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Abstract. In this paper, some distances between KD45n Kripke
models are introduced and investigated. We define several distances
between Kripke models, based on different criteria, inspired by var-
ious concepts such as bisimulation and propositional distances be-
tween valuations for different modal degrees. We study the proper-
ties of these distances. Such distances are useful for defining belief
change operators in multi-agent scenarios. We show that they can be
used to define belief revision operators based on the standard AGM
framework and suited to KD45n Kripke models.

1 INTRODUCTION

Distance proves to be a key concept for a number of applications. Es-
pecially, in knowledge representation, distances between interpreta-
tions (or between formulas) is a central notion on which many belief
change operators (belief revision operators, belief merging operators,
etc.) are anchored. Such operators are governed by a principle of min-
imal change, which consists in selecting the most plausible models
of a given constraint (the new piece of information in case of belief
revision, or the integrity constraints in case of belief merging), given
the current beliefs of the agent(s).

In some applications, a plausibility relation can be easily obtained
from the input, so that it can be used to rule the change operator.
However, in many cases, no such plausibility relation is directly
available. In such cases, it makes sense to derive a plausibility re-
lation from a preset distance. Thus, for instance, in (finite) classical
propositional logic, the Hamming distance (also called Dalal distance
[10, 17]), that is defined as the number of propositional variables two
valuations differ on, is often considered. When one has no particular
information on the application and on the logical dependencies of the
propositional variables, it is a reasonable assumption to consider that
the more variable in common in two interpretations, the closer they
are. Accordingly, in the classical propositional setting, many revision
operators [10, 17, 20, 21], update operators [12, 16], merging opera-
tors [19, 18] and other change operators are actually distance-based
ones.

Belief change in classical propositional logic has received much
attention so far. However, in numerous applications, agents have not
only beliefs about the world, but also beliefs about the beliefs of
other agents, which makes classical propositional logic inadequate.
The typical semantic for multi-agent epistemic (actually, doxastic)
frameworks relies on KD45n Kripke models. On the other hand,
though several approaches in epistemic logic settings aim at mod-
eling revision as a dynamic modality (see e.g., [22, 25, 5, 8, 24, 6]),
there are quite few works which tackled the problem of defining be-
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lief change for epistemic logics in the standard AGM framework (see
mainly [3, 9]).

As defining concrete revision operators for Kripke models is
nowadays expected (see [14]), our aim in this work is to define such
revision operators for finite KD45n Kripke models. To do so, we first
investigate the notion of distance between such models. This turns
out to be a key step towards the definition of belief change operators
complying the standard AGM framework, and suited to multi-agent
scenarios.

As far as we know, only one distance has been pointed out so far
for measuring the extent to which Kripke models are different. This
distance was reported in [2] and concerned the revision of subjective
epistemic models. Subjective epistemic models represent the beliefs
of one agent about the world and about the beliefs of the other agents,
whereas KD45n Kripke models represent the beliefs of an external
observer about the world and about the beliefs of the agents. To be
more precise, Aucher [2] presents a similarity degree between sub-
jective epistemic models, that can be straightforwardly translated into
a distance between KD45n Kripke models.

In the following, we point out distances between KD45n Kripke
models which are alternatives to this one. Such distances can also be
easily adapted to Aucher’s subjective models, and therefore be used
to define new revision operators in this setting as well [3]. Five new
distances between KD45n Kripke models are investigated. Three of
them are based on a weakening of the standard bisimulation relation
between Kripke models. The other two rely on an aggregation of
the propositional distances between the set of valuations for different
modal depths in the two models.

Beyond standard distance properties (indistinguishability, symme-
try, subadditivity and nonnegativity), three additional properties, that
are sensible for distances between KD45n Kripke models, are intro-
duced. In a nutshell, the first one expresses the fact that the higher
the modal depth of discordance (i.e., the higher the modal degree
of the formulas that are not satisfied in both models), the lower is
the distance between the two models. The second property expresses
that all discordances at a given modal depth should not be considered
as equivalent. This means that one has to go beyond the drastic di-
chotomous distance (same/different) between (the valuations of) the
worlds. The third property refines the second one by asking the dis-
tance between Kripke models to be based on a non-drastic distance
between the valuations of the worlds. When considering the applica-
tion of these distances for belief revision, we introduce a last prop-
erty, called boundedness property, that ensures that there are only
finitely many models to consider for computing the revision.

For each distance introduced, the properties of interest it satisfies
are identified. We show that three of them satisfy all the properties
under consideration and can be used as such for characterizing belief



revision operators based on the standard AGM framework, yet suited
to KD45n Kripke models.

2 PRELIMINARIES
We are interested here in modeling the beliefs of several agents, each
of them having her own beliefs about the state of the world. Hence
we use a multi-agent epistemic logic. Let P be a finite, non-empty
set of propositional variables and A a finite, non-empty set of agents.
We consider the language L containing the classical propositional
language augmented by a belief modal operator Ba for each agent
a ∈ A. Formally, L is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Baϕ

A formula of the form Baϕ is read ”agent a believes that ϕ is
true”. The modal degree deg(ϕ) is defined as usual [7]:

deg(p) = 0 deg(ϕ ∧ ψ) = max(deg(ϕ), deg(ψ))

deg(¬ϕ) = deg(ϕ) deg(Baϕ) = 1 + deg(ϕ)

In order to give meaning to our formulas, and especially to opera-
tors Ba, we use the standard KD45n system for n agents [11]. Such a
system consists of the set of formulas in L that can be derived using
the following axioms and inference rules:

(TAU) All instantiations of propositional tautologies
(K) (Biϕ ∧ Bi(ϕ⇒ ψ))⇒ Biψ (Belief Distribution)
(D) ¬Bi⊥ (Belief Consistency)
(4) Biϕ⇒ BiBiϕ (Positive Introspection)
(5) ¬Biϕ⇒ Bi¬Biϕ (Negative Introspection)
(RM) From |= ϕ⇒ ψ and |= ϕ infer |= ψ (Modus Ponens)
(RN) From |= ϕ infer |= Biϕ (Belief Generalization)

The same set of validities can be captured using a semantic ap-
proach. The most common representation in this system is based on
Kripke models, defined as follows:

Definition 1 (Finite Pointed Kripke Model). A finite pointed
Kripke model is a tuple 〈W,R, V,w〉 whereW is a finite, non-empty
set of possible worlds, R = {Ra | a ∈ A}, where Ra ⊆ W ×W
is the binary accessibility relation on W for agent a, V = {Vv |
v ∈W}, where Vv : P→ {0, 1} is a valuation function that defines
the truth value of each propositional variable at the world v, and
w ∈W is the pointed world.

We sometimes use Ra(w) to denote the set of possible worlds
which are accessible from w for agent a, namely, Ra(w) = {w′ |
(w,w′)∈Ra}.

LetM be a finite pointed Kripke model. We denote byM |= ϕ the
fact that the formula ϕ is satisfied in M . This is defined as usual for
the propositional connectives, and as follows for the operators Ba:
〈W,R, V,w〉 |= Baϕ if and only if ∀w′ ∈ W if w′ ∈ Ra(w) then
〈W,R, V,w′〉 |= ϕ

Two finite pointed Kripke models are equivalent if and only if they
are bisimilar, in the following sense:

Definition 2 (Bisimilarity). Let M = 〈W,R, V,w〉 and M ′ =
〈W ′, R′, V ′, w′〉 be two finite pointed Kripke models. M and M ′

are bisimilar, noted M ↔–M
′, if and only if there is a bisimulation

Z ⊆W ×W ′.

Definition 3 (Bisimulation). Let M = 〈W,R, V,w〉 and M ′ =
〈W ′, R′, V ′, w′〉 be two finite pointed Kripke models. Let Z ⊆
W × W ′. Z is a bisimulation if and only if (w,w′) ∈ Z and for
all (v, v′) ∈ Z:

1. Vv = V ′v′ and
2. if ∃u ∈ W such that (v, u) ∈ Ra, then ∃u′ ∈ W ′ such that

(v′, u′) ∈ R′a and (u, u′) ∈ Z, and
3. if ∃u′ ∈ W ′ such that (v′, u′) ∈ R′a, then ∃u ∈ W such that

(v, u) ∈ Ra and (u, u′) ∈ Z.

Let K be the set of KD45n finite pointed Kripke models. In what
follows, we refer to Kripke models as a short for models of K.

A formula ϕ ∈ L is valid (noted |= ϕ) if and only if M |= ϕ, for
every finite pointed Kripke model M ∈ K.

Two bisimilar models may have different number of worlds. This
means that, depending on how distances between two bisimilar mod-
els are computed, one may end up with a non-null distance. However,
we need to look at the very information conveyed by each model, and
not to be distracted by a particular representation. So we need to use
some kind of normal form. We take the corresponding minimal mod-
els, defined in the sequel, as “normal forms”.

With each KD45n Kripke model, a minimal model which corre-
sponds to its bisimulation contraction can be associated [7]:

Definition 4 (Minimal Finite Pointed Kripke Model). Let M =
〈W,R, V,w〉 be a finite pointed Kripke model. M is a minimal fi-
nite pointed Kripke model if and only if there is no model M ′ =
〈W ′, R′, V ′, w′〉 such that M ↔–M

′ and |W | > |W ′|.

