
Automatic Web Services Composition
in Trust-aware Communities

Fahima Cheikh
Institut de Recherche en Informatique
de Toulouse, 118, route de Narbonne

31062 Toulouse, France

cheikh@irit.fr

Giuseppe De Giacomo
Massimo Mecella

Univ. Roma LA SAPIENZA
Dipartimento di Informatica e Sistemistica

Via Salaria 113 – 00198 Roma, Italy

{degiacomo,mecella}@dis.uniroma1.it

ABSTRACT
The promise of Web Service Computing is to utilize Web ser-
vices as fundamental elements for realizing distributed ap-
plications/solutions. In particular, when no available service
can satisfy client request, (parts of) available services can be
composed and orchestrated in order to satisfy such a request.
In this paper, we address the automatic composition when
component services have access control & authorization con-
straints, and impose further reputation constraints on other
component services. In particular, access & authorization
control is based on credentials, component services may (or
not) trust of credentials issued by other component services
and the service behavior is modeled by the possible conver-
sations the service can have with its clients. We propose an
automatic composition synthesis technique, based on reduc-
tion to satisfiability in Propositional Dynamic Logic, that is
sound, complete and decidable. Moreover, we will charac-
terize the computational complexity of the problem.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: [Access controls]; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection—Authentication; H.3.5
[Information Storage and Retrieval]: Online Informa-
tion Services—Web-based Services

General Terms
Security, Verification

Keywords
Web services, Composition, Access control, Trust

1. INTRODUCTION
Web services (also called simply services) are self-

describing, platform-agnostic computational elements that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWS’06, November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-546-0/06/0011 ...$5.00.

support rapid, low-cost and easy composition of loosely
coupled distributed applications. From a technical stand-
point, Web services are modular applications that can be
described, published, located, invoked and composed over
a variety of networks (including the Internet): any piece of
code and any application component deployed on a system
can be wrapped and transformed into a network-available
service, by using standard (XML-based) languages and pro-
tocols (e.g., WSDL, SOAP, etc.) - see e.g., [2].

The promise of Web service is to enable the composition
of new distributed applications/solutions: when no available
service can satisfy a client request, (parts of) available ser-
vices can be composed and orchestrated in order to satisfy
such a request. Note that service composition involves two
different issues [2]: the synthesis, in order to synthesize, ei-
ther manually or automatically, a specification of how coor-
dinating the component services to fulfill the client request,
and the orchestration, i.e., how executing the previous ob-
tained specification by suitably supervising and monitoring
both the control flow and the data flow among the involved
services.

As organizations increase their use of Web services and
adopt them as the primary tool to build fairly complex dis-
tributed systems, security becomes crucial [27]. While secu-
rity (and especially access control) has been widely studied
in the literature and especially in database systems [12], only
recently work on security for Web services has emerged as
an important part of the Web service saga [30, 28, 3, 11, 21].

In this paper, we focus on automatic composition synthe-
sis in presence on access control constraints by the compo-
nent services, and in scenarios in which different component
services may (or not) trust about others.

An access control model restricts the set of clients or sub-
jects that can invoke Web service’s operations. Since clients
are not known a priori, we adopt credentials to enforce ac-
cess control. Credentials are signed assertions describing
properties of a subject that are used to establish trust be-
tween two unknown communicating parties before allowing
access to information or services. Access control policies de-
fine rules stating that only subjects with certain credentials
satisfying specific conditions can invoke a given operation of
the Web service. In addiction, in many scenarios, the issuers
of some credentials may not have a good reputation by other
subjects (i.e., services), and therefore the automatic compo-
sition synthesis phase needs to consider all such constraints.

We consider the behavior of the available services as non-
deterministic, and hence not fully controllable by the or-

43

chestrator. The service behavior is modeled by the possible
conversations the service can have with its clients. The pres-
ence of nondeterministic conversations stems naturally when
modeling services in which the result of each interaction with
its client on the state of the service can not be foreseen. Let
us consider as an example, a service that allows buying items
by credit card; after invoking the operation, the service can
be in a state payment OK, accepting the payment, or in a dif-
ferent state payment refused, if the credit card is not valid,
with not enough credit, etc. Note that the client of a non-
deterministic service can invoke the operation but cannot
control what is the result of it. In other words, the behavior
of the service is partially controllable, and the orchestrator
needs to cope with such partial controllability. Note also
that if one observes the status in which the service is after
an operation, then s/he understand which transition, among
those nondeterministically possible in the previous state, has
been undertaken by the service. We assume that the orches-
trator can indeed observe states of the available services and
take advantage of this in choosing how to continue a certain
task 1.

Moreover, access control & authorization constraints can
be represented as guard on such conversations; such guards
express conditions on the credentials owned by the clients,
and such credentials are issued by different subjects, includ-
ing other services (that indeed may change and emit them
during the conversations themselves). Therefore the guards
on conversations may explicit assess that the issuer of a cre-
dential should be well considered/reputated/trusted by the
service. Again, the automatically synthesized orchestrator
needs to cope with these issues.

From a formal point of view, in this paper, we adhere
to the setting proposed in [10, 7, 9] whose distinguished
features can be summarized as follows.

• The available services are grouped together into a so-
called community.

• Services in the community share a common set of ac-
tions Σ, the actions of the community. In other words,
each available service in the community exports its be-
havior to the community itself in terms of the actions
in Σ (the actions recognized be the community).

