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Abstract

The present paper is interested in the following decision problems: (1) given finite frames 7, 7', determine
if there exists a frame F'' such that F and ' ® F'"', the synchronous product of 7/ and F", are bisimilar;
(2) given finite frames F, 7', determineif there exists a frame " such that F and 7’ @F", the asynchronous

product of ! and F'| are bisimilar. Tt shows that variants of the filtration method are adequate for solving
them.
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1 Introduction

Multifarious controller synthesis problems, as introduced by Maler et al. [11] and
Ramadge and Wonham [14], amount, given finite transition systems §,S’, to deter-
mine if there exists a transition system & such that § and §’'® 8", the synchronous
product of &’ and 8", are equivalent. The role of 8" is to restrict the behaviours
of §’. Hence, in this setting, S, &’ and §” can be respectively seen as the control
objective, the reactive system to be controlled and the controller whereas &’ @ S§”
denotes the restricted system. Controller synthesis problems arise in a variety of
contexts ranging from computer operating systems to complex multimode processes.
The exponential-time method proposed by Arnold et al. [3] to solve them consists

©2009 Published by Elsevier Science B. V.
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in transforming them into formula satisfiability problems in p-calculus [2].

Several orchestrator synthesis problems, as introduced by Berardi et al. [4] and Be-
rardi et al. [5], amount, given finite distributed systems S, S’, to determine if there
exists a distributed system S§” such that § and §'@ 8", the asynchronous product of
S"and 8", are equivalent. The role of §” is to enhance the behaviours of §’. Hence,
in this setting, §, &’ and §” can be respectively seen as the orchestration objective,
the reactive system to be orchestrated and the orchestrator whereas §'@ 8" denotes
the enhanced system. Orchestrator synthesis problems arise in a variety of contexts
ranging from service oriented computing to ambiant intelligence. The exponential-
time method proposed by Berardi et al. [6] to solve them consists in transforming
them into formula satisfiability problems in propositional dynamic logic [10].
Transition systems and distributed systems can be abstracted as frames. Hence, the
present paper is interested in the following controller /orchestrator synthesis prob-
lems: (1) given finite frames F, ', determine if there exists a frame F" such that F
and F' @ F", the synchronous product of F’ and F”, are bisimilar; (2) given finite
frames F, F', determine if there exists a frame F" such that 7 and F'@F”, the asyn-
chronous product of 7" and F", are bisimilar. Tt is probably correct to say that these
decision problems are motivated more by model-theoretic and complexity-theoretic
characteristics than by tools for the philosophical analysis of modal concepts. Nev-
ertheless, there are various reasons to believe that they are very similar to the
formula satisfiability problems traditionally considered in modal logic.

What the present paper shows is that variants of the filtration method are adequate
for solving them, i.e. we will use these variants to give exponential-time algorithms
for solving our controller/orchestrator synthesis problems. Its section-by-section
breakdown is as follows. Section 2 establishes the concepts of frame, bisimulation,
synchronous product and asynchronous product. In section 3, basic definitions con-
cerning the controller synthesis problem and the orchestrator synthesis problem are
given. Based on variants of the filtration method, ways of solving both problems are
presented in sections 4 and 5. Section 6 studies variants of our synthesis problems.
We assume the reader is at home with tools and techniques in modal logic. For
more on these see [7].

2 Basic notions

This section presents the basic notions needed to introduce the controller synthesis
problem and the orchestrator synthesis problem.

2.1 Frame

Let PG be a set of program variables (with typical members denoted a, b, etc). A
frame over PG is a structure of the form F = (W, R) where W is a nonempty set
of states (with typical members denoted z, y, etc) and R is a function from W2
to 2P¢. The set W of states is to be regarded as the set of all possible states in a
computational process whereas the function R from W? to 27 associates with each
pair of states a set of program variables with ¢ € R(z,y) meaning that state y can
be reached from state z by performing program a. In this paper, we shall always

consider that there exists a root zy € W such that for all 2 € W, there exists a

2
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nonnegative integer n and aq,...,a, € PG such that z can be reached from z( by
performing programs aq, ..., a,. For all « € PG, let R, C W X W be the binary
relation such that for all z,y € W,

sz R, yiffa € R(z,y).

F is said to be finite iff W is finite. We shall say that F is deterministic iff for all
z € W, for all « € PG, the set of all y € W such that 2 R, y has cardinality 0 or 1
whereas we shall say that F is serial iff for all x € W, for all @ € PG, the set of all
y € W such that 2 R, y has cardinality 1 or more. F is said to be an equivalence
frame iff for all « € PG, R, is reflexive, symmetrical and transitive. We shall say
that F is reflexive (respectively: symmetrical, transitive) iff for all @ € PG, R, is
reflexive (respectively: symmetrical, transitive).