Finite pointed Kripke models are similar to nondeterministic au-
tomata. But the latter can be transformed into deterministic ones eas-
ily. The resulting model is sometimes exponentially larger, though.
Given a finite pointed Kripke model M , the problem of finding a
minimal model associated with it is similar to the problem of mini-
mizing the number of states in a deterministic finite automaton. An
algorithm for it can be easily adapted from the one given in [15].
We note that, as in the deterministic finite automata case, the mini-
mal model is unique. We denote by µ(M) the minimal finite pointed
Kripke model corresponding to M . We clearly have M ↔– µ(M).

The height of a possible world v in a finite pointed Kripke model
M , noted heightM(v), is the length of a shortest path between
the pointed world of M and v. The height of a model M (noted
height(M)) is, as usual [7], the largest n such that there is a world
of height n in M .

3 DISTANCES BETWEEN FINITE KRIPKE
MODELS

We start with the notion of distance:

Definition 5 (Distance). A distance between two Kripke models is a
mapping d from K2 to R which satisfies the following properties:

(D1) d(M,M ′) = 0 iff M ↔–M
′ (indistinguishability)

(D2) d(M,M ′) = d(M ′,M) (symmetry)
(D3) d(M,M ′′) ≤ d(M,M ′) + d(M ′,M ′′) (subadditivity)
(D4) d(M,M ′) ≥ 0 (nonnegativity)

The following properties taken from [1] are consequences of prop-
erties (D1) – (D4):

Lemma 1. Let d be a mapping from K2 to R. If d satisfies the prop-
erties (D1) – (D4), then d satisfies:

(DK1) If M = M ′ then d(M,M ′) = 0
(DK2) If M ↔–M

′ then d(M,M ′) = 0
(DK3) If M ′ ↔–M

′′ then d(M,M ′) = d(M,M ′′)
(DK4) If M ′ ↔–M

′′ then d(M ′,M) = d(M ′′,M)



Proof. Let M,M ′,M ′′ ∈ K and d be a distance between Kripke
models (d satisfies (D1) – (D4)).

Let us show that d satisfies (DK1). Suppose that M = M ′, so we
have M ↔–M

′. (D1) allows us to conclude that d(M,M ′) = 0.
Let us show that d satisfies (DK2). The fact that d satisfies (D1)

allows us to conclude directly.
Let us show that d satisfies (DK3). Suppose that M ′ ↔–M

′′. (D3)
gives us:

d(M,M ′) ≤ d(M,M ′′) + d(M ′′,M ′) (1)

d(M,M ′′) ≤ d(M,M ′) + d(M ′,M ′′) (2)

Moreover, (D2) and (D1) give us:

d(M ′,M ′′) = d(M ′′,M ′) = 0 (3)

(1) and (3) lead us to:

d(M,M ′) ≤ d(M,M ′′) (I)

Similarly, (2) and (3) lead us to:

d(M,M ′′) ≤ d(M,M ′) (II)

(I) and (II) allow us to conclude that d(M,M ′) = d(M,M ′′).
Let us show that d satisfies (DK4). The fact that d satisfies (D2)

and (DK3) allows us to conclude directly.

Lemma 2. Let d be a mapping fromK2 to R. If d satisfies (D1)-(D4),
then d cannot satisfy:

(DK5) d(M,M ′′) ≥ d(M,M ′) + d(M ′,M ′′)
(DK6) d(M,M ′′) = d(M,M ′) + d(M ′,M ′′)

Proof. Let d be a distance (d satisfies (D1)-(D4)). Let us show that
d does not satisfy (DK5).
Suppose that (DK5) is satisfied.
Let M,M ′,M ′′ three models not pairwise bisimilar.
So, by (D1), we have d(M,M ′) 6= 0, d(M,M ′′) 6= 0 and
d(M ′,M ′′) 6= 0.
(DK5) and (D3) give us, d(M,M ′′) = d(M,M ′) + d(M ′,M ′′),
d(M,M ′) = d(M,M ′′) + d(M ′′,M ′) and d(M ′,M ′′) =
d(M ′,M) + d(M,M ′′).
So we have d(M,M ′′) = d(M,M ′′) +d(M ′′,M ′) +d(M ′,M) +
d(M,M ′′) which leads to d(M ′′,M ′)+d(M ′,M)+d(M,M ′′) =
0. From (D4), we should have d(M ′′,M ′) = d(M ′,M) =
d(M,M ′′) = 0, contradiction.

Let us show that d does not satisfy (DK6).
Suppose that (DK6) is satisfied. So d satisfies both (D3) and (DK5).
This contradicts the fact that (DK5) is not satisfied.

To define distances on KD45n Kripke models we consider some
additional expected properties. First, we must introduce a modifica-
tion function that is used to change the valuation of a world w′ in a
model M to match the valuation ϑ.

Definition 6 (Modification Function). Let M = 〈W,R, V,w〉,
w′ ∈ W , and ϑ a valuation. We denote by M(ϑ → w′) the model
obtained by changing the valuation of w′ by ϑ, defined as follows:

M(ϑ→ w′) = 〈W,V ′, R, w〉 where

V ′ = {Vv|v 6= w′} ∪ {Vw′ |∀p ∈ P, Vw′(p) = ϑ(p)}

We can now define the additional properties:

(D5) ∀M = 〈W,V,R,w〉, ∀w′, w′′ ∈ W , ∀ϑ, ϑ′, if
heightM(w′) < heightM(w′′) and M ′ = M(ϑ → w′)
and M ′′ = M(ϑ → w′′) with Vw′ 6= ϑ 6= Vw′′ , then
d(M,M ′) > d(M,M ′′).

(D6) ∃M = 〈W,V,R,w〉, ∃w′ ∈ W , ∃ϑ, ϑ′ such that M ′ =
M(ϑ → w′) and M ′′ = M(ϑ′ → w′) with ϑ 6= Vw′ 6=
ϑ′, and d(M,M ′) 6= d(M,M ′′)

(D7) There is a non-drastic propositional distance 2 dV such
that ∀M = 〈W,V,R,w〉, ∀w′ ∈ W , ∀ϑ, ϑ′, if M ′ =
M(ϑ→ w′) and M ′′ = M(ϑ′ → w′) and dV (ϑ, Vw′) <
dV (ϑ′, Vw′) then d(M,M ′) < d(M,M ′′).

(D5) expresses the fact that the higher the modal depth of discor-
dance (i.e., the higher the modal degree of the formulas that are not
satisfied in both models), the lower is the distance between the two
models. Basically, this property has to be evaluated by considering
the use of epistemic models for making strategic decisions. As a mat-
ter of illustration, consider a card game, or any imperfect information
game (like Cluedo, for instance). Then it is more harmful for a player
A to make a mistake about the beliefs of another playerB (since this
piece of beliefs is used for making many strategic decisions), rather
than to be mistaken with the beliefs ofB about the beliefs ofA about
the beliefs of B.

(D6) expresses that not all discordances at modal degree k are
equivalent, which means that one has to do better than the drastic
dichotomous distance (same/different) between (the two valuations
of) two worlds. This distance, noted D, is define by: for all ϑ, ϑ′

valuations over P, we have D(ϑ, ϑ′) = 0 if ϑ = ϑ′ and D(ϑ, ϑ′) =
1 otherwise.

(D7) stipulates that the distance between two models must be
based on a non-drastic propositional distance between valuations.
Clearly, (D7) is more demanding that (D6):

Proposition 3. Let d be a distance between Kripke models. If d sat-
isfies (D7), then d satisfies (D6).

Proof. Let d be a distance between Kripke models. Let M =
〈W,V,R,w〉,M ′ and M ′′ be three Kripke models, w′ ∈ W such
that ϑ1, ϑ2 two valuations distinct from Vw′ , M ′ = M(ϑ1 → w′)
and M ′′ = M(ϑ2 → w′).
Assume that d satisfies (D7). Let dV be the underlying propositional
distance. Therefore, we have that, if dV (ϑ1, Vw′) < dV (ϑ2, Vw′),
then d(M,M ′) < d(M,M ′′).

4 PREVIOUS DISTANCES BETWEEN KRIPKE
MODELS

In [1], some measures between Kripke models have been pointed out.
Those measures have not been primarily defined for KD45n models
but can be adapted for this purpose, as follows.

Definition 7 (Kripke Distance [1]). Let M = 〈W,R, V,w0〉 and
M ′ = 〈W,R′, V, w0〉 be two Kripke models. δmin(M,M ′) =
δK(µ(M), µ(M ′)), with δK(M,M ′) =

∑
a∈A |Ra \R

′
a|.

Apart from not being symmetric, the fact that only the relations
of the two models M and M ′ can be different for the distance to be
defined is too restrictive for our purpose. Indeed, δmin does not sat-
isfy (D5), because it does not look at the depth of the worlds causing

2 A drastic propositional distance d is a distance between valuations such that
∃α ∈ N∗ for which d(ϑ, ϑ′) = 0 if ϑ = ϑ′ and d(ϑ, ϑ′) = α otherwise
(the usual drastic distance dD is recovered for α = 1).



the discordance between the models. And, as it does not check the
valuations of the worlds, it does not satisfy (D6) nor (D7).

In [2], a notion of similarity degree between Kripke models,
based on the notion of n−bisimulation, is proposed. This similar-
ity degree can be directly transformed into a distance. The notion
of n−bisimulation we use is slightly different from the one from
[7, 2, 4]. We do not impose any condition for the 0-bisimulation,
thus allowing any model to be 0-bisimilar to another one, even if their
pointed worlds are different. Intuitively, two models are n-bisimilar
(with n ≥ 1), noted M ↔–nM

′, if they are equivalent until a height
of n−1. Consequently, two n-bisimilar models satisfy the same for-
mulas with a modal degree at most n− 1.

