A2 = (Q, q0, Σ, δ) where

• Q = Q1 × Q2,

• q0 = (q0
1 , q

0
2),

• Σ = Σ1 ∩ Σ2,

• the transition function δ : Q × Σ → 2Q is such that
(q1, q2)

a−→A1×A2 (q′1, q
′
2) iff q1

a−→A1 q′1 and q2
a−→A2

q′2.

2.2. Communicating automata

Our model of services is based on communicating au-
tomata.

Definition 5. A communicating automaton is a structure
A = (Q, q0, Port, Σ, δ) where

• Q is a finite set of states,

• q0 is the initial state,

• Port is a finite set of ports,

• Σ is a finite set of actions,

• δ : Q × (Σ ∪ ({?, !} × Port)) → 2Q is the transition
function.

For the sake of simplicity, the elements (?, p) and (!, p)
in {?, !} × Port will be denoted ?p and !p respectively.
The action ?p consists in receiving a message on the port
p, whereas the action !p consists in sending a message to
the port p. In this paper we consider that ports are com-
munication channels able to hold at most one message at a
time. This restriction was also considered by [3].

Every communicating automaton is associated to a finite
automaton in the following way.



Definition 6. Let A = (Q, q0, Port, Σ, δ) be a com-
municating automaton. The associated finite automaton
FA(A) = (Q′, q0′, Σ′, δ′) is defined as follows

• Q′ = {(q, V ) | q ∈ Q and V ⊆ Port},

• q0′ = (q0, ∅),
• Σ′ = Σ ∪ ({?, !} × Port),

• the transition function δ′ : Q′ × Σ′ → 2Q′
is such that

(q, V ) a−→FA(A) (q′, V ′) iff one of the three following
conditions is satisfied

– a ∈ Σ, q
a−→A q′ and V = V ′,

– a =?p, q
a−→A q′, p ∈ V and V ′ = V \ {p},

– a =!p, q
a−→A q′, p �∈ V and V ′ = V ∪ {p}.

In the definition above, V represents the current set of
nonempty ports. Observe that initially all ports are empty.
Intuitively, the second condition, in the definition of δ′,
means that receiving a message on port p is possible only
if port p is nonempty. In a dual way, the third condition
means that sending a message to port p is possible only if
port p is not full. The behavior of a set of communicating
automata is formally defined by their asynchronous product
or their synchronous product.

Definition 7. The asynchronous product of two communi-
cating automata A1 = (Q1, q

0
1 , Port1, Σ1, δ1) and A2 =

(Q2, q
0
2 , Port2, Σ2, δ2) is the communicating automaton

A1 ⊗ A2 = (Q, q0, Port, Σ, δ) where

• Q = Q1 × Q2,

• q0 = (q0
1 , q

0
2),

• Port = Port1 ∪ Port2,

• Σ = Σ1 ∪ Σ2,

• the transition function δ : Q×(Σ∪({?, !}×Port)) →
2Q is such that (q1, q2)

a−→A1⊗A2 (q′1, q
′
2) iff one of two

following conditions is satisfied

– q1
a−→A1 q′1 and q′2 = q2,

– q2
a−→A2 q′2 and q′1 = q1.

Definition 8. The synchronous product of two communi-
cating automata A1 = (Q1, q0

1 , Port1, Σ1, δ1) and A2 =
(Q2, q

0
2 , Port2, Σ2, δ2) is the communicating automaton

A1 × A2 = (Q, q0, Port, Σ, δ) where

• Q = Q1 × Q2,

• q0 = (q0
1 , q

0
2),

• Port = Port1 ∩ Port2,

• Σ = Σ1 ∩ Σ2,

• the transition function δ : Q×(Σ∪({?, !}×Port)) →
2Q is such that (q1, q2)

a−→A1×A2 (q′1, q
′
2) iff q1

a−→A1

q′1 and q2
a−→A2 q′2.

Definition 9. Let Θ be a finite set of actions. we say that
two communicating automata A1 and A2 have equivalent
behaviors with respect to Θ, in symbols A1 ≈Θ A2, iff
FA(A1) and FA(A2) are Θ-bisimilar.