2.2 Bisimulation

Let F = (W, R), F' = (W', R') be frames over PG. A binary relation Z C W x W'
is called a bisimulation between F and F’, in symbols Z: F «+— F' iff for all z €
W, for all ' € W', if  Z 2’ then

e for all @ € PG, for all y € W, if 2 R, y then there exists y' € W' such that 2’
R,y and y Z o,

o forall @ € PG, for all y' € W' if ' R', y' then there exists y € W such that =
R,yandy Z ¢

If z € W, 2" € W’ are such that # 7 2’ then we say that z and 2z’ are bisimilar,
in symbols 7: F,z +— F',2'. If x € W, 2’ € W’ are such that there exists
a bisimulation 7 between F and F’ such that Z: F,z «— F' 2’ then we write
F,x +— F' z'. 1t is a well-known fact that the following decision problem is in
PTIME:

* Given a finite set PG of program variables, finite frames F = (W, R), F' =
(W', R") over PG, roots g € W, 2’y € W', determine whether F, z¢ «— F’, 2.

See [1] for details.

2.3 Synchronous product and asynchronous product

Let 7 = (W,R), F' = (W', R') be frames over PG. By F @ F', we denote the
synchronous product of F and F’, i.e. the frame F” = (W", R") over PG where

s W'=W x W',

¢ R" is the function from W”? to 2PC such that for all (z,2), (y,y) € W",
R"((z,2"), (y,y')) is the set of all @ € PG such that a € R(z,y) and a € R'(2',y').

Let G = (V,F), G = (V', E') be frames over PG, g € W, 2'g € W', vg € V, /g €
V' be roots. The proof of the following lemma is left to the reader.

Lemma 2.1 If F,zg <— G,v9 and F' 2’y «— G’ v’y then F @ F', (z¢,2'y) +—
G ®§', (vo,v).

By F & F', we denote the asynchronous product of F and F’, i.e. the frame F"
= (W", R") over PG where
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. W= W W,
* R" is the function from W"* to 2F% such that for all (z,z'), (y,y") € W,

R"((z,2"), (y,v')) is the set of all @ € PG such that a € R(z,y) and 2’ = ¥/
orz=yand a€ Rz y).

Let G = (V,F),G = (V', E') be frames over PG, g € W, 2’y € W', vy € V, vy €
V' be roots. The proof of the following lemma is left to the reader.

Lemma 2.2 [f F 2y «— G,vg and F' 2’y «— G', v’y then F & F', (z¢,2'y) —

g S gl7 (U()v UIO) 4

3 Controller synthesis and orchestrator synthesis

This section presents our controller /orchestrator synthesis problems. Let us consider
a finite set PG of program variables.

3.1 Decision problems

Let F = (W, R), F' = (W', R') be finite frames over PG, zo € W, 2’y € W' be roots.
Given a frame F" = (W' R") over PG, a root 2y € W' we say that (F",z"y)
controls (F', z'y) within (F,z¢) iff F,2¢ «— F' @ F", (2'g,2"y). The synthesis of
controllers is the following decision problem:

(SC) Given a finite set PG of program variables, finite frames F = (W, R), F' =
(W', R") over PG, roots zg € W, 2’y € W', determine whether there exists a
frame F" = (W", R") over PG, a root z"y € W" such that (F”, z") controls
(F' 2'y) within (F, zg).

Given a frame F" = (W" R") over PG, a root z''g € W', we say that (F",z")
orchestrates (F', 2'o) within (F, zo) iff F, 29 ¢«— F' '@ F", (2o, 2"). The synthesis
of orchestrators is the following decision problem:

(SO) Given a finite set PG of program variables, finite frames F = (W, R), ' =
(W', R") over PG, roots zg € W, 2’y € W', determine whether there exists a
frame F" = (W", R") over PG, a root z"y € W' such that (F", z"y) orchestrates
(F' z'y) within (F, zg).

(SC) and (SO) are deeply related to several important topics considered in the
theory of controller synthesis [3,11,14] and in the theory of orchestrator synthe-
sis [4,5,6]. In the theory of controller synthesis, the basic problem is to restrict, by
means of a controller, the behaviours of a given transition system, the reactive sys-
tem to be controlled, so that it satisfies the given control objective. In the theory of
orchestrator synthesis, the basic problem is to enhance, by means of an orchestrator,
the behaviours of a given distributed system, the multiagent system to be orches-
trated, so that it satisfies the given orchestration objective. In [3] and [6], methods
consisting in transforming every instance of the controller synthesis problem or the
orchestrator synthesis problem into an instance of the formula satisfiability problem
in p-calculus or the formula satisfiability problem in propositional dynamic logic are
proposed. What sections 4 and 5 show is that alternative methods based on variants
of the filtration method are adequate for solving (SC) and (SO).

4
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3.2 Bisimulations and products

Let 7/ = (W{,R]), FY = (WY, RY) be frames over PG, 2z} € W/, 2% ¢ WY
be roots. The following lemma demonstrates that control and orchestration are
invariant under bisimulations.