Definition 8 (n-Bisimilarity). Let M = 〈W,R, V,w〉 and M ′ =
〈W ′, R′, V ′, w′〉 be two pointed Kripke models. M and M ′ are n-
bisimilar, noted M ↔–nM

′, if and only if there is a n-bisimulation
Z ⊆W ×W ′.

Definition 9 (n-Bisimulation). Let M = 〈W,R, V,w〉 and M ′ =
〈W ′, R′, V ′, w′〉 be two pointed Kripke models. Let Z ⊆W ×W ′:

• Z is a 0-bisimulation.
• Z is a 1-bisimulation if and only if (w,w′) ∈ Z and Vw = V ′w′ .
• Z is a (n + 1)-bisimulation (n ≥ 1) if and only if (w,w′) ∈ Z

and for each (v, v′) ∈ Z:

1. Vv = V ′v′ and

2. if ∃u ∈ W such that (v, u) ∈ Ra, then ∃u′ ∈ W ′ such that
(v′, u′) ∈ R′a and (u, u′) ∈ Z, and

3. if ∃u′ ∈ W ′ such that (v′, u′) ∈ R′a, then ∃u ∈ W such that
(v, u) ∈ Ra and (u, u′) ∈ Z,

and Z is a n-bisimulation.

The next lemma follows immediately from Definitions 2 and 8.

Lemma 4. (∀n ∈ N, M ↔–nM
′) if and only if M ↔–M

′.

Let us now recall the similarity degree proposed in [2]:

Definition 10 (Similarity Degree [2]). Let M = 〈W,R, V,w〉 and
M ′ = 〈W ′, R′, V ′, w′〉 be two Kripke models, v ∈W and v′ ∈W ′,
S and S′ two finite sets of possible worlds. Let n = |W | · |W ′|+ 1
and k ∈ N. We define the similarity degree sk(M,M ′) between M
and M ′ by:

· σ(v, v′) = max( i
n
|〈W,R, V, v〉 ↔–i〈W

′, R′, V ′, v′〉 and i ∈
J0;nK)
· σ(S, S′) = 1

2
(avg{σ(s, S′)|s ∈ S} + avg{σ(S, s′)|s′ ∈ S′})

where σ(s, S′) = max{σ(s, s′)|s′ ∈ S′} and σ(S, s′) =
max{σ(s, s′)|s ∈ S}
· sk(M,M ′) = (σ(w,w′), avg{σ(Ra(w), Ra(w′))|a ∈ A}, . . . ,
avg{σ(Ra1 ◦ · · · ◦ Rak (w), Ra1 ◦ · · · ◦ Rak (w′))|∀i, ai ∈
A and ai 6= ai+1}).3

σ(v, v′) measures a degree of similarity between the worlds v and
v′. Likewise, σ(S, S′) measures a degree of similarity between the
sets of worlds S and S′. To be more precise, σ(v, S′) is the degree
of similarity of a world v with S′. The degree of similarity between
S and S′ is just the average of such degrees. sk(M,M ′) is a tuple
which represents how much two Kripke models are similar relatively
to their respective modal depth. See [2] for more details and justifi-
cations on this similarity degree.

3 avg denotes here the average mapping and ◦ is used here for denoting
relation composition.

Based on this similarity degree, we can define a distance between
Kripke models. We add the distances between µ(M) and µ(M ′) rel-
ative to their modal depth, by recovering the element of the tuple
sk(µ(M), µ(M ′)) corresponding to each depth. The distance be-
tween these two models at a depth p ≤ k is given by the differ-
ence between 1 (the maximal degree) and the (p+1)th element of
sk(µ(M), µ(M ′)).

Definition 11 (Similarity Distance). Let M = 〈W,R, V,w〉 and
M ′ = 〈W ′, R′, V ′, w′〉 be two Kripke models. Let n= |W |·|W ′|+1.

dA(M,M ′) =

n∑
i=0

(1− sni (µ(M), µ(M ′)))

where sni (µ(M), µ(M ′)) is the (i+1)th element of the tuple
sn(µ(M), µ(M ′)).

The problem with those distances is that none of them satisfies the
expected properties introduced in the previous section:

Proposition 5. δmin and dA do not satisfy any of (D5), (D6) or
(D7).

Proof. Let M = 〈W,R, V,w〉 be a Kripke model.

• We show that dA does not satisfy (D5), (D6) nor (D7).

◦ First we show that dA does not satisfy (D5).
Consider the following example, P = {x, y}, W = {w, v},
R = {R1, R2} with R1 = {(w, v), (v, v)} and R2 =
{(w, v), (v, w)}, Vw(x) = 0, Vw(y) = 1 and Vv(x) = 1,
Vv(y) = 0.
Let ϑ be a valuation such that ϑ(x) = 1 and ϑ(y) = 0.
Let M1 = M(ϑ → w) and M2 = M(ϑ → v). Let
k = |W |2 + 1 = 5. Thus, we have s5(µ(M), µ(M1)) =
(0, 1, 1, 1, 1, 1) and s5(µ(M), µ(M2)) = ( 1

5
, 0, 0, 0, 0, 0).

Therefore, we have dA(M,M1) = 1 and dA(M,M2) = 5.8.
We clearly have here that heightM(w) < heightM(v) and
dA(M,M1) < dA(M,M2). So dA does not satisfy (D5).

◦ We show that dA does not satisfy (D6).
Let M1 and M2 be two Kripke models such that M1 =
M(ϑ1 → v) and M2 = M(ϑ2 → v) with ϑ1 6= Vv 6=
ϑ2 and heightM(v) = p. We clearly have height(M) =
height(M1) = height(M2). Let k = |W |2 + 1. We have
sk0(µ(M), µ(M1)) = p

k
= sk0(µ(M), µ(M2)). Following

Definition 10, iterating over ski gives us ski (µ(M), µ(M1)) =
ski (µ(M), µ(M2)) for all i ∈ J0; kK. Thus dA(M,M1) =
dA(M,M2).

◦ The fact that dA does not satisfy (D6) allows us to conclude,
using Proposition 3, that dA does not satisfy (D7).

• We show that δmin does not satisfy (D5), (D6) nor (D7).
The fact that the distance δmin only compares the set of relations
between the models is sufficient to show that δmin can not satisfy
(D5), (D6) nor (D7).

In the next section we introduce new distances that will be proved
to satisfy the expected properties.



5 FAMILIES OF DISTANCES BETWEEN
KRIPKE MODELS

In the following, we define several families of distances Ddm. Each
distance of a family Ddm is defined for finite Kripke models con-
taining at most m worlds. Whatever the finite set of models under
consideration, the existence of anm suited to it is ensured by the fact
that all the models it contains are finite. For each family of distances
we point out, all distances will be considered between the minimal
models associated with the two Kripke models considered at start
(note the use of the µ minimisation function in the definitions). This
is necessary to ensure that bisimilar models are at a null distance, as
expected.

5.1 Bisimulation Distances
Here we exploit the ideas behind bisimulation in order to define dis-
tances betweens Kripke models. First, we introduce a useful result,
namely that there is a rank k from which a k-bisimulation implies a
(k+ 1)-bisimulation since we consider a finite set P of propositional
variables. In a first place, we prove a lemma which states that for two
Kripke models M = 〈W,R, V,w〉 and M ′ = 〈W ′, R′, V ′, w′〉,
if there is a n-bisimulation (n > 1) Z and (w,w′) ∈ Z ,
then the existence of a sequence of n − 1 worlds wi such that
wRw1Rw2R · · ·Rwn−1 implies the existence of a sequence of n−1
worldsw′i such thatw′R′w′1R′w′2R′ · · ·R′w′n−1, such that Z is a 1-
bisimulation and (wn−1, w

′
n−1) ∈ Z, and conversely.

Lemma 6. Let M = 〈W,R, V,w〉 and M ′ = 〈W ′, R′, V ′, w′〉
be two finite pointed Kripke models. Let Z ⊆ W × W ′, if Z is a
n-bisimulation (n > 1) and (w,w′) ∈ Z then:

1. if ∃v ∈ W such that wRa1 · · ·Ran−1v, then ∃v′ ∈ W ′ such
that w′R′a1 · · ·R

′
an−1

v′ and there exists a 1-bisimulation Z′

and (v, v′) ∈ Z′.4
2. if ∃v′ ∈W ′ such that w′R′a1 · · ·R

′
an−1

v′, then ∃v ∈W such
that wRa1 · · ·Ran−1v and there exists a 1-bisimulation Z′ and
(v, v′) ∈ Z′.

Proof. Let M = 〈W,R, V,w〉 and M ′ = 〈W ′, R′, V ′, w′〉 be two
finite pointed Kripke models and Z ⊆W ×W ′.
If Z is a 2-bisimulation and (w,w′) ∈ Z, then Definition 9 allows
us to conclude.
Suppose that ∀n > 1, if Z is a n-bisimulation and (w,w′) ∈ Z,
then:

(1.1) if ∃v ∈ W such that wRai · · ·Raj︸ ︷︷ ︸
(n−1)×

v, then ∃v′ ∈ W ′ such

that w′R′ai · · ·R
′
aj︸ ︷︷ ︸

(n−1)×

v′ and there exists a 1-bisimulation Z′ and

(v, v′) ∈ Z′.
(1.2) if ∃v′ ∈ W ′ such that w′R′ai · · ·R

′
aj︸ ︷︷ ︸

(n−1)×

v′, then ∃v ∈ W such

that wRai · · ·Raj︸ ︷︷ ︸
(n−1)×

v and there exists a 1-bisimulation Z′ and

(v, v′) ∈ Z′.