• Each action in Σ denotes a (possibly complex) interac-
tion between the service and a client, and as result of
such an interaction the client may acquire new infor-
mation (not necessarily modeled explicitly) that may
be of help in choosing the next action to perform.

• The behavior of each available service is described in
terms of a finite transition system (aka finite state ma-
chine) that makes use of the actions in Σ. Since in this
paper we assume that the behavior of the available
services is nondeterministic, differently from [7, 10],
such a transition system is nondeterministic in general.
Moreover, as we assume that service providers impose
constraints on credentials provided by clients, such a
transition system, differently from [9], is guarded.

1The reader should observe that also the standard proposal
WSDL 2.0 has a similar point of view: the same operation
can have multiple output messages (the out message and
various outfault messages), and the client observe how the
service behaved only after receiving a specific output mes-
sage.

• The client request itself is expressed as a finite transi-
tion system that makes use of the actions in Σ. Such a
transition system, called target service, is deterministic
as in [10], since we assume that there is no uncertainty
on the behavior that the client want to realize through
composition of the available services. Again, it is also
guarded.

• The orchestrator has the ability of scheduling services
on a step-by-step basis. Hence the orchestrator has
the ability of controlling the interleaving of multiple
services executed concurrently.

• The composition synthesis consists on synthesizing a
program for the orchestrator such that by suitably
scheduling the available services it can provide the tar-
get service to the client.

The contribution of this paper is to devise a formal tech-
nique to perform automatic composition synthesis, when
available services are nondeterministic and impose security
(specifically, (i) access control and authorization, and (ii)
reputation) constraints. We will show that the technique
proposed is sound, complete and terminating. Moreover we
will characterize the computational complexity of the prob-
lem and show that the proposed technique is optimal wrt
(worst-case) computational complexity.

Interestingly the technique proposed here is based on
reduction to satisfiability in Propositional Dynamic Logic
(PDL) [17] with a limited use of the reflexive-transitive-
closure operator. Now, PDL satisfiability shares the same
basic algorithms behind the success of the description logics-
based reasoning systems used for OWL2, such as FaCT3,
Racer4, Pellet5, and hence its applicability in the context of
composition synthesis appears to be quite promising.

The rest of the paper is organized as follows. In Sec-
tion 2 we first introduce the framework and the composi-
tion problem in formal details. In Section 3 we present an
explanatory example, in order to highlight all the features
of the approach. In Section 4 we develop the techniques
to perform automatic composition, we show soundness and
completeness and we characterize the complexity of both the
techniques and the problem. In Section 5 we discuss some
related work. Finally, in Section 6 we draw some conclu-
sions.

2. FRAMEWORK
Community. A community S is formed by a finite set of
available services {S1, . . . ,Sn} that share the same set of
shared actions A. Such actions are the actions available to
the agent that is client of the community. The client can
use such actions to specify a behavior of its interest, the so-
called target service S0. The community will try to realize
the target service S0 by suitably orchestrating the available
services S1, . . . ,Sn, see [10, 9]. We also consider a reputa-
tion matrix Rep which has as rows available services and as
columns available services and possibly third parties. The
cell Rep(i, j) represents the reputation level (set of all pos-
sible levels is finite) that the available service Si has on the

2http://www.omg.org/uml/
3http://www.cs.man.ac.uk/∼horrocks/FaCT/
4http://www.sts.tu-harburg.de/∼r.f.moeller/racer/
5http://www.mindswap.org/2003/pellet/

44

available service Sj or on the third party Pj−n. In addition,
in this paper, a client has a set of credentials that allows him
to execute various parts of an available service. The value
of these credentials can be changed by an available service
after the execution of an action.
Credentials. Credentials are the mean to establish trust
between a client and the service provider. They are asser-
tions about the client, issued by a given party. Formally, let
C = {c1, . . . , cm} be the set of credentials that are associated
to clients. Each ch is a pair of variables (Attr,Issuer) where
Attr is the attribute variable of the credential, whose value
characterizes the client (wrt ch) and Issuer is the issuer
variable that contains the name of the entity that issued the
value for the attribute variable6. The attribute variable as-
sume values from a finite domain Δ. The possible values of
the issuer are I = {1, . . . , n, n+1, . . . , n+ �}, where 1, . . . , n
are identifiers of available services and n + 1, . . . , n + � are
identifiers of third parties P1, . . . P�. For convenience we as-
sume that I ⊆ Δ.
Available Services. An available service is essentially a
program for a client. However, such a program leaves the
selection of the action to perform next to the client itself.
More precisely, at each step the program presents to the
client a choice of available actions; the client selects one of
them; the action is executed; and so on.

Available services use credentials in order to decide which
actions at each point of their execution are actually available
to the client executing it (i.e., the client is authorized to ex-
ecute the action). Moreover an available service may change
the values of the credentials of the client in a dynamic way,
i.e., while executing.