Lemma 3.1 If F{', 2! «— FJ zl then for all finite frames F = (W,R), F' =
(W', R") over PG, for all roots zqg € W, z'q € W',

o (FI',z) controls (F',z'y) within (F,zo) iff (FY,24) controls (F' 2'y) within
(‘7:7 xo),

o (Fi',zY) orchestrates (F',z'y) within (F,zo) iff (FY,zY) orchestrates (F', z'y)
within (F, zo).

Proof. By lemmas 2.1 and 2.2. O

We say that

o Fi' 2% and FJ, z} are control-equivalent, in symbols F{' 2! =. FJ, 24, iff for all

finite frames 7 = (W, R), F' = (W', R') over PG, for all roots 2y € W, 2/y €
W', (FY, ') controls (F', z'o) within (F,zo) iff (F}/, 2}) controls (F’, z’y) within
(fa '7;0)3

o F{' 2} and FY, Y are orchestration-equivalent, in symbols F{', ! =, FY z}, iff
for all finite frames F = (W, R), 7' = (W', R') over PG, for all roots zg € W,
z'y € W', (FJ, z) orchestrates (F', 2'y) within (F,z¢) iff (FY, 24) orchestrates

(F' 2'y) within (F, zg).

The Hennessy-Milner theorem [7] states that modally equivalent image-finite mod-
els are bisimilar. The following lemmas show that control-equivalent frames are
bisimilar and orchestration-equivalent frames are bisimilar.

Lemma 3.2 If F{' 2 =, FY, 2 then F{', 2 «— FI z}.
Proof. Suppose that 7' = (W', R') is a finite frame over PG, 2’y € W' is a root

such that

¢ R'is the function from W'? to 2P such that
- for all @ € PG, for all ',y € W', 2" R, y'.

The reader may casily verify that F{,z{ s F' @ F{, (0, {) and F§, 2§
F' @ Fy, (20, 2Y). Hence, F|' 2 +— FI zl. :

Lemma 3.3 If F|' 2 =, FY, ¥ then F{' 2 «— Fi «f.
Proof. Suppose that 7' = (W', R') is a finite frame over PG, 2’y € W' is a root

such that

o R'is the function from W'% to 2°C such that
- for all @ € PG, for all 2,y €¢ W/, not 2’ R, v'.

The reader may easily verify that 7} 2{ «— F' & F/, (2o, z{) and FY 2] +—

! 11 I " 11 " 11 "
F'a FY, (a0, 2Y). Hence, F Y «— FjJ . O

5
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3.3 Deterministic/serial frames

Suppose that we are given finite frames 7 = (W, R), 7' = (W', R') over PG, roots
zg € W, 2’y € W'. The following lemma shows that determining whether there
exists a controller of (F', 2'y) within (F, z¢) becomes easier if F is deterministic or
F'is deterministic.

Lemma 3.4 If F is deterministic or F' is deterministic then there exists a frame
F" = (W", R") over PG, a root 2"y € W" such that (F",z") controls (F', z'y)
within (F, zo) iff (F,z0) controls (F',z'y) within (F,zo).

Proof. Let 7" = (W" R") be a frame over PG, 2y € W" be a root such that
(F",z"y) controls (F',z'y) within (F,zo). Hence, there exists a bisimulation Z
between F and F' x F" such that 7Z: F,zq «— F' @ F" (z'0,2"0). Let Z° C
W x (W' x W) be the binary relation such that for all z; € W, for all (z/,z2) €
W!'x W, zy Z° (', z2) iff there exists 2 € W, there exists z” € W such that 2y =
z, 2y =z and z 7 (2',2"). We demonstrate that 7°: F «— F' @ F. Let 2, € W,
(2',29) € W' x W be such that z; Z° (2', 24).

Let a € PG, y € W be such that 2y R, y. Since 2y Z° (z’,23), then there exists
z € W, there exists 2”7 € W” such that y = z, 2z, = z and z Z (2/,2"). Since =z,
R, y, then 2 R, y. Since 29 = z, then z9 R, y. Since 2 R, y and z Z (2',z"),
then there exists (y/,y"”) € W/ x W" such that 2’ R, ¢/, 2" R", y" and y Z (v, y").
Hence, y 7*° (v, y).

Let a € PG, (y',y) € W' x W be such that 2’ R, y" and zy R, y. Since z; Z*
(', z2), then there exists z € W, there exists 2" € W such that 1 = z, 29 = z
and z 7 (z',z"). Since z2 R, y, then 2 R, y. Since z1 = z, then 21 R, y. Since z
Z (a',2"), then there exists (2/,z") € W' x W" such that 2’ R, 2/, 2" R", 2" and
y 7 (2,2"). Since 2’ R', y' and z Z (2',2"), then there exists z € W such that z
R, z and z Z (y',2"). If F is deterministic then y = z. Since z Z (v, z""), then y
7% (y',y). If F'is deterministic then y' = 2’. Since y 7 (2/,2"), then y Z* (y',y).O

As a result,

Proposition 3.5 If one considers instances (PG, F,F' xo, ') of (SC) such that
F is deterministic or F' is deterministic then (SC) is in PTIME.