If Z is a (n+ 1)-bisimulation and (w,w′) ∈ Z, then from defini-
tion 9, we have:

4 We use the notation wRa1 · · ·Ran−1v to abbreviate
wRa1w1Ra2w2....wn−2Ran−1v.

(2.1) if ∃v ∈ W such that (w, v) ∈ Ra, then ∃v′ ∈ W ′ such that
(w′, v′) ∈ R′a and Z is a n-bisimulation and (v, v′) ∈ Z.

(2.2) if ∃v′ ∈ W ′ such that (w′, v′) ∈ R′a, then ∃u ∈ W such that
(w, v) ∈ Ra and Z is a n-bisimulation and (v, v′) ∈ Z.

(1.1) and (2.1) give us: if ∃v ∈ W such that wRv, then ∃v′ ∈ W ′
such that w′R′v′ and:

• if ∃u ∈ W such that vRai · · ·Raj︸ ︷︷ ︸
(n−1)×

u, then ∃u′ ∈ W ′ such

that v′R′ai · · ·R
′
aj︸ ︷︷ ︸

(n−1)×

u′ and there exists a 1-bisimulation Z′ and

(u, u′) ∈ Z′.
• if ∃u′ ∈ W ′ such that v′R′ai · · ·R

′
aj︸ ︷︷ ︸

(n−1)×

u′, then ∃u ∈ W such

that vRai · · ·Raj︸ ︷︷ ︸
(n−1)×

u and there exists a 1-bisimulation Z′ and

(u, u′) ∈ Z′.

(1.2) and (2.2) give us a similar result.

So we have, if Z is a (n+ 1)-bisimulation and (w,w′) ∈ Z, then:

• if ∃v ∈ W such that wRai · · ·Raj︸ ︷︷ ︸
n×

v, then ∃v′ ∈ W ′ such

that w′R′ai · · ·R
′
aj︸ ︷︷ ︸

n×

v′ and there exists a 1-bisimulation Z′ and

(v, v′) ∈ Z′.
• if ∃v′ ∈ W ′ such that w′R′ai · · ·R

′
aj︸ ︷︷ ︸

n×

v′, then ∃v ∈ W such

that wRai · · ·Raj︸ ︷︷ ︸
n×

v and there exists a 1-bisimulation Z′ and

(v, v′) ∈ Z′.

The following proposition, based on Lemma 6, shows that for a
given rank k, if two models are k-bisimilar, then they are (k + 1)-
bisimilar. k is taken here as the size of the largest set of worlds of
the two models, plus one. This result reinforces a similar result due
to Balbiani [2].

Proposition 7. Let M = 〈W,R, V,w〉 and M ′ = 〈W ′, R′, V ′, w′〉
be two Kripke models containing at most m worlds. If M ↔–m+1M

′,
then M ↔–M

′.

Proof. Let M = 〈W,R, V,w〉 and M ′ = 〈W ′, R′, V ′, w′〉 be two
Kripke models containing at most m worlds such that height(M) =
n and height(M ′) = n− p with 0 ≤ p ≤ n.
We have m ≥ n+ 1. Let k = n+ 2 and Z ⊆W ×W ′ such that Z
is a k-bisimulation and (w,w′).
So we have M ↔–kM

′, thus, from Lemma 6, we also have:

(1) if ∃v ∈W such that wRai · · ·Raj︸ ︷︷ ︸
(n+1)×

v, then ∃v′ ∈W ′ such that

w′R′ai · · ·R
′
aj︸ ︷︷ ︸

(n+1)×

v′ and Z is a 1-bisimulation and (v, v′) ∈ Z.

(2) if ∃v′ ∈W ′ such that w′R′ai · · ·R
′
aj︸ ︷︷ ︸

(n+1)×

v′, then ∃v ∈W such that

wRai · · ·Raj︸ ︷︷ ︸
(n+1)×

v and Z is a 1-bisimulation and (v, v′) ∈ Z.



Let us look closely at these two cases:

(1) if such a v exists, as height(M) = n, ∃α < n + 1 such
that wRai · · ·Raj︸ ︷︷ ︸

α×

vRai′ · · ·Raj′︸ ︷︷ ︸
(n−α+1)×

v, then there is a v′, such that

w′R′ai · · ·R
′
aj︸ ︷︷ ︸

α×

v′R′ai′ · · ·R
′
aj′︸ ︷︷ ︸

(n−α+1)×

v′ and Z is a α-bisimulation and

(v, v′) ∈ Z with α ≥ 1.
(2) by a similar reasoning, the same conclusion can be drawn.

Thus, Z is (at least) a (k+1)-bisimulation and (w,w′) ∈ Z. Using a
simple induction, we show that ∀i ≥ k, M ↔–iM

′. Lemma 4 allows
us to conclude that M ↔–M

′.
The converse is trivially true.

We now use the notion of n-bisimulation to define a family of dis-
tances DdNBm . To do so, we look at how deep the two Kripke models
under consideration are bisimilar, then we subtract that value to the
maximal possible value.

Definition 12 (n-Bisimulation-based Distance). Let M =
〈W,R, V,w〉 and M ′ = 〈W ′, R′, V ′, w′〉 be two Kripke models
containing at most m worlds. We denote by dNB(M,M ′) the dis-
tance between M and M ′, defined as follows:

dNB(M,M ′) = (m+1)−max(i |µ(M)↔–i µ(M ′), i∈J0;m+1K)

An illustration of this distance (and the other distances introduced
in the paper) can be found in the forthcoming Example 1.

It is easy to check that dNB satisfies (D5). Indeed, the purpose
of this distance is to look at how deep the two models are bisimilar.
Thus, when the modal depth of difference increases, the distance be-
tween the models decreases. But since we do not consider valuation
of the worlds, dNB does not satisfy (D6) nor (D7).

Proposition 8.

1. dNB satisfies (D1)-(D4).
2. dNB satisfies (D5).
3. dNB satisfies neither (D6) nor (D7).

Proof. Let M = 〈W,R, V,w〉, M ′ = 〈W ′, R′, V ′, w′〉 and M ′′ =
〈W ′′, R′′, V ′′, w′′〉 be three Kripke models.

Let us show that dNB satisfies (D1).
Suppose that dNB(M,M ′) = 0. From the definition of dNB,
dNB(M,M ′) = 0 if and only if max(i | M ↔–iM

′ and i ∈
J0;m + 1K) = m + 1. The fact that for each model M of M we
have height(M) < m allows us, using Proposition 7, to conclude
that dNB satisfies (D1).

Let us show that dNB satisfies (D2).
Let n = m + 1. Let p1 = max(i | M ↔–iM

′ and i ∈ J0;nK) and
p2 = max(i | M ′ ↔–iM and i ∈ J0;nK)}, the definition 9 allows us
to establish that p1 = p2. Thus, dNB(M,M ′) = n−p1 = n−p2 =
dNB(M ′,M).

Let us show that dNB satisfies (D3).
Let n = m + 1. Assume that, there are some x, y, z ∈ N such that
M ↔–xM

′, M 6↔–x+1M
′, M ↔–yM

′′, M 6↔–y+1M
′′, M ′ ↔–zM

′′ and
M ′ 6↔–z+1M

′′.
We want to show that n− x ≤ n− y + n− z. To do so, we use an
inductive reasoning. Induction Base: 0 = n − x ≤ n − y + n − z
for x = y = z = n. Induction Hypothesis: there are some i, j, k
such that n− x ≤ n− y + n− z for all i ≤ x ≤ n, j ≤ y ≤ n and
k ≤ z ≤ n. Induction Steps: We have several cases to consider:

1. Let x = i− 1, y = j − 1 and z = k − 1.

n− i ≤ n− j + n− k

n− i+ 1 ≤ n− j + n− k + 2

n− (i− 1) ≤ n− (j − 1) + n− (k − 1)

n− x ≤ n− y + n− z

2. Let x = i− 1, y = j − 1 and z = k.

n− i ≤ n− j + n− k

n− i+ 1 ≤ n− j + n− k + 1

n− (i− 1) ≤ n− (j − 1) + n− k

n− x ≤ n− y + n− z

3. Let x = i− 1, y = j and z = k − 1.

n− i ≤ n− j + n− k

n− i+ 1 ≤ n− j + n− k + 1

n− (i− 1) ≤ n− j + n− (k − 1)

n− x ≤ n− y + n− z

4. Let x = i, y = j − 1 and z = k − 1.

n− i ≤ n− j + n− k

n− i ≤ n− j + n− k + 2

n− i ≤ n− (j − 1) + n− (k − 1)

n− x ≤ n− y + n− z

5. Let x = i, y = j − 1 and z = k.

n− i ≤ n− j + n− k

n− i ≤ n− j + n− k + 1

n− i ≤ n− (j − 1) + n− k

n− x ≤ n− y + n− z

6. Let x = i, y = j and z = k − 1.

n− i ≤ n− j + n− k

n− i ≤ n− j + n− k + 1

n− i ≤ n− j + n− (k − 1)

n− x ≤ n− y + n− z

7. Let x = i− 1, y = j and z = k.

(a) Assume that i > k (and thus, i − 1 ≥ k). Hence, we have
n− (i− 1) ≤ n− k. From this and n− j ≥ 0 we can deduce
that n− (i− 1) ≤ n− j + n− k.