Conditions on a credential specify the security require-
ments of the available services. Let Si be an available service
and ch : (Attr, Issuer) be a credential, an atomic credential
condition in Si on ch is an expression of the form T op v,
where T is either ch.Attr or Rep(i, ch.Issuer) , op is a com-
parison operator (interpreted on the obvious way), and v is
a value in Δ. We denote by Ψ the set of closed FOL for-
mulas build using as atoms the credential conditions. We
also denote by Γ the set of (possibly partial) reassignments
of values in Δ to the variables Issuer and Attr of creden-
tials in C. More precisely, let γ be a reassignment in Γ and
let CA be the current assignment of all the variables of the
form ch.Issuer or ch.Attr where ch ∈ C. Let CA ◦ γ be the
assignment obtained from CA by reassigning the variables
mentioned in γ according to γ itself. The reassignment γ
must satisfy the following conditions:

• if γ(ch.Issuer) = v then v is either i (the service iden-
tifier itself) or the identifier of a third party.

• if there exists ch ∈ C, such that CA ◦ γ(ch.Attr) �=
CA(ch.Attr) then γ(ch.Issuer) has to be reassigned
by γ (according to the rule above).

The first requirement states that an available service can
assign to the issuer variable of a credential only the identi-
fier of itself or that of a third party. Thus, an available ser-
vice cannot assign to the issuer variable identifiers of other
available services. The reason is that, in our framework,

6Credentials are usually implemented through the use of
X.509 certificates or SAML assertions. Since the actual im-
plementation format of credentials is not relevant to this
paper, we omit further details on such an aspect.

the available services are specified independently from each
other and hence cannot delegate actions to other available
services in the community. As for the assigning a third party,
the intuition is that the available service delegates to a third
party the guarantee of the attribute value of the credential
and hence uses his identifier as value of the issuer variable.
The second requirement states that if an available service
reassigns the attribute variable of a credential then it must
reassign also the issuer variable, since now it is taking charge
of guaranteeing the new value.

Each available service Si is defined in terms of a finite
transition system of the form: TSi = (Si, si0, Gi, δi, Fi),
where

• Si is a finite set of states;

• si0 ∈ Si is the single initial state of the service;

• Gi is a set of guards, which are formulas from Ψ;

• δi ⊆ Si × Gi × A × Γ × Si is the service transition
relation, where Gi is the set of guards of the service,
A is the shared set of actions of community S , and Γ
is the set of possible reassignments for the credentials
variables. Observe that Gi×A×Γ components of such
tuple form the so-called label of the transition. We will
drop the guard g to mean that g = true , and drop the
reassignment if γ does not reassign any variable;

• Fi ⊆ Si is the set of final states of the service, that
is, states in which the service may stop executing, but
does not necessarily have to.

Observe that, in general, available services are nondetermin-
istic in the sense that they may allow more than one tran-
sition with the same action a and two compatible guards
evaluating to the same truth value. Such transitions differ
either in the resulting state, in the resulting reassignment
of the credentials or in both7. As a result, the client, when
making its choice of which action to execute next, cannot
be certain of which choices it will have later on, since that
depends on what transition is actually executed: in other
words, available services are only partially controllable
Target Services. The client specifies the service to be pro-
vided by the community, called target service, in terms of
a finite transition system TS0 = (S0, s00, G0, δ0, F0), where
transitions are labeled only by the guards and the actions
(no reassignment). Guards can refer only to the attribute
variable of the credentials, and not to the issuer variables.
This captures the fact that the client can take its decision
on what to do next based on the current value of its creden-
tial attributes, but not on who issued such values. We also
require that the transitions are deterministic, in the sense
that for every pair of transitions (s, g, a, t) and (s, g′, a, t′)
the guards g and g′ must be disjoint (i.e., g ∧ g′ = false for
every possible assignment of the credentials in C). This is
because we want the client to be able to fully control the
target service through its choices of actions.

To the client is also associated an initial assignment CAinit

of the attribute and issuer variables of the credentials in C,
describing the value of credentials initially assigned to the
agent executing the target service and who issued them.

7Note that this kind of nondeterminism is of a devilish na-
ture, and captures the idea that through the choice of actions
alone the agent cannot fully control the service.

45

Orchestrator Program. A history is an alternat-
ing sequence of the form h = (s0

1, . . . , s
0
n, CA0) · a1 ·

(s1
1, . . . , s

1
n, CA1) · · · a� · (s�

1, . . . s
�
n, CA�) such that the fol-

lowing constraints hold:

• s0
i = si0 for i ∈ {1, . . . , n}, i.e., all services start in

their initial state, and CA0 is the assignment of all
variables in C;

• at each step k, (i) for one i we have that
(sk

i , g, ak+1, γ, sk+1
i) ∈ δi with g = true in CAk;

(ii) CAk+1 = CAk ◦ γ;

(iii) for all j �= i we have that sk+1
j = sk

j .

An orchestrator program is a function OP : H × A →
{1, . . . , n, u} that, given a history h ∈ H (where H is the
set of all histories defined as above) and an action a ∈ A
to perform, returns the service (actually the service index)
that will perform it, or the special value u (for “undefined”).
Composition. Next we define when an orchestrator pro-
gram is a composition that realizes the client request. Be-
ing the target service deterministic, its behavior is com-
pletely characterized by the set of its traces, defined by
the set of infinite sequences of guarded actions that are ob-
tained by following its transitions, and of finite sequences
that in addition lead to a final state. Now, given a trace
t = (g1, a1) · (g2, a2) · · · of the target service, we say that an
orchestrator program OP realizes the trace t starting from
an initial credential assignment CAinit iff for all � and for
all histories h ∈ H�

t such that g�+1 = true in the last vari-
able assignment CA�

h of h, we have that P (h, a�+1) �= u and
H�+1

t is nonempty, where the sets H�
t are inductively defined

as follows:

• H0
t = {(s10, . . . , sn0, CAinit)}

• H�+1
t is the set of all histories such that if

(s�+1
1 , . . . , s�+1

n , CA�+1), with s�+1
i = s′i, h ∈ H�

t ,
and P (h, a�+1) = i (with i �= u), then for all tran-
sitions (s�

i , g, a, γ, s′i) ∈ δi with g = true in the
last variable assignment CA�

h, the history h · a�+1 ·
(s�+1

1 , . . . , s�+1
n , CA�+1), with s�+1

i = s′i, s�+1
j = s�

j for

j �= i, and CA�+1 = CA�
h ◦ γ is in H�+1

t .

Moreover, if a trace is finite and ends after f actions, and all
along all its guards are satisfied, we have that all histories
in Hf

t end with all services in a final state. Finally, we say
that an orchestrator program OP realizes the target service
S0 if it realizes all its traces.

In order to understand the above definitions, let us ob-
serve that intuitively the orchestrator program realizes a
trace if, as long as the guards in the trace are satisfied, it
can choose at every step an available service to perform the
requested action. If at a certain point a guard in the trace
is not satisfied by the current credential assignment, then
we may consider the trace finished (even if not in a final
state). However, since when an available service executes
an action it nondeterministically chooses what transition to
actually perform, the orchestrator program has to require
that for each of the possible resulting states of the activated
available services and resulting credential assignment, the
orchestrator is able to continue with the execution of the
next action. Finally, the last requirement makes sure that
available services are left in a final state, when a finite trace
reaches its end with all guards satisfied all along.

3. CASE STUDY
Figure 1 shows a community of services for searching and

listening mp3 files. The community includes several services:

• S1 allows the client to repeatedly (i) search a file by
author (sa), if the client holds a credential assessing he
is a gold customer and the issuer of such a credential
is reputated higher than 5 by the service itself, and
then, (ii) listen to the file (l).

• S2 allows the client to repeatedly (i) search a file by
author (sa), if the client holds a credential assessing he
is a gold customer and the issuer of such a credential is
reputated higher than 2 by the service itself, and then,
(ii) listen to the file (l). Or alternatively, it allows the
client to (i) search a file by title (st), if the client holds
a credential assessing he is registered, and the issuer
of such a credential is reputated higher than 2 by the
service itself, and then, (ii) listen to the file (l).

• S3 allows the client to repeatedly (i) search a file by
title (st), if the client holds a credential assessing he
is an inscribed one and the issuer of such a credential
is reputated higher than 4 by the service itself, and
then, (ii) listen to the file (l). Depending on the in-
ternal application logic of the service, sometimes the
listen operation change the registration status of the
client (thus forcing him to register again). The client
can obtain the credential, issued by the service itself,
assessing he is a registered client, through an inscrip-
tion operation (i).

• S4 allows the client to obtain the credential, issued
by the service itself, assessing he is a registered client,
through an inscription operation (i).

Moreover, the community S = {S1,S2,S3 S4} is charac-
terized by the following reputation matrix (in which P repre-
sents possible third parties, and the values for the reputation
range from 0 to 5):

Rep S1 S2 S3 S4 P
S1 5 0 0 0 5
S2 0 5 0 0 0
S3 0 0 5 5 5
S4 0 0 5 5 5

The set of credentials is C = {c1, c2} where c1 =
(type,Issuer) and c2 = (inscribed,Issuer).

Figure 2 shows the target service S0: the client wants to
(possibly) register himself, then to search by author or by
title, and listen to the file.

The reader can notice that S2 and S4 would realize the
target, but S2 doesn’t trust too much of the other compo-
nent services, in particular of S4, that may be the issuer for
credential c2. So an orchestrator program, given the pre-
vious reputation matrix, need to resort to S1 and S3 for
realizing the target.

Figure 3 shows an orchestrator program P for avail-
able services S1, S2, S3 and S4, that realizes the tar-
get service S0, given the previous reputation matrix and
the initial credential assignment CAinit(c1.type) = gold,
CAinit(c1.Issuer) = P , CAinit(c2.inscribded) = false and
CAinit(c2.Isssuer) = P . The reader should note that an

46

s10 s11

c1.type = gold ∧
Rep(1,c1.Issuer)≥ 5 / sa

l

S1

(a) S1

s20S2

s22

s21c1.type = gold ∧
Rep(2,c1.Issuer) ≥ 2 / sa

l

c
2.inscribed = true ∧

Rep(2,c
2.Issuer) ≥ 2 / st

l

(b) S2

i /

c2.inscribed = true ∧ c2.Issuer = 3

s30s30S3
s31c2.inscribed = true ∧

Rep(3,c2.Issuer) ≥ 4 / st

l

l / c2.inscribed = false ∧
c2.Issuer=3

(c) S3

S4

s40s40

i / c2.inscribed = true
∧ c2.issuer = 4

(d) S4

Figure 1: A Web service community

s00s00 s01

st

sa
S0

l

i

Figure 2: A target Web service

OP

sOP0sOP0

i {3} / c2.inscribed =
true ∧ c2.issuer = 3

sOP1

c1.type = gold ∧
Rep(1,c1.Issuer)≥ 5 / sa {1}

l {1}

sOP2

l {3}

c2.inscribed = true ∧
Rep(3,c2.Issuer) ≥ 4 / st {3}

Figure 3: An orchestrator

initial credential assignment could produce different pro-
grams, possibly also no solutions (e.g., if CAinit(c1.type) =
bad and CAinit(c1.Issuer) = P).