The following lemma shows that determining whether there exists an orchestra-
tor of (F',2'y) within (F,zo) becomes easier if F is serial or F’ is serial.

Lemma 3.6 If F is serial or F' is serial then there exists a frame F" = (W" R")
over PG, a root 2"o € W" such that (F",z"0) orchestrates (F',a'o) within (F, zo)
iff (F,zo) orchestrates (F',z'y) within (F,zg).

Proof. The proof is similar to the proof of lemma 3.4. O

As a result,

Proposition 3.7 If one considers instances (PG, F,F' zo,2'g) of (SO) such that
F is serial or F' is serial then (SO) is in PTIME.

6
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4 Deciding (SC)

In this section, we show that (SC) is in EXPTIME. We demonstrate the existence
of an FXPTIMFE algorithm using filtration.

4.1 Synchronous filtration

We now establish a simple algorithm for solving (SC'). This simple algorithm is
based on a variant of the filtration method [7]. Suppose that we are given a finite
set PG of program variables, finite frames 7 = (W, R), 7' = (W', R') over PG,
roots g € W, 2’y € W'. Let F" = (W", R") be a frame over PG, z"y € W" be a
root such that F,z¢ «— F' @ F", (z'y,2"y). Hence, there exists a bisimulation 7
between F and F' @ F" such that zo Z (2'g,2"). Let = C W"” x W” be the binary
relation such that for all 2,z € W",

o o =l iffforall 2 € W, forall 2’ € W', 2 Z (2/,2)) iff 2 Z (2/, 2%).

Note that = is an equivalence relation. Let z” € W”. The set of all states in W”
equivalent to " modulo =, in symbols | 2" |, is called the equivalence class of z"
in W"” modulo = with 2" as its representative. The set of all equivalence classes
of W” modulo =, in symbols W"/ =, is called the quotient set of W" modulo =.
Suppose that F/ = (W/, R/) is a frame over PG such that

e W/ =Ww"/ =,

o R is a function from W/* to 2P¢ such that
- for all @ € PG, for all z”,y" € W", if there exists 2/, t"” € W' such that 2" =
2 y" =" and 2" R, t" then | 2" | R/, |y |,
- for all @ € PG, for all 2", y" € W",if | 2" | Rf, | y" | then for all z € W, for
all 'y e W if 2’ R'y o' and o Z (2',2") then there exists y € W such that
z Ry yandy Z (v, y").

Then F/ is called a filtration of F” through F and F’. Remark that Card(W/) <
9Card(W)xCard(W') et 7/ C W x (W' x W) be the binary relation such that for
all z € W, for all (/)| 2" |) € W x W/, o ZF (a!,| 2" |) iff 2 Z (2/,2"). It is a
simple matter to check that

Lemma 4.1 Z/: F «— F'o F/.

Proof. Let z € W, (z/,] 2" |) € W/ x W/ be such that z Z/ (2/,| 2" |). Hence, z
Z (!, 2").

Let a € PG,y € W be such that z R, y. We demonstrate that there exists (y/,| y” |)
€ W' x W/ such that 2’ R, 3, | 2" | R, | y" | and y Z7 (y',] y" |). Since z Z
(2',2"), then there exists (y',y"”) € W' x W" such that 2’ R, ¢/, 2" R", y"” and y
Z (y',y"). Hence, there exists (y/,| v |) € W' x W/ such that o' R, ¢/, | =" | R/,
|y" |and y Z7 (y/,] y" |).

Let a € PG, (y',|y"|) € W' x W/ be such that o’ R, y' and | 2" | Rf, | y" |. We
demonstrate that there exists y € W such that z R, y and y Z4 (', y" |). Since z
7 (z',2"), then there exists y € W such that 2 R, y and y 7 (y',y"). Hence, there
exists y € W such that = R, y and y Zf (¢, | v" |). O

Hence,
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Lemma 4.2 F, 1z +— F' @ F/, (2o, 2"0 ).

There are at least two ways to define functions R/ from W#? to 2PC that fulfil
the required conditions. Define the functions R{nf and Rgup from Wf2 to 2PC as
follows:

o for all @ € PG, for all | 2" |,|y" | € W/, a € R{nf(| " |,| y" |) iff there exists
2" € W' such that 2" = 2",y =" and a € R"(Z",t"),

e forall a € PG, forall | 2" |,|y" | € W/, a € Rlyp(| 2" |, y"]) iff for all 2 € W,
for all 2’,y" € W' if a € R'(2',y’) and 2 Z (2',2") then there exists y € W such
that @ € R(z,y) and y Z (v, y").

Lemma 4.3 sznf and R;’up satisfy the two conditions of a filtration.