Definition 10. Let A = (Q, q0, Port, Σ, δ) be a communi-
cating automaton. Auto(A) = (Q′, q0′, Σ′, δ′) is the finite
automaton defined as follows

• Q′ = Q,

• q0′ = q0,

• Σ′ = Σ ∪ ({?, !} × Port),

• δ′ = δ.

Definition 11. We say that two communicating automata
A1 and A2 are isomorphic iff Auto(A1) and Auto(A2) are
isomorphic.

2.3. Service composition problem

Following the line of reasoning suggested by [3], we
need to introduce the following notions:

• client services,

• goal services,

• available services and

• mediator services.

We define a client service as a communicating automaton
Ac = (Qc, q

0
c , Portc, Σc, δc) such that Qc = {q0

c , q
1
c} is a

pair of states, Σc = ∅ and for all p ∈ Portc, δc(q0
c , ?p) = ∅

and δc(q0
c , !p) = ∅. As an example, we consider the client

service represented in figure 1. In this figure, Word and
Definition are ports. A goal service for Ac is a commu-
nicating automaton Ag = (Qg, q

0
g , Portg, Σg, δg) such that

Portg = Portc. As an example, we consider the goal ser-
vice represented in figure 1. In this figure Translate and
Search are actions. We define a mediator service as a com-
municating automaton M = (QM , q0

M , PortM , ΣM , δM )
such that ΣM = ∅. We simply define available services
as communicating automata. As an example, we consider
two availables services: Dictionary service and Transla-
tor service. This two services are represented in figure 2.
In this figure, WrdToTrans, Translation, WordToDef
and DicDef are ports. We suppose that the Dictio-
nary service can give only definitions of english words,



?Word

Translate

Search

!Definition

!Word

?Definition

Figure 1. From left to right a goal service and
a client service

?WrdToTrans T ranslate

!Translation

?WrdToDef
Search

!DicDef

Figure 2. From left to right, Dictionary avail-
able service and Translator available service

while the translator service can translate an italian word
to an english one. Let Ac = (Qc, q

0
c , Portc, Σc, δc) be a

client service and A1 = (Q1, q
0
1 , Port1, Σ1, δ1), . . . , An =

(Qn, q0
n, Portn, Σn, δn) be available services. Without

loss of generality, we will always assume that Portc and
Port1 ∪ . . . ∪ Portn are disjoint sets of ports. Let M =
(QM , q0

M , PortM , ΣM , δM ) be a mediator service. We say
that M is a mediator for Ac and A1, . . . , An iff PortM =
Portc ∪Port1 ∪ . . .∪Portn. As an example, we consider
the mediator service represented in figure 3.

We consider now the decision problem Pcomp defined as
follows:

Problem 1 (Composition problem Pcomp).

Instance a client service Ac, a goal service Ag for Ac,
n available services A1,. . . , An such that Portc and
Port1 ∪ . . . ∪ Portn are disjoint,

Question does there exist a mediator service M for Ac and
A1, . . . , An such that Ac ⊗ Ag ≈Θ Ac ⊗ A1 ⊗ . . . ⊗
An ⊗M , where Θ = {?, !}× (Port1 ∪ . . .∪Portn)?

The above definition captures formally the intuitive no-
tion of the service composition problem. This problem can

?Word !WrdToTrans

?Translation

!WrdToDef?DicDef

!Definition

Figure 3. Mediator service

be informally stated as follows: given a client service, a
goal service and available services, synthesize a mediator
service establishing a connection between the client service
and the available services in such a way that the behav-
ior of the available services communicating with the client
service through the intermediary of the mediator service is
equivalent, leaving aside the communications executed by
the available services, to the behavior of the goal service
communicating with the client service. Such problems has
been considered by a lot of people including [3]. Its com-
plete solution, nevertheless, has never been given. The de-
cision problem Pcomp can be reduced to the following more
abstract problem:

Problem 2 (Composition problem P 1
comp).

Instance communicating automata A and B such that
PortA ⊆ PortB ,

Question does there exist a mediator service M such that
PortM = PortB and A ≈Θ B ⊗ M , where Θ =
{?, !} × (PortB \ PortA)?

Proposition 1. The decision problem Pcomp can be reduced
to the decision problem P 1

comp.