4. AUTOMATIC COMPOSITION
We are now ready to investigate how to check for the exis-

tence of an orchestrator program that realizes the target ser-
vice, by suitably coordinating the available ones, that takes
into account the initial credentials and how these evolve over
time.

Following [10, 9], we resort to a reduction to satisfiability
in Propositional Dynamic Logic (PDL). PDL is a modal
logic specifically developed for reasoning about computer
programs [17]. Syntactically, PDL formulas are built from a
set P of atomic propositions and a set A of atomic actions:

φ −→ P | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ → φ′ |
〈r〉φ | [r]φ | true | false,

r −→ a | r1 ∪ r2 | r1; r2 | r∗ | φ?,

where P is an atomic proposition in P , r is a regular expres-
sion over the set of actions in A, and a is an atomic action in
A. That is, PDL formulas are composed from atomic propo-
sitions by applying arbitrary propositional connectives, and
modal operators 〈r〉φ and [r]φ. Formula 〈r〉φ means that
there exists an execution of r (i.e., a sequence of actions con-
forming to the regular expression r) reaching a state where
φ holds; and formula [r]φ is intended to mean that all ter-
minating executions of r reach a state where φ holds.

A PDL formula φ is satisfiable if there exists a model for φ,
i.e., an interpretation where φ is true. Checking satisfiability
of a PDL formula is EXPTIME-complete [17].

PDL enjoys two properties that are of particular interest
for us [17]. The first is the tree model property, which says

47

that every model of a formula can be unwound to a (possibly
infinite) tree-shaped model (considering domain elements as
nodes and partial functions interpreting actions as edges).
The second is the small model property, which says that
every satisfiable formula admits a finite model whose size
(in particular the number of domain elements) is at most
exponential in the size of the formula itself.

Let S = (S1, . . . ,Sn) be a community of available ser-
vices over the shared actions A and with credentials C.
To each available services Si is associated its transition
system TSi = (Si, si0, Gi, δi, Fi) defined as above. Let
TS0 = (S0, s00, G0, δ0, F0) be the target service (over A and
C), and finally let CAinit be the initial assignment to the
credentials C. Then, we build a PDL formula Φ to check for
satisfiability as follows.

As actions in Φ, we have the actions A. As atomic propo-
sitions, we have:

• atomic propositions that enable us to encode creden-
tial assignments into propositions. For simplicity we
denote by CA the propositional encoding of CA; we
obviously assume that the encoding is faithful in the
sense that CA is true in the current state of the model
if CA is the assignment corresponding to the current
state;

• one atomic proposition s for each i ∈ {0, 1, . . . , n} and
each state s of TSi, which intuitively denotes that TSi

is in state s;

• atomic propositions Fi, for i ∈ {0, 1, . . . n}, denoting
that TSi is in a final state;

• atomic propositions execia, for i ∈ {1, . . . n} and a ∈
A, denoting that a will be executed next by the avail-
able service Si;

• one atomic proposition undef denoting that we are in
an “illegal” situation, where the orchestrator program
can be left undefined.

The formula Φ is built as follows. For representing the
transitions of the target service S0, we construct a formula
φ0 as the conjunction

• s ∧ CA → 〈a〉true ∧ [a]s′, for each transition
(s, g, a, s′) ∈ δ0 such that CA |= g (i.e., g is true in
CA). This encodes that the target service can do an
a-transition, whose guard g is satisfied, by going from
state s to state s′.

• s ∧ CA → [a]undef , for each a such that for no g and
s′ we have (s, g, a, s′) ∈ δ0 with CA |= g. This takes
into account that the target service cannot perform an
a-transition.

For representing the transitions of each available services
Si, we construct a formula φi as the conjunction of:

• s ∧ CA ∧ execia → �
(s′,γ)∈E (〈a〉(s′ ∧ CA ◦ γ)) ∧

[a](
�

(s′,γ)∈E(s′ ∧ CA ◦ γ)),

where E = {(s′, γ) | (s, g, a, γ, s′) ∈ δi, CA |= g}, for
each credential assignment CA, each s of Si, and each
a ∈ A. These assertions encode that if the current
credential assignment is CA and the available service
Si is in state s and is selected for the execution of an

action a (i.e., execia is true), then for each possible
a-transition of Si with its guard true in CA, we have
a possible a-successor in the models of Φ.

• s∧CA∧execia → [a]false, for each credential assign-
ment CA, and each state s of Si such that for no g, s′,
and γ, we have that (s, g, a, γ, s′) ∈ δi with CA |= g.
This states that if the current credential assignment is
CA and the available service Si, whose current state
is s, is selected for the execution of a, but a cannot be
executed by Si under the credentials CA, then there
is no a-successor in the models of Φ.

• s∧¬execia → [a]s, for each state s of Si and each action
a. This assertion encodes that if available service Si

is in state s and is not selected for the execution of a,
then if a is performed (by some other available service),
Si does not change state.