Proof. By definition, R{nf satisfies the first condition of a filtration.
Let a € PG, z",y" € W" be such that | 2 | Rf ., |y |. We demonstrate that for

n
all z € W, for all o',y € W', if 2/ R, v and 2 ga(m’,:v”) then there exists y € W
such that z R, y and y Z (y',y"). Let x € W, 2’,y' € W' be such that 2’ R, ¢/
and z Z (z2',2"). Since | 2" | sznfa | ¥ |, then there exists 2”,#"” € W" such that
" = 2" y" =t" and a € R"(2",t"). Since z Z (a',2"), then « Z (2',2"). Since
' R'y y' and a € R"(2",¢"), then there exists y € W such that z R, y and y Z
(y',t"). Since y" = t", then y Z (y',y").
Let a € PG, 2", y" € W' be such that there exists z”,t" € W' such that 2" = 2",
y" =t" and 2" R", t". We demonstrate that | 2" | Rﬁupa |y |. Let z € W, z',y/
€ W' be such that « € R'(2',y') and 2 Z (2',2"). Since 2" = 2", then 2 Z (', 2").
Since @ € R'(2',y’) and 2" R", t”, then there exists y € W such that a € R(z,y)
and y Z (y',t"). Since y" = t", then y Z (y',y").
By definition, Rfup satisfies the second condition of a filtration. a

Lemma 4.4 Forall | 2" |,|y" | € W/, sznf(| "1 y" ) C Rl (|2 1,y ).

Proof. Let a € PG be such that a € R{nf(| " |, y" |). We demonstrate that «

€ Riup(| 2" [ y"]). Let 2 € W, 2’y € W' be such that « € R'(2',y') and 2 Z
(z',2"). We demonstrate that there exists y € W such that « € R(z,y) and y Z
(v',y"). Since a € R{nf(| " |,| y" |), then there exists 2" t" € W' such that z”
=2" y" =t"and a € R"(z",t"). Since z Z (2/,2"), then z Z (2/,z"). Since a €
R'(z',y") and a € R"(2",¢"), then there exists y € W such that « € R(z,y) and y
Z (y',t"). Since y” = t", then there exists y € W such that a € R(z,y) and y 7

W', y"). O

From the discussion above, it follows that the functions R{nf and Rﬁtup from VVf2
to 2P9 give respectively rise to the least filtration .7-'Z-J;f = (W/, R{nf) of 7" through
F and F' and the greatest filtration fsfup = W/, Riup) of 7" through F and F'.

4.2 Complexity of (SC')

In this section, we show how the synchronous filtration can be used for deciding

(SC).
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4.2.1 A nondeterministic exponential-time algorithm

For our purpose, the crucial property of the above notion of synchronous filtration
is the following: Card(W/) < 9Card(W)xCard(W') " Hence, we can give a simple
algorithm for solving (SC'): guess a frame F” = (W" R") over PG such that
Card(W") < 20ardW)xCard(W') " gyess a root 2”9 € W” and determine whether
F,zg — F' @ F" (20,2"y). Not surprisingly, the above algorithm returns the
value true iff there exists a frame F" = (W", R") over PG, a root 2"y € W such
that F,zq «— F' '@ F" (2'0,2"). Seeing that determining whether F, zq +—
F'@ F", (z'y,2"y) can be done in polynomial time [1], it follows immediately that

Proposition 4.5 (SC) is in NEXPTIME.

4.2.2 A deterministic exponential-time algorithm

The truth of the matter is that (SC') isin EXPTIME. This can be proved as follows.
Suppose that we are given a finite set PG of program variables, finite frames F =
(W, R), F' = (W', R') over PG, roots zg € W, 2’y € W'. Let F"' = (W",R") be a
frame over PG, 2"y € W' be a root such that F,zg «— F' @ F", (2'0,2"y). Hence,
there exists a bisimulation 7 between F and F'® F" such that zq Z (z'g,2"g). Let
f be the function from W” to 2%V *W' such that for all 2/ € W”,

o f(2") =A{(z,2") e Wx W'z Z (")}

By definition, for all z{,z% € W", if f(2}) = f(2}) then z{ = 2. Suppose that
FH = (WIS RITY is the frame over PG such that

o« W= fmy,

o RIfis the function from W/f* to 2PG such that
- for all @ € PG, for all z”,y" € W", f(z") R/, f(y") iff for all z € W, for all
oy e Wit 2" Ry y' and o« Z (2',2") then there exists y € W such that
R, yand y Z (v, y").

Let 25/ C W x (W' x W/) be the binary relation such that for all z € W, for all
(', f(a™) e W x WH z 7205 (2, f(a™)) iff = 27 (2!, ] 2" |). 1t is a simple matter
to check that

Lemma 4.6 Z//: F «— Flo FI/1,
Proof. By lemmas 4.1 and 4.3. O

Hence,
Lemma 4.7 F,zq «— F' @ FI/, (2’0, f(2"y)).

We now construct a sequence F' = (Wi, Ri), 1 > 0, of frames over PG approx-
imating /Y = (W//, R/} and a sequence Z' C W x (W' x W*), i > 0, of binary
relations approximating Z//.