Proof. Let Ac = (Qc, q
0
c , Portc, Σc, δc) be a client ser-

vice, Ag = (Qg, q
0
g , Portg, Σg, δg) be a goal service for

Ac and A1 = (Q1, q
0
1 , Port1, Σ1, δ1),. . . , An = (Qn, q0

n,
Portn, Σn, δn) be n available services such that Portc and
Port1 ∪ . . . ∪ Portn are disjoint. Let A = Ac ⊗ Ag and
B = Ac ⊗ A1 ⊗ . . . ⊗ An. Clearly, PortA ⊆ PortB .
Moreover, PortB \ PortA = Port1 ∪ . . . ∪ Portn. The
reader can easily verify that there exists a mediator service
M = (QM , q0

M , PortM , ΣM , δM ) for Ac and A1, . . . , An

such that Ac ⊗ Ag ≈Θ Ac ⊗ A1 ⊗ . . . ⊗ An ⊗ M , where
Θ = {?, !} × (Port1 ∪ . . . ∪ Portn) iff there exists a
mediator service M ′ = (QM ′ , q0

M ′ , PortM ′ , ΣM ′ , δM ′)
such that PortM ′ = PortB and A ≈Θ′ B ⊗ M ′, where
Θ′ = {?, !} × (PortB \ PortA).

In order to apply, in section 4, the techniques of con-
troller synthesis for solving the decision problem P 1

comp,
we need to introduce the notion of complete mediator. Let
B = (QB, q0

B , PortB , ΣB, δB) be a communicating au-
tomaton where PortB = {p1, . . . , pm}. Let us consider the
finite set of port copies Port′B = {p′1, . . . , p′m} such that
Port′B ∩ PortB = ∅. The complete mediator with respect
to B is the mediator service L = (QL, q0

L, PortL, ΣL, δL)
where QL = {q0

L}, PortL = Port′B , ΣL = ∅ and for all
port p′ ∈ Port′B , δ(q0

L, ?p′) = {q0
L} and δ(q0

L, !p′) = {q0
L}.

Let A = (QA, q0
A, PortA, ΣA, δA) be a communicating

automaton such that PortA = PortB ∪PortL or PortA =
PortL. The renaming of A with respect to Port′B is the
communicating automaton Ren(A) = (Q, q0, Port, Σ, δ)
where:



• Q = QA,

• q0 = q0
A,

• Port = PortB ,

• Σ = ΣA and

• the transition function δ : Q×(Σ∪({?, !}×Port)) →
2Q is such that for all a ∈ Σ, q

a−→Ren(A) q′ iff

q
a−→A q′ where as for all p ∈ Port, q

σp−→Ren(A) q′ iff

q
σp−→A q′ or q

σp′
−−→A q′, where σ ∈ {?, !}.

Intuitively Ren(A) consists to replace the transitions of A
labeled by ?p′ (resp. !p′), where p′ is a port in Port′B by
transitions labeled by ?p (resp. !p), such that p′ is the copy
of p.

Let us now consider the decision problem P 2
comp defined

as follows:

Problem 3 (Composition problem P 2
comp).

Instance communicating automata A and B such that
PortA ⊆ PortB ,

Question does there exist a communicating automaton C
such that PortC = PortB ∪ PortL, ΣC = ΣB and
A ≈Θ Ren(B ⊗ (C × L)), where Θ = {?, !} ×
(PortB \ PortA)?

Intuitively, the decision problem P 2
comp captures the idea

that, instead of synthesizing a mediator service M such that
PortM = PortB , we synthesize a communicating automa-
ton C that play the role of a supervisor for the complete me-
diator service L of B. When the communicating automaton
C is combined to the complete mediator L, it restricts the
communications of L.

Proposition 2. The decision problem P 1
comp is equivalent

to the decision problem P 2
comp.

Proof. Let A = (QA, q0
A, PortA, ΣA, δA) and B =

(QB, q0
B, PortB , ΣB, δB) be communicating automata

such that PortA ⊆ PortB and let Θ = {?, !} ×
(PortB \ PortA) be a set of actions. We have
to prove that there exists a mediator service M =
(QM , q0

M , PortM , ΣM , δM ) such that PortM = PortB
and A ≈Θ B⊗M iff there exists a communicating automa-
ton C = (QC , q0

C , PortC , ΣC , δC) such that PortC =
PortB ∪PortL, ΣC = ΣB and A ≈Θ Ren(B⊗ (C ×L)).
Remind that PortL = Port′B consists of copies of ports in
PortB .