In addition, we have the formula φadd obtained as the
conjunction of:

• s → ¬s′, for all pairs of states s, s′ of Si, and for i ∈
{0, 1, , . . . , n}; these say that propositions representing
different states of Si are disjoint.

• Fi ↔ �
s∈Fi

s, for i ∈ {0, 1, , . . . , n}; this highlights the
final states of Si.

• undef → [a]undef , for each action a ∈ A; these say
that once a situation is reached where undef holds,
then undef holds also in all successor situations.

• ¬undef ∧〈a〉true → �
i∈{1,...,n} execia, for each a ∈ A,

denoting that, unless undef is true, if a is performed,
then at least one of the available services must be se-
lected for the execution of a.

• execia → ¬execja for each i, j ∈ {1, . . . , n}, i �= j, and
each a ∈ A, stating that only one available service is
selected for the execution of a.

• F0 → �
i∈{1,...,n} Fi, stating that when the target ser-

vice is in a final state, so are all the available services.

Observe that by the nature of the propositional encoding
we also have that CA → ¬CA′ for each distinct pairs of
credential assignments CA and CA′.

Finally, we define Φ as

Init ∧ [u](φ0 ∧
�

i∈{1,...,n}
φi ∧ φadd),

where Init stands for CA0 ∧ s00 ∧ s10 ∧ · · · ∧ sn0, and repre-
sents the initial credential assignment and the initial state
of all services Si (including the target), and u = (

�
a∈A a)∗,

which acts as the master modality [17], is used to force
φ0 ∧ �i∈{1,...,n} φi ∧ φadd to be true in every point of the

model. Note that u is the only complex program that ap-
pears in the PDL formula Φ. We can now state our main
result.

Theorem 4.1. The PDL formula Φ, constructed as
above, is satisfiable if and only if there exists an orchestrator
program for the available services S1, . . . ,Sn that realizes the
target service S0 starting from the initial credential assign-
ment CAinit .

48

By the finite-model property of PDL (i.e., if a formula is
satisfiable, it is satisfiable in a model that is at most expo-
nential in the size of the formula), we can build a systematic
procedure for synthesizing the composition.

Theorem 4.2. If there exists an orchestrator program for
the available services S1, . . . ,Sn that realizes the target ser-
vice S0 starting from the initial credential assignment CAinit ,
then there exists one that requires a finite number of states.
Moreover such a finite state program can be extracted from
a finite model of Φ.

As for computational complexity, we observe that Φ is
polynomial in the size of the target service S0, in the size
of the available services S1, . . . ,Sn, and in the number of
possible credential assignment (and hence exponential in the
number of credential in C). So, considering that satisfiability
in PDL is EXPTIME-complete, we can state the following
theorem.

Theorem 4.3. Checking the existence of an orchestrator
program for the available services S1, . . . ,Sn that realizes the
target service S0 starting from the initial credential assign-
ment CAinit can be done in time at most exponential in the
size of S1, . . . ,Sn and S0 and doubly exponential in the num-
ber of credentials in C.

Notice that the problem of composition is already
EXPTIME-hard in the case considered in [10] where all
available services are deterministic and we have no creden-
tials requirements [23]. So, the result above is optimal wrt
the bounds on the size of the services (including the target).
As for the credential assignments, we observe that a clever
propositional encoding can reduce substantially this compu-
tational cost, although this issue is out of the scope of this
paper.

5. RELATED WORK
Web services represent the core element for building com-

plex services and applications provided either by single orga-
nizations or by a set of cooperating companies. Web services
are built on top of two major standards: SOAP and WSDL;
SOAP defines the protocol to exchange XML messages with
a Web service, and WSDL describes the interface of a Web
service as a set of operations and it provides information on
how to locate and invoke them. Recent papers [6, 10, 24, 4]
have argued that a Web service is more than a set of indepen-
dent operations. In fact, during a Web service’s invocation,
a client interacts with the service performing a sequence of
operations in a particular order. Such a sequence is called
conversation. Specifically, [6, 10, 4] adopt a model based
on finite transition systems (aka finite state machines) for
representing all possible conversations. The approach of [24]
is based on the combined use of two Web service languages,
WS-Conversation (WSCL) and WS-Agreement, that allows
one to specify non-trivial conversations in which several mes-
sages have to be exchanged before the service is completed
and/or the conversation may evolve in different ways de-
pending on the state and the needs of the requesting agents
and of the service provider.

As far as security issues in Web services are concerned, a
fair amount of related research in this area comes from the
industry. Two major standards have emerged, namely Se-
curity Assertion Markup Language (SAML) and eXtensible

Access Control Markup Language (XACML). SAML defines
an XML framework for exchanging authentication and au-
thorization information for securing Web services. XACML
is an XML framework for specifying access control policies
for Web-based resources. Recently it has been extended
to specify access control policies for Web services. Other
emerging specifications include WS-Security and WS-Policy.
WS-Security is a specification for securing SOAP messages
using XML Encryption and XML Signature standards and
attaching security credentials thereto. WS-Policy is used
to describe the security policies in terms of their charac-
teristics and supported features (such as required security
tokens, encryption algorithms, privacy rules, etc.).