(b) Assume that i ≤ k. We have M ↔–i−1M
′, but M 6 ↔–iM

′.
Then M ↔–i−1M

′′ (because i ≤ k and M ′ ↔–kM
′′). We also

have M ↔–jM
′′ but M ↔–j+1M

′′. Assume j ≥ i, we have M 6
↔–iM

′′ (because M 6↔–iM
′ and M ′ ↔–iM

′′). Thus M 6↔–jM
′′,

we have a contradiction. Therefore, we have j ≤ i − 1. So,
from n− j ≥ n− (i− 1) and n− k ≥ 0 we can deduce that
n− (i− 1) ≤ n− j + n− k.

Hence, n− x ≤ n− y + n− z.



By definition, dNB satisfies (D4).
Let us show that dNB satisfies (D5).

Let ϑ be a valuation, n = m + 1 and M1 = M(ϑ → v)
and M2 = M(ϑ → u) with heightM(v) < heightM(u) and
Vv 6= ϑ 6= Vu. We clearly have here height(M) = height(M1) =
height(M2). Let k = max(i|µ(M)↔–i µ(M1) and i ∈ J0;nK) and
k′ = max(i|µ(M)↔–i µ(M2) and i ∈ J0;nK). From this, we have
k < k′. Thus we have 1

n
(n− k) > 1

n
(n− k′) We can conclude that

dNB(M,M1) > dNB(M,M2).
Let us show that dNB does not satisfy (D6).

Let n = m + 1, M1 = M(ϑ1 → v) and M2 = M(ϑ2 → v) with
ϑ1 6= Vv 6= ϑ2. We clearly have here height(M) = height(M1) =
height(M2). Let k = max(i|µ(M)↔–i µ(M1) and i ∈ J0;nK) and
k′ = max(i|µ(M)↔–i µ(M2) and i ∈ J0;nK). From this, we have
k = k′. Following the same reasonning that the previous point, we
can conclude that dNB(M,M1) = dNB(M,M2).

The fact that dNB does not satisfy (D6) allows us to conclude,
using Proposition 3, that it does not satisfy (D7).

The next distance is based on an approximation of the notion of
bisimulation in which the valuations of the worlds may differ. Thus,
two models quite close to each other are considered as ε-bisimilar. In
this case, we first use a propositional distance d between valuations
from 2|P| × 2|P| to N, supposed to satisfy the usual distance proper-
ties (indistinguishability, symmetry, subadditivity and nonnegativity)
[23].

Definition 13 (dε-Bisimilarity). Let d be a propositional distance.
Let ε ∈ N. Let M = 〈W,R, V,w〉 and M ′ = 〈W ′, R′, V ′, w′〉 be
two Kripke models. M and M ′ are dε-bisimilar, noted M ↔–

d,εM ′,
if and only if there is a dε-bisimulation Z ⊆W ×W ′.

Definition 14 (dε-Bisimulation). Let d be a propositional distance.
Let ε ∈ N. Let M = 〈W,R, V,w〉 and M ′ = 〈W ′, R′, V ′, w′〉 be
two Kripke models. Let Z ⊆W ×W ′. Z is a dε-bisimulation if and
only if (w,w′) ∈ Z and for all (v, v′) ∈ Z:

1. d(Vv, Vv′) ≤ ε and
2. if ∃u ∈ W such that (v, u) ∈ Ra, then ∃u′ ∈ W ′ such that

(v′, u′) ∈ R′a and (u, u′) ∈ Z, and
3. if ∃u′ ∈ W ′ such that (v′, u′) ∈ R′a, then ∃u ∈ W such that

(v, u) ∈ Ra and (u, u′) ∈ Z.

Similarly to the n-bisimulation (family of) distance(s), we can
use the notion of dε-bisimulation to establish a family of distances
DdEBdm . We seek here for the smallest possible ε so that both models
are dε-bisimilar.

Definition 15 (dε-Bisimulation-based Distance). Let d be a propo-
sitional distance. Let ε ∈ N. Let M = 〈W,R, V,w〉 and M ′ =
〈W ′, R′, V ′, w′〉 two Kripke models containing at most m worlds.
We denote by dEBd(M,M ′) the distance between M and M ′, de-
fined as follows:

dEBd(M,M ′) = min{ε | µ(M)↔–
d,ε µ(M ′)}.

It is clear that the distance dEBd does not satisfy (D5). Indeed,
here, we seek for an epsilon regardless of the depth of the discor-
dance between the models. But, as we somehow check the valuations
of the worlds causing the discordance, if a non-drastic propositional
distance d is used, dEBd satisfies (D7) and thereby (D6).

Proposition 9.

1. Given any propositional distance d, dEBd satisfies (D1)-(D4).
2. dEBd does not satisfy (D5) in general.
3. For any non-drastic distance d, dEBd satisfies (D6) and (D7).

Proof. Let M = 〈W,R, V,w〉, M ′ = 〈W ′, R′, V ′, w′〉 and M ′′ =
〈W ′′, R′′, V ′′, w′′〉 be three Kripke models.

Let us show that dEBd satisfies (D1).
From the definition of dEBd, we have, dEBd(M,M ′) = 0 if and
only if min(ε |M ↔–

d,εM ′) = 0. HenceM ↔–
d,0M ′. The definition

14 allows us to conclude that M ↔–M
′.

Let us show that dEBd satisfies (D2).
The fact that the ε-bisimulation is symmetric allows us to conclude
directly.

Let us show that dEBd satisfies (D3).
Assume that d : V × V → N, and that there are some x, y, z ∈ N
such that M ↔–

d,xM ′′, M 6↔–d,x−1M ′′, M ↔–
d,yM ′, M 6↔–d,y−1M ′,

M ′ ↔–
d,zM ′′, M ′ 6 ↔–d,z−1M ′′.

We want to show that x ≤ y + z. To do so, we use an induction
reasoning. Induction Base: x ≤ y+ z for x = y = z = 0. Induction
Hypothesis: there are some i, j, k such that x ≤ y + z for all
0 ≤ i ≤ x, 0 ≤ j ≤ y and 0 ≤ k ≤ z. Induction Steps: We have
several cases to consider:

1. Let x = i, y = j and z = k + 1. In this case, we clearly have
x ≤ y + z.

2. Let x = i, y = j + 1 and z = k+ 1. In this case, we clearly have
x ≤ y + z.

3. Let x = i, y = j + 1 and z = k. In this case, we clearly have
x ≤ y + z.

4. Let x = i+ 1, y = j + 1 and z = k. In this case, we clearly have
x ≤ y + z.

5. Let x = i+ 1, y = j + 1 and z = k + 1. In this case, we clearly
have x ≤ y + z.

6. Let x = i+ 1, y = j and z = k+ 1. In this case, we clearly have
x ≤ y + z.

7. Let x = i+ 1, y = j and z = k.

(a) Assume that i < j (and thus, i + 1 ≤ j). Hence, we have
i+ 1 ≤ j + k.

(b) Assume that i ≥ j. Hence we have

M ↔–
d,i+1M ′′ and M 6 ↔–

d,iM ′′ (?)

We prove a Lemma.

Lemma 10. Let M , M ′ and M ′′ be three Kripke models and
d a propositional distance. If M ↔–

d,ε1 M ′ and M ′ ↔–
d,ε2 M ′′,

then M ↔–
d,ε1+ε2 M ′′.

We also have M ↔–
d,jM ′ and M ′ ↔–

d,kM ′′. From Lemma 10,
we have

M ↔–
d,j+kM ′′ (??)

. From (?) and (??), we can deduce that i+ 1 ≤ j + k.

Hence, x ≤ y + z.

By definition, dEBd satisfies (D4).

Let us show that dEBd does not satisfy (D5).
Consider the following example, P = {x, y}, W = {w, v}, R =
{R1, R2} with R1 = {(w, v), (v, v)} and R2 = {(w, v), (v, w)},
Vw(x) = 0, Vw(y) = 1 and Vv(x) = 0, Vv(y) = 0.
Let ϑ be a valuation such that ϑ(x) = 1 and ϑ(y) = 0. Let



M1 = M(ϑ → w) and M2 = M(ϑ → v). We clearly have
Vw 6= ϑ 6= Vv and heightM(w) < heightM(v). Let d be the
drastic distance, we can see that dEBd(M,M1) = d(Vw, ϑ) = 1 =
d(Vv, ϑ) = dEBd(M,M2). Let d be a non-drastic distance, we can
easily adapt ϑ such that d(Vw, ϑ) ≥ d(Vv, ϑ) and conclude that
dEBd(M,M1) ≥ dEBd(M,M2). Which contradicts (D5).

Let us show that dEBd satisfies (D7) for any non-drastic distance
d.
Let d be a non-drastic propositional distance. Let ϑ1 and ϑ2 be
two valuations. Let M1 and M2 be two Kripke models. Assume
that M1 = M(ϑ1 → v) and M2 = M(ϑ2 → v) such that
d(ϑ1, Vv) < d(ϑ2, Vv). By definition of dEBd, we clearly have
dEBd(M,M1) = d(ϑ1, Vv) and dEBd(M,M2) = d(ϑ2, Vv). This
allows us to conclude that dEBd(M,M1) < dEBd(M,M2).