Let 7O = (W° R") be the frame over PG such that
. WO — QWXW'

¢ RYis the function from W% to 2P°Y such that
- for all @ € PG, for all 2%,y € WP, 2° RY, y° iff for all z € W, for all 2/, 3y’ €
W' if 2’ R', y' and (z,z') € z° then there exists y € W such that = R, y and

9
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v,y €y,
Z9 C W x (W' x WY) be the binary relation such that for all z € W, for all (27, zY)
e W' x WO z Z° (2/,2°) iff (z,2') € 2°.
Secondly, for all i > 0, let Wi, = {2' € W*': there exists a € PG,z € W, 2’ € W/,
y € W such that 7' (2',2%), 2 R, y and for all y/ € W', for all y* € W, if 2/ R/,
y' and z* R', y* then not y Z' (y/,y)}, WL = {x' € W': there exists a € PG, =
eW,zl e W,y € W,y € Wisuch that z 7 (2/,2%), 2' R', v/, ' R', y* and
forall y € W, if z R, y then not y Z° (y/,y")}, F't! = (Wit R*F1) be the frame
over PG such that
o« W= W\ (WL UWL),
e R*!is the function from Wit'? to 2PF such that
- for all @ € PG, for all z't1 ytl € Witl i+l R o+l iff for all € W, for
all 2,y € W', if 2/ R'; y' and (z,2') € ' then there exists y € W such that
z Ry yand (y,y) € y'tt,

ZH C W x (W' x With) be the binary relation such that for all z € W, for all
(2!, 2 ) € W/ x Wit o 741 (2! ot 1) iff (2,2") € 2*Fh

Lemma 4.8 Forallt > 0,

« Wi Cwi

o for all 21 y/f e wit, Rff(xff’yff) C Ri(xff’yff),
o 71 C 7t

Proof. The proof is by induction on i > 0. As the reader is asked to show, W/ C
WO, for all 2/f y/f e WII RIS (24f,y/Fy C RO(21,yf) and 75/ C 70 Tet i > 0
be such that W/ € Wi, for all 24/, y/f ¢ WS R (2 y/Fy C R/, y?f) and
z15 C 7. We demonstrate that W/ C Wit! forall o// y/f e WH RIS (28] y/T)
C R+ (ol 1) and 201 C 7+,

Let z/f € W/I If off ¢ Wit! then zff € Wi, or 2ff € WL. If 2/f € WZ, then
there exists « € PG,z € W, 2’ € W', y € W such that ¢ Z* (2/,2/7), 2 R, y and
for all y' € W', for all y* € W*, if ' R, v and z// R', y' then not y Z° (y/,y").
Since z Z° (2!, 24f), then (z,2') € 2/, Hence, z Z4J (2',277). Since 2 R, y, then
there exists y' € W', y* € W¢ such that 2’ R, ' and 2/ R, y' and y Z// (y',y).
Hence, (y,y') € y'. Hence, y Z* (y',y'): a contradiction. If z// € WL then there
exists a € PG,z € W, o' €¢ W',y € W', y' € W' such that « Z° (', 2//), 2/
Ryy, 2/l R,y and for all y € W, if 2 R, y then not y Z° (y',y"). Since z Z*
(2!, x77), then (z,2') € 2/, Since 2’ R, y' and 2// R, y*, then there exists y €
W such that 2 R, y and (y,y’) € y'. Hence, y Z* (y',y*): a contradiction.

Let a € PG be such that 2// RIS, y//. We demonstrate that 2// R, y//. Let
€ W, 2!,y € W', be such that 2’ R', y' and (z,2') € 2//. Hence, z Z// (2',29/).
Since ' R, v' and 2/f RIS, y// then there exists y € W such that z R, y and y
71y yf ). Hence, (y,9') € y//. Hence, 2/ RH, y//.

Let z € W, (2, 2/f) € W' x W'/ be such that = Z// (', 2//). We demonstrate
that = Z'*! (2/,2ff). Since z Z44 (a/,2/7), then (z,2') € 2f/. Hence, z Z+!
(2!, z41). O

10
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It follows that there exists 7o > 0 such that
Lemma 4.9 Z0: F ¢« F'@ Fio,

Proof. Since W9 is finite and for all i > 0, W' C W*, then there exists ig > 0
such that Wi+l = W, Since for all i > 0, W// C W', then W is nonempty.
Hence, Fio = (Wi, Rio) is a frame over PG. Since W+l = Wio then W = ()
and WZ_O = (. Hence, Z%: F +— F' @ F'. a

Hence,
Lemma 4.10 F,zy «— F' @ F'o, (2’0, f(2"0))-

The above construction has the following property. When applied to an arbitrary
finite set PG of program variables, arbitrary finite frames 7 = (W, R), 7' = (W', R')
over PG, arbitrary roots zg € W, 2’y € W', it stops with a frame F = (Wio, R')
over PG and a binary relation Z% C W x (W' x W) such that if W # () then
Zio: F +— F'® F. Hence, we can give a simple algorithm for solving (SC):

e Forall i > 0, construct the frame F* = (W*, R") over PG and the binary relation
7P C W x (W' x WZ) as above until if W' # () then 7%: F +— F' @ F'.