These proposals do not address the issue of enforcing ac-
cess control, and do not consider how to include it during
the composition/synthesis phase. Several approaches [30,
28, 3, 11] suggest some preliminary ideas, but none of them
provide a comprehensive solution. [30] proposes two RBAC
(Role Based Access Control) models, SWS-RBAC, for single
Web services, and CWS-RBAC, for composite Web services.
In both models, a service has a few access modes and a role
is associated with a list of services which clients, who are as-
signed that role, have permission to execute. In CWS-RBAC
model, the role to which a client is assigned to access a com-
posite service, must be a global role, which is mapped onto
local roles of the service providers of the component Web ser-
vices. [28] proposes an approach for specifying and enforcing
security policies. These are specified using a language called
WebGuard based on temporal logic and are processed by an
enforcement engine to yield site and platform-specific ac-
cess control. This code is integrated with a Web server and
platform specific libraries to enforce the specified policies
on a given Web service. [11] presents WS-AC1, an access
control model with flexible granularity in protecting objects
and negotiation capabilities. WS-AC1 is based on the spec-
ification of policies stating conditions on the values of the
identity attributes and service parameters that a client must
provide to invoke the service. Conditions may also be speci-
fied against context parameters, such as time. Further, it is
possible to define fine-grained policies by associating them
with a specific service as well as coarse-grained policies, to
be applied to a class of services. The negotiation capabilities
of WS-AC1 are related to both identity attributes and ser-
vice parameters. Through a negotiation process, the client is
driven toward an access request compliant with the service
description and policies.

The Semantic Web Service initiative has focused on richer
formalisms and description/specification languages for poli-
cies, based on specific ontologies for “security” [15], in order
to be able to match service and client requirements [19, 1]
during the discovery phase. Moreover, the concept of se-
mantic firewall has been introduced [5] as a component op-
erating on top of a traditional firewall, and able to reason
about the acceptability of messages on the basis of semantics
of policies.

All the previous proposals basically describe access con-
trol models: they are based on the enforcement of access
control policies stating the requirements to be satisfied by a
client to be granted access to a Web service. Since a Web
service can be invoked potentially by anyone, the require-
ments are expressed as conditions on the digital credentials
owned by a client. But none of them address the issue of
considering such conditions during the automatic synthesis

49

of composite Web services. On the other hand, a lot of
research has been conducted on automatic service composi-
tion, but up to know by considering only functional aspects
(i.e., operations and service behaviors). In order to compare
different approaches, in [8] a conceptual framework has been
introduced, by proposing a classification into two general
approaches: Service-tailored, the oldest one and considered
less flexible, and the Client-tailored, more recent but tech-
nically more difficult from a computational point of view..

In fact, much of the research on automatic service compo-
sition has adopted, up to now, a service-tailored approach.
For example, the works based on Classical Planning in AI
(e.g., [31], [13]) and the work of McIlraith et al. [20]. The
work by Hull et al. [14, 18] describes a setting where ser-
vices are expressed in terms of atomic communications that
they can perform, and channels that link them with other
services. The aim of the composition is to refine the behav-
ior of each service so that the conversations realized by the
overall system satisfy a given goal (dynamic property) ex-
pressed as a formula in linear time logic. Although possibly
more on choreography synthesis than on composition syn-
thesis, we can consider it a service-tailored approach, since
there is no effort in hiding the service details from the client
that specifies the goal formula.

Much less research has been done following a client-
tailored approach, but some remarkable exceptions should
be mentioned: the work of Knoblock at al. [22], the work of
Traverso et al. [29, 26, 25], and the line of research taken in
[7, 10], but also in [16], and in the present paper.

But, as already discussed, none of them considers secu-
rity, specifically access control and reputation, during the
automatic synthesis of composite Web services.

6. CONCLUSION
In this paper we studied how to synthesize a composi-

tion to realize a client service request expressed as a target
service, in the case where (i) available services are only par-
tially controllable (modeled as devilish nondeterminism) but
fully observable by the orchestrator, and (ii) access control
& authorization constraints, and reputation are taken into
account. We have shown that the problem is EXPTIME-
complete and we have given effective techniques to address
the problem based on PDL satisfiability. Our results extend
those in [10, 7], where only deterministic available services
where considered, and no security aspects were addressed.

We would like to remark the importance of considering
mutual reputation among services, as in dynamic environ-
ments, as those one targeted by Web service technologies,
not all available services may trust each others, neverthe-
less the composition should be possible, by exploiting all
available services in order to satisfy clients.

In future work, we will consider the issue of identifying
the minimal set of credentials that a client should hold in
order to find an orchestrator for its target service. This is
an important issue in real scenarios, as automatic composi-
tion should not impose unnecessary constraints on clients,
especially regarding security aspects. Moreover, on the basis
of an ongoing implementation of a composition engine8, we
plan to implement the proposed techniques into a prototype.

8cfr. the paride (Process-based frAmewoRk for composI-
tion and orchestration of Dinamyc E-Services) Open Source
Project: http://sourceforge.net/projects/paride/.

7. REFERENCES

[1] S. Agarwal, B. Sprick, and S. Wortmann. Credential
Based Access Control for Semantic Web Services. In
AAAI Spring Symposium Series, 2004.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.
Web Services. Concepts, Architectures and
Applications. Springer, 2004.

[3] C. Ardagna, E. Damiani, S. De Capitani di Vimercati,
and P. Samarati. A Web Service Architecture for
Enforcing Access Control Policies. In Proceedings of
1st International Workshop on Views on Designing
Complex Architectures, 2004.