The fact that, for any non-drastic distance, dEBd satisfies (D7)
allows us to conclude, using Proposition 3, that it satisfies (D6) as
well.

The ideas of the two previous “weak” bisimulations can be taken
together:

Definition 16 (dε-n-Bisimilarity). Let d be a propositional dis-
tance. Let ε ∈ N. Let M = 〈W,R, V,w〉 and M ′ =
〈W ′, R′, V ′, w′〉 be two Kripke models. M and M ′ are dε-
n-bisimilar, noted M ↔–

d,ε
n M ′, if and only if there is a dε-n-

bisimulation Z ⊆W ×W ′.

Definition 17 (dε-n-Bisimilation). Let d be a propositional dis-
tance. Let ε ∈ N. Let M = 〈W,R, V,w〉 and M ′ =
〈W ′, R′, V ′, w′〉 be two Kripke models. Let Z ⊆W ×W ′. :

• Z is a dε-0-bisimulation.
• Z is a dε-1-bisimulation if and only if (w,w′) ∈ Z and
d(Vw, V

′
w′) ≤ ε.

• Z is a dε-(n+ 1)-bisimulation if and only if (w,w′) ∈ Z and for
all (v, v′) ∈ Z:

1. d(Vv, V
′
v′) ≤ ε and

2. if ∃u ∈ W such that (v, u) ∈ Ra, then ∃u′ ∈ W ′ such that
(v′, u′) ∈ R′a and (u, u′) ∈ Z, and

3. if ∃u′ ∈ W ′ such that(v′, u′) ∈ R′a, then ∃u ∈ W such that
(v, u) ∈ Ra and (u, u′) ∈ Z,

and Z is a dε-n-bisimulation.

Clearly, we can also take advantage of the notion of dε-n-

bisimulation to establish another family of distancesDdENB
γ
d

m . Here,
for each depth p, we look for the smallest ε such that both models are
dε-p-bisimilar. We also apply a discounting factor γ ∈ (0; 1] to each
of these distances. Thus, the more a difference between two models
is at a high depth, the less it is important for the distance between
them.

Definition 18 (dε-n-Bisimulation-based Distance). Let d be a
propositional distance. Let ε ∈ N. Let M = 〈W,R, V,w〉 and
M ′ = 〈W ′, R′, V ′, w′〉 be two Kripke models containing at most
m worlds. Let γ ∈ (0; 1]. We denote by dENBγd (M,M ′) the dis-
tance between M and M ′, defined as follows:

dENBγd (M,M ′) =

m∑
i=1

(min(ε | µ(M)↔–
d,ε
i µ(M ′))× γ(i−1))

It is easy to show that, for a small enough discounting factor,
dENBγd satisfies (D5). Like we did it with dEBd, we check the valu-
ations of the worlds causing the discordance. Hence, again, if a non-
drastic propositional distance d is used, dENBγd satisfies (D7) and
(D6).

Proposition 11.

1. Given any propositional distance d, and any discounting factor γ,
dENBγd satisfies (D1)-(D4).

2. Given any propositional distance d, there is a λ ∈ (0; 1] such that,
for all γ < λ, dENBγd satisfies (D5).

3. For any non-drastic distance d, dENBγd satisfies (D6) and (D7).

Proof. Let M = 〈W,R, V,w〉, M ′ = 〈W ′, R′, V ′, w′〉 and
M ′′ = 〈W ′′, R′′, V ′′, w′′〉 be three Kripke models. Let n =
max(|W |, |W ′|) + 1.

Let us show that dENBγd satisfies (D1).
From the definition of dENBγd , we have, dENBγd (M,M ′) = 0

if and only if ∀i ∈ J1;nK,min(ε | M ↔–
d,ε
i M ′) = 0. Hence,

M ↔–
d,0
n M ′. Definition 17 allows us to conclude that M ↔–nM

′.
Thus, from Proposition 7, we have M ↔–M

′.
Let us show that dENBγd satisfies (D2).

The fact that the ε-n-bisimulation is symmetric allows us to conclude
directly.

Let us show that dENBγd satisfies (D3).
Following the same reasoning as third point of the proof of the propo-
sition 9, using the following Lemma

Lemma 12. Let M , M ′ and M ′′ be three Kripke models. Let d
be a propositional distance. For all i in N, if M ↔–

d,ε1
i M ′ and

M ′ ↔–
d,ε2
i M ′′, then M ↔–

d,ε1+ε2
i M ′′.

we deduce that dENBγd satisfies (D3).
By definition, dENBγd satisfies (D4).
Let us show that, there is a λ ∈ (0; 1] such that, for all γ < λ,

dENBγd satisfies (D5).
Let M1 and M2 be two Kripke models such that M1 = M(ϑ → v)
and M2 = M(ϑ → u) with p1 = heightM(v) < heightM(u) =
p2 and Vv 6= ϑ 6= Vu. Assume that dENBγd (M,M1) ≤
dENBγd (M,M2) for all γ ∈ (0; 1].

By the definition of dENBγd , we have dENBγdV (M,M1) =∑n
i=1(min(ε | µ(M)↔–

dV ,ε
i µ(M1)) × γ(i−1)) and

dENBγdV (M,M2) =
∑n
i=1(min(ε | µ(M)↔–

dV ,ε
i µ(M2)) ×

γ(i−1)). By construction of M1 and M2, we have
dENBγdV (M,M1) =

∑n
i=p1

(dV (v, ϑ) × γ(i−1)) and
dENBγdV (M,M2) =

∑n
i=p2

(dV (u, ϑ) × γ(i−1)). Thus, we
have

n∑
i=p1

(dV (v, ϑ)× γ(i−1)) ≤
n∑

i=p2

(dV (u, ϑ)× γ(i−1))

dV (v, ϑ)×
n∑

i=p1

(γ(i−1)) ≤ dV (u, ϑ)×
n∑

i=p2

(γ(i−1))

dV (v, ϑ)× γ(p1−1) · (1− γ(n−p1+1)

1− γ ) ≤

dV (u, ϑ)× γ(p2−1) · (1− γ(n−p2+1)

1− γ )

dV (v, ϑ)× (γ(p1−1) − γn) ≤ dV (u, ϑ)× (γ(p2−1) − γn) (?)



Now, assume that γ = α
nβ

where α = min{dV (w,w′) 6= 0},
β = max{dV (w,w′)} and n = max(height(M), height(M ′)) +
2. Note that, as height(M) = height(M1) = height(M2), we can
use the same n. We have n > p2 > p1 ≤ 0 and 0 < α ≤ β.
Furthermore, assume that dV (v, ϑ) = α and dV (u, ϑ) = β.

From (?) we have

α× ((
α

nβ
)(p1−1) − (

α

nβ
)n) ≤ β × ((

α

nβ
)(p2−1) − (

α

nβ
)n)

αp1(nβ)(n−p1+1) − α(n+1)

(nβ)n
≤ α(p2−1)(nβ)(n−p2+1) − αnβ

(nβ)n

αp1(nβ)(n−p1+1) − α(n+1) ≤ α(p2−1)(nβ)(n−p2+1) − αnβ

αp1(nβ)(n−p1+1) + αnβ ≤ α(p2−1)(nβ)(n−p2+1) + α(n+1)(??)

◦ As β ≥ α, we have αnβ ≥ α(n+1) (1) ;
◦ As β ≥ α, we have

β(p2−p1−1) ≥ α(p2−p1−1)

β(p2−p1) ≥ α(p2−p1−1)β

(nβ)(p2−p1) > α(p2−p1−1)β

αp1(nβ)(p2−p1) > α(p2−1)β

αp1(nβ)(n−p1+1) > α(p2−1)β(nβ)(n−p2+1)(2)

From (1) and (2) we deduce that αp1(nβ)(n−p1+1) + αnβ >
α(p2−1)(nβ)(n−p2+1) + α(n+1) which contradicts (??). This con-
tradiction, taken with the fact that we took the minimal value for
dV (v, ϑ) and the maximal one for dV (u, ϑ), allows us to conclude
that dENBγd satisfies (D5).

Let us show that dENBγd satisfies (D7) for any non-drastic dis-
tance d.
Let d be a non-drastic propositional distance. Let ϑ1 and ϑ2 be
two valuations. Let M1 and M2 be two Kripke models. Assume
that M1 = M(ϑ1 → v) and M2 = M(ϑ2 → v) such that
d(ϑ1, Vv) < d(ϑ2, Vv). Let heightM(v) = p. Thus, we have
(n− p)× d(ϑ1, Vv) < (n− p)× d(ϑ2, Vv). Furthermore, we have
(n− p)× d(ϑ1, Vv)×

∑n
i=p+1(γ(i−1)) < (n− p)× d(ϑ2, Vv)×∑n

i=p+1(γ(i−1)). Therefore, the definition of dENBγd , allows us to
conclude that dENBγd (M,M1) < dENBγd (M,M2).

The fact that, for any non-drastic distance, dENBγd satisfies (D7)
allows us to conclude, using Proposition 3, that it satisfies (D6) as
well.

5.2 Tree-based Distance
We define a family of distances between Kripke models based on the
tree models that correspond to them.