Not surprisingly, the above algorithm returns the value true iff there exists a frame
F'" = (W" R") over PG, a root 2" € W' such that F,zq «— F' @ F", (29, 2"0).
Seeing that F° and ZY can be constructed in exponential time and for all + > 0,
Fitland 7! can be constructed in time polynomial in the size of F* and 7%, it
follows immediately that

Proposition 4.11 (SC) is in EXPTIME.

5 Deciding (SO)

In this section, we show that (SO) is in EXPTIME. We demonstrate the existence
of an EXPTIMFE algorithm using filtration.

5.1 Asynchronous filtration

We now establish a simple algorithm for solving (SO). This simple algorithm is
based on a variant of the filtration method [7] similar to the one used in section 4.1.
Suppose that we are given a finite set PG of program variables, finite frames F =
(W,R), F' = (W', R') over PG, roots zg € W, 2o € W'. Let F"" = (W", R") be a
frame over PG, 2o € W' be a root such that F,zq +— F' & F", (2'g,2"y). Hence,
there exists a bisimulation 7 between F and F' & F" such that zg 7 (z'g,2").
Defining 7/ = (W/, R/) and Z/ C W x (W' x W/) as in section 4.1 aside from
the fact that the conditions put on the function R/ from W1 to 2P are now the
following:

o forall @ € PG, for all 2",y € W, if there exists 2", € W such that 2" = 2",
y" =t" and a € R"(2",1") then a € RY(| 2" |,| y" |),

o forall @ € PG, for all 2”,y" € W" if a € Rf(| 2" |,| y" |) then for all z € W, for
all ',y € W' if 2/ = y' and 2 Z (2/,2") then there exists y € W such that a €

11
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R(z,y) and y 7 (v, y"),

it is a simple matter to check that
Lemma 5.1 Z/: F «— F'g F/I.
Proof. The proof is similar to the proof of lemma 4.1. a

Hence,
Lemma 5.2 F, 2 «— F' & F/, (2o, 2"0 ]).

As in section 4.1, there are at least two ways to define functions R/ from wi?
to 2P°G that fulfil the required conditions:

o for all @ € PG, for all | 2" |,|y" | € W/, a € sznf(| " || y"|) iff there exists
2" € W' such that 2" = 2",y =" and a € R"(Z",t"),

e forall a € PG, forall | 2" |,|y" | € W/, a € Rlyp(| 2" |, y"]) iff for all 2 € W,
for all 2,y € W', if 2/ = y' and z Z (2',2") then there exists y € W such that
a € R(z,y)and y Z (y',y").

Lemma 5.3 sznf and Rgup satisfy the two conditions of a filtration.

Proof. The proof is similar to the proof of lemma 4.3. O
Lemma 5.4 For all | o || y"| € W/, & (12" |, y" |) € Rhup(| 2" |,] 4" ).
Proof. The proof is similar to the proof of lemma 4.4. a

From the discussion above, it follows that the functions R{nf and Rﬁtup from VVf2
to 2P% give respectively rise to the least filtration ]—'Z-J;f = (W/, sznf) of 7" through
F and F' and the greatest filtration Ff,, = (W/, RL,,) of F through F and F'.

5.2 Complezity of (SO)

In this section, we show how the asynchronous filtration can be used for deciding

(50).

5.2.1 A nondeterministic exponential-time algorithm

For our purpose, the crucial property of the above notion of synchronous filtration
is the following: Card(W/) < 2CerdW)xCard(W') = Hence, we can give a simple
nondeterministic exponential-time algorithm for solving (SO) similar to the one
considered in section 4.2.1.

Proposition 5.5 (SO) is in NEXPTIME.

5.2.2 A deterministic exponential-time algorithm

The truth of the matter is that (SO) is in EXPTIME. This can be proved in a way
similar to the one followed in section 4.2.2. Defining F// = (W// R/} and Z//
C W x (W' x W//) as in section 4.2 aside from the fact that the definition of the
function R/ from W/#? to 2P is now the following:

12
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o for all @ € PG, for all 2" y" € W", f(z") R, f(y") iff for all 2 € W, for all
oy e Wif o' =y and o Z (a',2") then there exists y € W such that z R, y
and y 7 (y',y"),

it is a simple matter to check that

Lemma 5.6 Z//: F «— F'a F//.

Proof. The proof is similar to the proof of lemma 4.6. a
Hence,

Lemma 5.7 F,zy +— F' @& F (2o, f(2")).

We now construct a sequence F* = (Wi R'), i > 0, of frames over PG approx-
imating F// = (W/f R//) and a sequence Z! C W x (W' x W*), i > 0, of binary
relations approximating Z//.