Concerning the left to right implication, sup-
pose that there exists a mediator service M =
(QM , q0

M , PortM , ΣM , δM ) such that PortM = PortB
and A ≈Θ B ⊗ M . Let us consider the communicating
automaton C = (QC , q0

C , PortC , ΣC , δC) where

• QC = QM ,

• q0
C = q0

M ,

• PortC = PortB ∪ PortL,

• ΣC = ΣB and

• the transition function δC : QC × (ΣC ∪ ({?, !} ×
PortC)) → 2Q is such that for all q ∈ QC , for all a ∈
ΣC , δC(q, a) = ∅ and for all p ∈ PortB , δC(q, σp) =
∅ and δC(q, σp′) = δM (q, σp), where σ ∈ {?, !}.

Since A ≈Θ B ⊗ M , it suffices to demonstrate that
FA(B ⊗ M) and FA(Ren(B ⊗ (C × L))) are isomor-
phic. Let g : QB × QM × 2PortB → QB × QC ×
QL × 2PortB be the bijection defined by g((qB, qM ), V ) =
((qB , (qM , q0

L)), V ). The reader may easily verify that
g((q0

B, q0
M ), ∅) = ((q0

B , (q0
M , q0

L)), ∅) and for all qB, q′B ∈
QB , for all qM , q′M ∈ QM and for all V, V ′ ∈ 2PortB ,
there is a transition in FA(B ⊗ M) between ((qB , qM ), V )
and ((q′B, q′M ), V ′) iff there is a similar transition in
FA(Ren(B ⊗ (C × L))) between g((qB, qM ), V ) and
g((q′B, q′M ), V ′).

Concerning the right to left implication, suppose
that there exists a communicating automaton C =
(QC , q0

C , PortC , ΣC , δC) such that PortC = PortB ∪
PortL, ΣC = ΣB and A ≈Θ Ren(B ⊗ (C × L)).
Let us consider that M = Ren(C × L). Consequently,
PortM = (Port′B \ Port′B) ∪ PortB = PortB . Clearly,
Ren(B ⊗ (C × L)) = B ⊗ Ren(C × L). Thus Ren(B ⊗
(C × L))=B ⊗ M . Since A ≈Θ Ren(B ⊗ (C × L)) then
A ≈Θ B ⊗ M .

3. Controller synthesis

Ramadge and Wonham initiate in [9] the control theory
of discrete event systems. We briefly present this theory
and an extension, the one of [1] and a subproblem which is
a step in the direction of service composition. We fix a finite
alphabet Σ of actions.

3.1. Control with observability and control-
lability

Given a finite automaton G over Σ, also called the plant,
the control problem is to find a particular finite automaton
C over Σ, called the controller, which role is to prevent the
plant to perform some unwanted sequences of actions. The
controller must also take into account some observability
and controllability constraints.

These constraints are given by the partition of Σ into the
set Σob of observable events and the set Σuob of unobserv-
able events. The alphabet Σ is also partitioned into the set



Σct of controllable events and the set Σuct uncontrollable
events.

The observability constraint (O) and the controllability
constraint (C) for a controller C are defined as follows:

(C) for any state q of C and for any uncontrollable event
a ∈ Σuct, there is a transition from q labeled by a.

(O) for any state q of C and for any unobservable event
a ∈ Σuct, if there is a transition from q labeled by a
then this transition is a loop over q.

The controller satisfies (C) iff it reacts to every uncon-
trollable event whereas it satisfies (O) iff it cannot detect
the occurrence of any unobservable event. The controlled
system is the synchronized product G × C. Thus, the
controller operates by restricting the set of finite traces of
the plant, where a trace of an automaton is a legal sequence
of actions for this automaton.

Informally, the basic control problem can be stated as
follows:

Problem 4 (Basic control problem).

Instance a plant G and a language K ⊆ Σ∗ of finite traces,

Question does there exist a controller C satisfying (C) and
(O) and such that the finite traces of G × C are all in
K ?