[4] R. Ashri, G. Denker, D. Marvin, M. Surridge, and
T. Payne. Semantic Web Service Interaction Protocols:
An Ontological Approach. In Proc. 3rd Internation
Semantic Web Conference (ISWC 2004), 2004.

[5] R. Ashri, T. Payne, D. Marvin, M. Surridge, and
S. Taylor. Towards a Semantic Web Security
Infrastructure. In Proc. Semantic Web Services 2004
Spring Symposium Series, 2004.

[6] B. Benatallah, F. Casati, and F. Toumani. Web
Service Conversation Modeling: A Cornerstone for
e-Business Automation. IEEE Internet Computing,
8(1):46 – 54, 2004.

[7] D. Berardi, D. Calvanese, G. De Giacomo,
M. Lenzerini, and M. Mecella. Synthesis of
Underspecified Composite e-Services based on
Automated Reasoning. In Proc. of ICSOC 2004.

[8] D. Berardi, D. Calvanese, G. De Giacomo, and
M. Mecella. Automatic Web Service Composition:
Service-tailored vs. Client-tailored Approaches. In
Proc. AISC 2006, International Workshop jointly with
ECAI 2006.

[9] D. Berardi, D. Calvanese, G. De Giacomo, and
M. Mecella. Automatic Composition of Web Services
with Nondeterministic Behavior. Technical Report
TR-05-2006, Univ. Roma LA SAPIENZA,
Dipartimento di Informatica e Sistemistica, 2006.
Extended abstracts/short papers in Proc. ICSOC 2005
and in Proc. ICWS 2006.

[10] D. Berardi, D. Calvanese, G. D. Giacomo,
M. Lenzerini, and M. Mecella. Automatic Service
Composition based on Behavioral Descriptions.
International Journal of Cooperative Information
Systems, 14(4):333 – 376, 2005.

[11] E. Bertino, L. Martino, F. Paci, and A. Squicciarini.
An Adaptive Access Control Model for Web Services.
To appear on International Journal of Web Services
Research (JWSR), 2006.

[12] E. Bertino and R. Sandhu. Database Security –
Concepts, Approaches and Challenges. IEEE, 2005.

[13] J. Blythe and J. Ambite, editors. Proc. ICAPS 2004
Workshop on Planning and Scheduling for Web and
Grid Services, 2004.

[14] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
Specification: A New Approach to Design and
Analysis of E-Service Composition. In Proc. of WWW
2003.

[15] G. Denker, L. Kagal, T. Finin, M. Paolucci, and
K. Sycara. Security for DAML Web Services:
Annotation and Matchmaking. In Proc. of the 2nd

50

Internationl Semantic Web Conference (ISWC 2003),
2003.

[16] C. Gerede, R. Hull, O. H. Ibarra, and J. Su.
Automated Composition of E-Services: Lookaheads.
In Proc. ICSOC 2004.

[17] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic.
The MIT Press, 2000.

[18] R. Hull, M. Benedikt, V. Christophides, and J. Su.
E-Services: a Look Behind the Curtain. In Proc. of
PODS 2003, pages 1–14, 2003.

[19] L. Kagal, M. Paolucci, N. Srinivasan, G. Denker,
T. Finin, and K. Sycara. Authorization and Privacy
for Semantic Web Services. IEEE Intelligent Systems,
July/August, 2004.

[20] S. McIlraith and T. Son. Adapting Golog for
Composition of Semantic Web Services. In Proc. KR
2002.

[21] M. Mecella, M. Ouzzani, F. Paci, and E. Bertino.
Access Control Enforcement for Conversation-based
Web Services. In Proc. of the 15th International World
Wide Web Conference, Edinburgh, UK, May 2006.

[22] M. Michalowski, J. Ambite, S. Thakkar, R. Tuchinda,
C. Knoblock, and S. Minton. Retrieving and
Semantically Integrating Heterogeneous Data from the
Web. IEEE Intelligent Systems, 19(3):72–79, 2004.

[23] A. Muscholl and I. Walukiewicz. A Lower Bound on
Web Services Composition. Submitted, 2006.

[24] S. Paurobally and N. R. Jennings. Protocol
Engineering for Web Services Conversations.
Engineering Applications of Artificial Intelligence, 18,
2005.

[25] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso.
Automated Composition of Web Services by Planning
at the Knowledge Level. In Proc. of IJCAI 2005, 2005.

[26] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi.
Automated Synthesis of Composite BPEL4WS Web
Services. In Proc. of ICWS 2005, 2005.

[27] K. E. Seamons, M. Winslett, and T. Yu. Limiting the
Disclosure of Access Control Policies during
Automated Trust Negotiation. In Proceedings of the
Network and Distributed System Security Symposium,
San Diego, California, USA, 2001.

[28] E. Sirer and K. Wang. An Access Control Language
for Web Services. In Proc. ACM SACMAT, 2002.

[29] P. Traverso and M. Pistore. Automated Composition
of Semantic Web Services into Executable Processes.
In Proc. ISWC 2004.

[30] R. Wonohoesodo and Z. Tari. A Role based Access
Control for Web Services. In Proc. SCC 2004, 2004.

[31] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau.
Automating DAML-S Web Services Composition
using SHOP2. In Proc. ISWC 2003.

51