The idea is to unveil the Kripke models into trees and to compare
how much these trees can be matched, by looking at the best match-
ing.

Definition 19 (Tree Model). Let M = 〈W,R, V,w0〉 be a finite
pointed Kripke model. The tree model corresponding to M is a tuple
〈W ′, R′, V ′, w0〉 where:

(i) W ′ = {w0} ∪ {σ = w0a1w1a2 · · · an−1wn−1anwn |
(w0, w1) ∈ Ra1 , . . . , (wn−1, wn) ∈ Ran}

(ii) R′ = {R′a | a ∈ A}

(iii) R′a = {(σ, σaw) | σ, σaw ∈W ′}
(iv) V ′w0

(p) = Vw0(p)
(v) V ′σaw(p) = Vw(p)

Definition 20 (Tree Function). Let M = 〈W,R, V,w0〉 be a mini-
mal finite pointed Kripke model. We denote by τ(M) the tree model
corresponding to M .

Proposition 13. LetM = 〈W,R, V,w0〉 be a minimal finite pointed
Kripke model. τ(M) is bisimilar to M .

Proof. Let M = 〈W,R, V,w0〉 be a minimal finite pointed Kripke
model and M ′ = 〈W ′, R′, V ′, w0〉 the corresponding tree model.
Let Z ⊆W ×W ′, such that Z = {(w0, w0)}∪{(w, σaw′) | ∃σ′ ∈
W ′ such that σ = σ′aiw}. By construction of M ′, it is clear that Z
is a bisimulation. Thus, M ↔–M

′.

Assume that we want to measure the distance betweenM andM ′.
First, we generate the corresponding tree models A and A′. We take
advantage of the Hamming distance dh to compare valuations. We
measure the distance between the roots of two trees and make the
sum with the distance between the sub-trees of A and A′ as follows:
for each sub-tree α of A, we recursively seek for the sub-tree α′ of
A′ whose distance with α is the smallest. Once all pairs (α, α′) are
found, we make the sum of the distances and apply a discounting
factor γ ∈ (0; 1]. Note that an α can only match one α′. In the event
that a sub-tree α does not have a corresponding sub-tree, we make
it correspond to a fictitious sub-tree π which, is at a distance dmax
of α, where dmax is the maximum Hamming distance between two
valuations.

Let DdT π
γ

m be a family of distances defined on a finite setM of
finite tree models containing at most m worlds.

Definition 21 (Tree-based Distance). Let M = 〈W,R, V,w〉 and
M ′ = 〈W ′, R′, V ′, w′〉 be two tree models containing at most m
worlds. Let γ ∈ (0; 1].

dT πγ(M,M ′) = h(w,w′) · γheightM(w)

+
∑
a∈A

dT πγa(τ(µ(M)), τ(µ(M ′)))

where

h(w ,w ′) =

{
dmax if w = π or w′ = π

dh(Vw, V
′
w′ ) otherwise

dT πγa (τ(µ(M)), τ(µ(M ′))) = min
b∈Bw,w

′
a

(
∑

(v,v′)∈b
dT πγ

(
〈W,R, V, v〉,
〈W ′, R′, V ′, v′〉

)
)

Bw,w
′

a = {b|b ∈ P((Ra(w) ∪ {π})× (R′a(w
′)) ∪ {π}) and

Ra(w) ⊆ dom(b) and R′a(w
′) ⊆ img(b)}

For a small enough discounting factor, dT πγ satisfies (D5). And,
as we compare the valuations of the worlds causing the difference
between the models, dT πγ satisfies (D7) and so (D6).

Proposition 14.

1. Given any discounting factor γ, dT πγ satisfies (D1)-(D4).
2. ∃λ ∈ (0; 1] such that ∀γ < λ, dT πγ satisfies (D5).
3. Given any discounting factor γ, dT πγ satisfies (D6) and (D7).

Proof. Let M = 〈W,R, V,w〉, M ′ = 〈W ′, R′, V ′, w′〉 and M ′′ =
〈W ′′, R′′, V ′′, w′′〉 be three tree models.

Let us show that dT πγ satisfies (D1). Suppose that
dT πγ(M,M ′) = 0. From the definition of dT πγ ,



dT πγ(M,M ′) = 0 if and only if

h(w,w′) · γheightM(w) = 0⇔ Vw = V ′w′ because γheightM(w) 6= 0

dT πγa(τ(M), τ(M ′)) = 0, ∀i ∈ N⇔ ∀a ∈ A,
if ∃v ∈ Ra(w), then ∃v′ ∈ R′a(w′) such that

h(v, v′) · γheightM(v) = 0

if ∃v′ ∈ R′a(w′), then∃v ∈ Ra(w) such that
h(v, v′) · γheightM(v) = 0

So we have dT πγ(M,M ′) = 0 if and only if M ↔–M
′. Thus dT πγ

satisfies (D1).

Let us show that dT πγ satisfies (D2).
Note that when the distance dT πγ(M,M ′) is calculated, we
can use the relation b of each level of the tree to build a new
relation β ⊆ W × W ′ for the whole model. Note also that
dT πγ(M,M ′) =

∑
(v,v′)∈β

h(v, v′) · γheightM(v) , where β is this

new relation. Let dT πγ(M,M ′) =
∑

(v,v′)∈β1
h(v, v′) · γheightM(v)

and dT πγ(M ′,M) =
∑

(v′,v)∈β2
h(v′, v) · γheightM’(v

′).

With an induction on the height of the tree, we show that from X to
Y the relation b is the same as from Y to X.
Here, β1 = β2, moreover, h (the Hamming distance) satisfies
(D2), which means that dT πγ(M,M ′) =

∑
(v,v′)∈β1

h(v, v′) ·

γheightM(v) =
∑

(v′,v)∈β2
h(v′, v) · γheightM’(v

′) = dT πγ(M ′,M).

Thus dT πγ satisfies (D2).

Let us show that dT πγ satisfies (D3).
Let dT πγ(M,M ′) =

∑
(v,v′)∈β1

h(v, v′) · γheightM’(v) and

dT πγ(M ′,M ′′) =
∑

(v′,v′′)∈β2
h(v′, v′′) · γheightM’(v

′) such

that β1 = {(v, v′)|v ∈ W ∪ {ε} and v′ ∈ W ′ ∪ {ε}} and
β2 = {(v′, v′′)|v′ ∈ W ′ ∪ {ε} and v′′ ∈ W ′′ ∪ {ε}}. Let β3 =
{(v, v′′)|∃v′ ∈ W ′ ∪ ε such that (v, v′) ∈ β1 and (v′, v′′) ∈ β2}.
Note that

∑
(v,v′′)∈β3

h(v, v′′) · γheightM(v) ≥ dT πγ(M,M ′′),

because β3 is not necessarily the best relation possible to minimize
the sum. Furthermore, we have h(v, v′′) ≤ h(v, v′) + h(v′, v′′),
for each v ∈ W ∪ {ε}, v′ ∈ W ′ ∪ {ε}, v′′ ∈ W ′′ ∪ {ε},
because h is subadditive. Thus,

∑
(v,v′′)∈β3

h(v, v′′) · γheightM(v) ≤∑
(v,v′)∈β1

h(v, v′) · γheightM(v) +
∑

(v′,v′′)∈β2
h(v′, v′′) · γheightM’(v

′).

So, dT πγ(M,M ′′) ≤ dT πγ(M,M ′) + dT πγ(M ′,M ′′)).

Let us show that dT πγ satisfies (D4). h being non-negative, it is
easy to see that the same is true for

∑
(v,v′)∈β

h(v, v′). Thus dT πγ is

non-negative.
Let us show that, there is a λ ∈ (0; 1] such that, for all γ < λ,

dT πγ satisfies (D5).
LetM1 andM2 be two Kripke models such that there corresponding
tree models contains at most m worlds. By fixing λ = 1

(m+1)·|P| , we
ensure that, for all γ < λ, a discordance at a height p can not be offset
by any errors at a height at least p+ 1. Indeed, with this discounting
factor, even if two models M and M ′ differ on one propositional
variable of the valuation of the pointed world and the models M and
M ′′ differ on all propositional variables of the valuation of all the
worlds except the pointed one, this γ ensure that dT πγ(M,M ′) >
dT πγ(M,M ′′). Thus dT πγ satisfies (D5).

Let us show that dT πγ satisfies (D7).
Let ϑ1 and ϑ2 be two valuations. Let M1 and M2 be two Kripke
models. Assume that M1 = M(ϑ1 → v) and M2 = M(ϑ2 → v)
such that d(ϑ1, Vv) < d(ϑ2, Vv). Let heightM(v) = p.

Thus, we have (n − p) × d(ϑ1, Vv) < (n − p) × d(ϑ2, Vv).
Furthermore, we have (n−p)×d(ϑ1, Vv)×

∑n
i=p+1(γ(i−1) < (n−

p)×d(ϑ2, Vv)×
∑n
i=p+1(γ(i−1). Therefore, the definition of dT πγ ,

allows us to conclude that dT πγ(M,M1) < dT πγ(M,M2).
The fact that dT πγ satisfies (D7) allows us to conclude, using

Proposition 3, that it satisfies (D6) as well.

5.3 Worlds Sets Distance
Finally, we define a family of distances DdWS

γ
d

m . Each distance of
this family is based on distances d between sets of worlds5, which
is itself based on a propositional distance (also noted d) between the
valuations associated with the worlds. Here we calculate, for each
height p, the distance between the two sets of valuations at a height
p. We also apply a discounting factor γ ∈ (0; 1] to each of the inter-
mediate distances.