Many variants of this control problem have been studied.
In particular, the language K of legal behaviors can be re-
placed by the general notion of control objective. We focus
on control objectives given as logical formulas. In [1], the
authors propose a solution for the following control prob-
lem:

Problem 5 (Formula-based control problem).

Instance a plant G and a formula φ of the modal µ-
calculus,

Question does there exist a controller C satisfying (C) and
(O) and such that G × C |= φ ?

The solution provides an algorithm for constructing the
controller. In fact, the authors solve a more general problem
where (C) and (O) are encoded in a formula satisfied by the
controller. The problem we present here is sufficient for
the present paper. Note that non-deterministic plants are
allowed since Problem 5 with non-deterministic plants can
be reduced to the same problem with deterministic plant [8].
The problem can also be solved without this reduction as
shown in [6].

3.2. Tau bisimulation as control objective

In Section 2, we introduced service composition and Θ-
bisimulation as behavioral equivalence for validating the
composition. Let Θ be a subset of Σ. We propose a vari-
ant of the Control Problem 5 where the control objective is
based upon Θ-bisimulation.

Formally, consider the following problem:

Problem 6 (Pbbcp: bisimulation control problem).

Instance Given a plant G and a finite automaton A,

Question does there exist a controller C satisfying (C) and
(O) and such that Ren(G × C) ≈Θ A ?

We show that this problem is a particular case of Prob-
lem 5. Indeed, the Θ-bisimulation between two finite au-
tomata can be reduced to the satisfiability of a µ-calculus
formula as stated by the following proposition.

Proposition 3. Given a finite automaton A, there exists a
µ-calculus formula φA such that for every finite automaton
P , the following assertion holds:

P |= φA ⇔ Ren(P ) ≈Θ A

Proof. This is an obvious variant of a standard result.

Thus we get:

Corollary 1. The problem Pbbcp is decidable, and the con-
troller synthesis is effective.

Proof. From Proposition 3, each instance of Pbbcp is equiv-
alent to an instance of Problem 5, which have an effective
decision procedure.

4. From services to controllers

In this section, we show that the service composition
problem, as formally defined in section 2, can be seen as
a controller synthesis problem, as formally defined in the
previous section. In what follows we prove that for solv-
ing the service composition problem, the techniques of con-
troller synthesis can be applied. For this aim, we first give
the definition of the functions Comp and FACopies. Then,
we propose lemma 1. The propositions 4 and 6 below are
necessary to establish the proof of the lemma.

Definition 12. Let A = (Q, q0, Σ, δ) be a finite automa-
ton and Port be a finite set of ports. The communicating
automaton Com(A, Port) = (Q′, q0′, Port′, Σ′, δ′) asso-
ciated to A with respect to Port is defined as follows

• Q′ = Q,

• q0′ = q0,



• Port′ = Port,

• Σ′ = Σ \ ({?, !} × Port),

• δ′ = δ.

Definition 13. Let A = (QA, q0
A, PortA, ΣA, δA) be a

communicating automaton. Let Port′A be a finite set
of ports copies. The finite automaton FACopies(A) =
(Q, q0, Σ, δ) associated to A is defined as follows

• Q = {(qA, V ) | qA ∈ QA and V ⊆ PortA},

• q0 = (q0
A, ∅),

• Σ = ΣA ∪ ({?, !} × (PortA ∪ PortA′)),

• the transition function δ : Q × Σ → 2Q is such that
(qA, V ) a−→FACopies(A) (q′A, V ′) iff one of the three fol-
lowing conditions is satisfied

– a ∈ ΣA, qA
a−→A q′A and V = V ′,

– a =?p, qA
a−→A q′A, p ∈ V and V ′ = V \ {p},

– a =!p, qA
a−→A q′A, p �∈ V and V ′ = V ∪ {p},

– a =?p′, qA
a−→A q′A, p ∈ V and V ′ = V \ {p},

– a =!p′, qA
a−→A q′A, p �∈ V and V ′ = V ∪ {p}.

Proposition 4. Let B, C be communicating automata such
that PortC = PortB ∪Port′B , ΣC = ΣB . If Auto(C) sat-
isfies (O) and (C), when Σob = Σct = {?, !}×Port′B then
FACopies(B⊗ (C ×L)) and FACopies(B⊗L)×Auto(C)
are isomorphic.