Let F° = (W° R®) be the frame over PG such that
. WO — 2W><W'

b
o RYis the function from W° to 2P% such that

- for all @ € PG, for all 2°,3° € WO, 2% R, 4* iff for all z € W, for all 2',y' €
W' if ' = y' and (z,2') € 2" then there exists y € W such that z R, y and

(v, 9) € 9°,
70 C W x (W' x W0 be the binary relation such that for all z € W, for all (z/,z°)
eW' x WO z Z° (a!,2°) iff (z,2') € a®.
Secondly, for all i > 0, let W%, = {2 € W*': there exists a € PG, z € W, 2’/ € W/,
y € W such that z Z* (2/,2%), 2 R, y and for all y' € W', for all y' € W', if 2’ R/,
y and ' = y* or 2’ = y' and 2* R, y* then not y Z° (v',y")}, WL = {z' €¢ W&
there exists @« € PG,z € W,z' e W',y € W',y € W' such that z 7" (2/,2"), 2’
R'_a Y and zt = y' or ac’_: y' and z R, y* and for all y € W, if R, y then not y
Z' (y',yh)}, FH = (W R be the frame over PG such that
o W = Wi\ (W, UWL),
o R*!is the function from Wit'? to 2PF such that
- for all @ € PG, for all x'*1 yitl ¢ Witl gitl gitl i+l iff for all 2 € W, for
all 2’ y' € W', if ' =y and (z,2') € 2**! then there exists y € W such that
z Ry yand (y,9y) €y,
ZHE C W x (W' x W) be the binary relation such that for all z € W, for all
(2!, 2 € W/ x WL o 741 (2! 2'Y) iff (z,2') € 2*FL.
Lemma 5.8 For alli > 0,
e Wi cwi
o for all a4,y € WI, RIF(@IT yIf) € Ri(al!,yl)),
. 715 C 7,

Proof. The proof is similar to the proof of lemma 4.8. O

It follows that there exists 79 > 0 such that

13
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Lemma 5.9 Z%: F «— F'q Flo,
Proof. The proof is similar to the proof of lemma 4.9. a

Hence,
Lemma 5.10 F,zg +— f’@f’io, (2o, f(2")).

The above construction has the following property. When applied to an arbitrary
finite set PG of program variables, arbitrary finite frames 7 = (W, R), 7' = (W', R')
over PG, arbitrary roots zg € W, 2’y € W', it stops with a frame F = (Wio, R')
over PG and a binary relation Z% C W x (W' x W) such that if W™ # () then
Zio: F +— F'@ Fo. Hence, we can give a simple algorithm for solving (SO):

e Forall i > 0, construct the frame F* = (W*, R*) over PG and the binary relation
7P C W x (W' x W") as above until if W' # () then 7%: F «— F' @& F'.

Not surprisingly, the above algorithm returns the value true iff there exists a frame
F'" = (W" R") over PG, a root 2"y € W' such that F,zq «— F' & F", (20, 2"0).
Seeing that F° and ZY can be constructed in exponential time and for all + > 0,
Fitland 7! can be constructed in time polynomial in the size of F* and 7%, it
follows immediately that

Proposition 5.11 (SO) is in EXPTIME.

6 Conclusion

We have considered the decision problems (SC') and (SO) of controller /orchestra-
tor synthesis. Deterministic algorithms that check in exponential-time whether a
controller /orchestrator exists have been proposed. An interesting (and still open)
question is to evaluate the exact complexity of (SC) and (SO). Let us remark that
the following decision problem is known to be EXPTIMFE-hard: given a finite set
PG of program variables, deterministic finite frames F = (W, R), ' = (W', R'),

.y F = (W™ R™) over PG, roots zg € W, ' € W', ..., 2”9 € W", determine
if 7, z¢ is simulated by 71 & ...& F,, (z'0,...,2"). See [12] for details. Are (SC)
and (SO) EXPTIMFE-hard too? If (SC) and (SO) prove to be KXPTIMFE-hard
too then we doubt the practicality of any decision method for them. In this re-
spect, the use of symbolic techniques should permit to reduce the practical cost of
controller /orchestrator synthesis. Possible solutions would demand to use compact
data structures for the representation of frames [8] and to apply the techniques
of abstraction and refinement used within the context of computer-aided verifica-
tion [9]. Variants of (SC') and (SO) can be considered as well. For instance, one may
consider that the controller/orchestrator must be transitive, reverse well-founded,
etc. For such a variant, although we believe that our filtration approach can pro-
vide a solution, the complexity of controller/orchestrator synthesis is still unknown.
Take another variant: one may replace “bisimilar” by “trace equivalent”. For such
a variant, although Ramadge and Wonham [14] and Tsitsiklis [15] have indirectly
and partially addressed it, the complexity of controller /orchestrator synthesis is still
unknown. Finally, one may involve atomic propositions and do everything on the
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level of finite models which are a more natural framework for the synthesis prob-
lems. Involving atomic propositions can make the synthesis problems much harder,
at least in some cases. For instance, every two finite serial frames are bisimilar,
hence the synthesis problems in the case of serial frames are trivial; but not so for
serial models.
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