Proof. Let B = (QB, q0
B , PortB, ΣB, δB) and C =

(QC , q0
C , PortC , ΣC , δC) be communicating automata

such that PortC = PortB ∪ Port′B , ΣC = ΣB . Sup-
pose that Auto(C) satisfies (O) and (C), when Σob =
{?, !} × Port′B . Consequently, for all state qAuto(C) ∈
QAuto(C) and for all action a ∈ ΣB ∪ ({?, !} × Port′B),
qAuto(C)

a−→Auto(C) qAuto(C). Let g : (QB × (QC ×
QL))×2PortB → ((QB, QL)×2PortB)×QC be the bijec-
tion defined by g((qB, (qC , q0

L)), V ) = (((qB , q0
L), V ), qC).

The reader may easily verify that g((q0
B, (q0

C , q0
L)), ∅) =

(((q0
B , q0

L), ∅), q0
C) and for all qB , q′B ∈ QB , for all

qC , q′C and for all V, V ′ ∈ 2PortB , there is a transition
in FACopies(B ⊗ (C × L)) between ((qB , (qC , q0

L)), V )
and ((q′B , (q′C , q0

L)), V ′) iff there is a similar transition in
FACopies(B⊗L)×Auto(C) between g((qB, (qC , q0

L)), V )
and g((q′B , (q′C , q0

L)), V ′).

Proposition 5. Let B, C be communicating automata such
that PortC = PortB ∪ Port′B , ΣC = ΣB . If Auto(C)
satisfies (O) and (C), when Σob = Σct = {?, !} × Port′B
then FA(B ⊗ (C × L)) and FA(B ⊗ L) × Auto(C) are
isomorphic.

Proof. The same argument used to prove 4, can be used to
prove this proposition.

Proposition 6. Let B, C be communicating automata such
that PortC = PortB ∪ Port′B . Then there exists a com-
municating automaton C′ such that PortC′ = PortC ,
ΣC′ = ΣC , Auto(C′) satisfies (O) and (C), when Σob =
Σct = {?, !} × Port′B and C × L is isomorphic to C′ × L.

Proof. Let B = (QB, q0
B, PortB , ΣB, δB) and C =

(QC , q0
C , PortC , ΣC , δC) be communicating automata

such that PortC = PortB ∪ Port′B . Let us con-
sider the communicating automaton C′ = (QC′ , q0

C′ ,
PortC′ , ΣC′ , δC′) such that QC′ = QC , q0

C′ = q0
C ,

PortC′ = PortC , ΣC′ = ΣC and the transition function
δC′ : QC′ ×(ΣC′ ∪({?, !}×PortC′)) → 2QC′ is such that:
for all a ∈ ΣC , q

a−→C′ q, for all p ∈ PortB , q
σp−→C′ q and

for all p′ ∈ Port′B , q
σp′
−−→C′ q′ iff q

σp′
−−→C q′, σ ∈ {?, !}.

The reader may easily verify that Auto(C × L) =
Auto(C′ × L). Hence, C × L and C′ × L are isomor-
phic.

Lemma 1. The decision problem P 2
comp can be reduced to

the decision problem Pbbcp.

Proof. Let A = (QA, q0
A, PortA, ΣA, δA) and B =

(QB, q0
B, PortB , ΣB, δB) be communicating automata

such that PortA ⊆ PortB and let Θ = {?, !} × (PortB \
PortA). Let A′ = FA(A), G = FACopie(B ⊗ L)),
Σob = Σct = {?, !} × Port′B . We have to prove that there
exists a communicating automaton C such that PortC =
PortB ∪PortL, ΣC = ΣB and A ≈Θ Ren(B ⊗ (C ×L))
iff there exists a controller C′ satisfying (C) and (O) and
such that G × C′ and A′ are Θ-bisimilar.

Concerning the left to right implication, suppose that
C = (QC , q0

C , PortC , ΣC , δC) is such that PortC =
PortB ∪PortL, ΣC = ΣB and A ≈Θ Ren(B⊗ (C ×L)).
Since PortC = PortB ∪ PortL, then according to propo-
sition 6 there exists a communicating automaton C′′ such
that PortC′′ = PortC , ΣC′′ = ΣC , Auto(C′′) satisfies
(O) and (C) and C × L is isomorphic to C′′ × L. Clearly,
A ≈Θ Ren(B⊗(C×L)) and C×L is isomorphic to C′′×L
implies that A ≈Θ Ren(B ⊗ (C′′ ×L)). Thus, FA(A) and
FA(Ren(B⊗ (C′′×L)) are Θ-bisimilar. It is easy to prove
that FA(Ren(B⊗(C′′×L))) = Ren(FACopies(B⊗(C′′×
L))). According to proposition 4, FACopies(B⊗(C′′×L))
and FACopies(B⊗L)×Auto(C′′) are isomorphic. Conse-
quently, FA(A) and Ren(FACopies(B ⊗ L) × Auto(C′′))
are Θ-bisimilar. If we consider that C′ = Auto(C′′) then
A′ and Ren(G × C′) are Θ-bisimilar.

Concerning the right to left implication, suppose that
C′ is a finite automaton that satisfies (O) and (C) and
such that FA(A) and Ren(FACopies(B ⊗ L) × C′) are Θ-
bisimilar. Let us consider C = Com(C′, PortB ∪Port′B).



Thus, PortC = PortB ∪ Port′B and ΣC = ΣB . One
can observe that Auto(C) = C′. According to proposi-
tion 4, FACopies(B⊗ (C ×L)) and FACopies(B⊗L)×C′

are isomorphic, which implies that Ren(FACopies(B ⊗
(C × L))) and Ren(FACopies(B ⊗ L) × C′) are isomor-
phic. It is easy to prove that Ren(FACopies(B ⊗ (C ×
L))) = FA(Ren(B ⊗ (C × L))). Consequently, FA(A)
and FA(Ren(B ⊗ (C × L))) are Θ-bisimilar. Thus A ≈Θ

Ren(B ⊗ (C × L)).
With this established, we now come the main result of

this paper.

Proposition 7. The composition problem PComp is decid-
able.

Proof. By propositions 1, 2, corollary 1 and lemma 1.

5. Variants and open problems

Our main result, stated in proposition 7, is that service
composition is decidable. An interesting (and still open)
question is to evaluate the exact complexity of (Pcomp). In
other respect, our controller-based approach constitutes the
basis of an algorithm for solving (Pcomp). This algorithm
can be informally described as follows:

• first, given, as input, a client service Ac, a goal service
Ag and available services A1, . . ., An, compute A =
Ac ⊗ Ag and B = Ac ⊗ A1 ⊗ . . . ⊗ An,

• second, compute A′ = FA(A) and G = Ren(FA(B⊗
L)) where L is the complete mediator with respect to
B,

• third, using a decision procedure for solving Pbbcp, de-
termine whether there exists a controller C′ such that
A′ and G × C′ have equivalent behaviors.

Remark that A′ and G can be deterministically computed
in exponential time with respect to the size of the input Ac,
Ag and A1, . . ., An. Moreover, the size of A′ and G is ex-
ponential with respect to the size of the input. Seeing that
Pbbcp can be solved in deterministic exponential time, our
approach provides an algorithm that solves (Pcomp) in de-
terministic double-exponential time. Nevertheless, the ex-
act complexity of (Pcomp) is still unknown.
Variants of (Pcomp) can be considered as well. For ex-
ample, one may ask whether, given Ac, Ag and A1, . . .,
An, there exists a mediator M such that Ac ⊗ Ag and
Ac ⊗A1 ⊗ . . .⊗An ⊗M are trace-equivalent. In other re-
spect, one may consider that ports are communication chan-
nels that can contain more than one message at a time. In
this case, the problem complexity remains the same as in the
case studied in this paper. The reason is that the size of the
finite automaton associated to a communicating automaton

will be (k + 1)|Ports| instead of 2|Ports| (k is the maximal
number of messages that a port can contain). It would be
interesting to find an efficient algorithm that works in expo-
nential time. For this aim, we will possibly use heuristics
or on-the-fly algorithms. Finally, one may define the no-
tion of a communicating automaton in a less abstract way.
More precisely, one may consider that real messages, i.e.
closed terms in a first-order setting, are exchanged between
services.
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