Definition 22 (Worlds Sets Distance). Let M = 〈W,R, V,w〉 and
M ′ = 〈W ′, R′, V ′, w′〉 be two Kripke models containing at most m
worlds and d be a distance between world sets. Let γ ∈ (0; 1]. We
denote by dWSγd (M,M ′) the distance between M and M ′, defined
as follows:
dWSγd (M,M ′)=F(σ0(µ(M), µ(M ′))), . . . , σn(µ(M), µ(M ′)))
where:

σ0(M,M ′) = d({w}, {w′});
σ1(M,M ′) = avg{d(Ra(w), R′a(w′)) | a ∈ A};...
σn(M,M ′) = avg{d(Rai1◦· · ·◦Rain(w), R′ai1◦· · ·◦R

′
ain

(w′))

| aik 6= aik+1 ∈ A};

F(σ0, . . . , σn) =

m∑
i=0

(σi · γi).

For example, we can take advantage of the Hausdorff distance [13]
that we adapt to KD45n models.

Definition 23 (Hausdorff Distance). Let W and W ′ be two sets of
worlds. We define the Hausdorff distance between W and W ′ by:

H(W,W ′) = max

(
max(min(dh(w,w′)|w′ ∈W ′)|w ∈W )

max(min(dh(w,w′)|w ∈W )|w′ ∈W ′)

)

We denote by dWSγH the distance defined by Definition 22 using
the Hausdorff distance between worlds sets.

For any propositional distance d and a small enough discount-
ing factor, dWSγd satisfies (D5). As we check the valuations of the
worlds using a non-drastic distance d, dWSγd also satisfies (D7) and
so (D6). Contrastingly, if a drastic propositional distance D is used,
dWSγD does not satisfy (D7) nor (D6). Indeed, in this case, we do
not look at the discordance between the valuations of the worlds.

Proposition 15.

1. Given any propositional distance d and any discounting factor γ,
dWSγd satisfies (D1)-(D4).

5 d is supposed to satisfy the usual distance properties (indistinguishability,
symmetry, subadditivity and nonnegativity).
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Figure 1: Four Kripke models

γ = 1/2 M1,M2 M1,M3 M1,M4 M2,M3 M2,M4 M3,M4

dNB 6 5 5 6 6 5
dEBh 1,000 4,000 1,000 4,000 1,000 3,000
dENBγh 0,938 1,750 0,438 2,250 0,938 1,312
dT πγ 2,500 1,000 0,500 3,500 3,000 1,000
dWSγD

7 0,500 0,125 0,469 0,625 0,969 0,469
dWSγH 0,500 0,500 0,469 1,000 0,969 0,719

Table 1: Distances between models of Figure 1

(D5) (D6) (D7)
dNB

√
× ×

dEBd ×
√# √#

dENBγd
√γ √# √#

dT πγ
√γ √ √

dWSγd
√γ √# √#

Table 2: Distances and some properties they satisfy.
√

means satisfied by the distance,
√γ means satisfied for a

small enough discounting factor,
√# means satisfied if a

non-drastic distance is used, and × means not satisfied.

2. Given any propositional distance d, ∃λ ∈ (0; 1] such that ∀γ < λ,
dWSγd satisfies (D5).

3. And, for any non-drastic distance d, dWSγd satisfies (D6) and
(D7).

Proof. Let M = 〈W,R, V,w〉, M ′ = 〈W ′, R′, V ′, w′〉 and M ′′ =
〈W ′′, R′′, V ′′, w′′〉 be three Kripke models.

Let us show that dWSγd satisfies (D1).
By definition, we have M ↔–M

′ if and only if ∃Z ⊆ W ×W ′ such
that (w,w′) ∈ Z and ∀(v, v′) ∈ Z:

1. Vv = V ′v′
2. if ∃u ∈ W such that (v, u) ∈ Ra, then ∃u′ ∈ W ′ such that

(v′, u′) ∈ R′a and (u, u′) ∈ Z.
3. if ∃u′ ∈ W ′ such that (v′, u′) ∈ R′a, then ∃u ∈ W such that

(v, u) ∈ Ra and (u, u′) ∈ Z.

As d satisfies (D1), this is equivalent to, d({w}, {w′}) = 0 and
∀a ∈ A, d(Ra(w), R′a(w′)) = 0.
Likewise, ∀ak 6= ak+1, d(Ra0◦· · ·◦Ran(w), R′a0◦· · ·◦R

′
an(w′) =

0.
Which gives us, F(σ0(M,M ′), . . . , σn(M,M ′)) = 0 =
dWSγd (M,M ′).

Let us show that dWSγd satisfies (D2).
The fact that d satisfies (D2) tells us that ∀Ω,Ω′ sets
of worlds, d(Ω,Ω′) = d(Ω′,Ω). Thus, ∀Ω,Ω′ sets
of worlds,

∑
d(Ω,Ω′) =

∑
d(Ω′,Ω). Which leads

us to F(σ0(M,M ′), σ1(M,M ′), . . . , σn(M,M ′)) =
F(σ0(M ′,M), σ1(M ′,M), . . . , σn(M ′,M)), so
dWSγd (M,M ′) = dWSγd (M ′,M).

Let us show that dWSγd satisfies (D3).
The fact that d satisfies (D3) tells us that

∑
a∈A

d(Ra(w), R′′a(w′′)) ≤∑
a∈A

[d(Ra(w), R′a(w′))+d(R′a(w′), R′′a(w′′))]. So σ0(M,M ′′)) ≤

σ0(M,M ′) + σ0(M ′,M ′′).
Likewise, ∀i, σi(M,M ′′) ≤ σi(M,M ′) + σi(M

′,M ′′).
We clearly have dWSγd (M,M ′′) ≤ dWSγd (M,M ′) +
dWSγd (M ′,M ′′).

The fact that d satisfies (D4), allows us to conclude that dWSγd
satisfies (D4).

Let us show that, there is a λ ∈ (0; 1] such that, for all γ < λ,
dWSγd satisfies (D5).
Let M1 and M2 be two Kripke models such that there
corresponding tree models contains at most m worlds. Let
dmin = min(d(Ω,Ω′) > 0|Ω and Ω′ two sets of worlds) and
dmax = max(d(Ω,Ω′)|Ω and Ω′ two sets of worlds). By fixing
λ = dmin

(m+1)·dmax , we ensure that, for all γ < λ, a discordance at
a height p can not be offset by any errors at a height at least p + 1.
Indeed, with this discounting factor, even if two models M and M ′

differ on one propositional variable of the valuation of the pointed
world and the models M and M ′′ differ on all propositional vari-
ables of the valuation of all the worlds except the pointed one, this γ
ensure that dWSγd (M,M ′) > dWSγd (M,M ′′). Thus dWSγd satis-
fies (D5).

Let us show that dWSγd satisfies (D7).
Let ϑ1 and ϑ2 be two valuations, M1 and M2 be two Kripke mod-
els and d a non-drastic distance between sets of worlds. We can as-
sume that d is based on a non-drastic propositional distance dV . As-
sume that M1 = M(ϑ1 → v) and M2 = M(ϑ2 → v) such that
dV (Vv, ϑ1) < dV (Vv, ϑ2). Let heightM(v) = p.

Thus, we have σi(M,M1) = 0 = σi(M,M2), for all i 6=
p. Furthermore, we have σp(M,M1) = avg{d(Ω,Ω1)|Ω =
Rai1 ◦ · · · ◦ Rain (w),Ω1 = Rai1 ◦ · · · ◦ Rain (w) and aik 6=
aik+1 ∈ A} and σp(M,M2) = avg{d(Ω,Ω2)|Ω = Rai1 ◦ · · · ◦
Rain (w),Ω2 = Rai1 ◦ · · · ◦ Rain (w) and aik 6= aik+1 ∈ A}.
If v 6∈ Ω, then d(Ω,Ω1) = 0 = d(Ω,Ω2). If v ∈ Ω, then
d(Ω,Ω1) = dV (Vv, ϑ1) < dV (Vv, ϑ2) = d(Ω,Ω2). This gives
us σp(M,M1) < σp(M,M2) and allows us to conclude that
dWSγd (M,M1) < dWSγd (M,M2).

The fact that dWSγd satisfies (D7) allows us to conclude, using
Proposition 3, that it satisfies (D6) as well.

5.4 Comparing Distances

Our distances capture different intuitions about how close two Kripke
models are. A key question when dealing with distances d is to de-
termine how fine-grained they are. Stating it formally calls for the
following notion of refinement:



Definition 24 (Refinement). Let d1 and d2 be two distances. d1
is at least as fine as d2 (denoted d1 ≥f d2) if and only if ∀a, b, c,
if d1(a, b) < d1(a, c) then d2(a, b) < d2(a, c) and if d1(a, b) =
d1(a, c) then d2(a, b) = d2(a, c).

Basically, a distance refines another one if it allows to obtain a
finer distinction between models. So, if a distance can be refined by
another (sensible) one, this can be seen as a flaw of the first, that does
not do the full discrimination work.

We can show that there is no such refinement relation between the
distances we have introduced:

Proposition 16. dNB, dEBh, dENBγh , dT πγ , dWSγD and dWSγH
are pairwise incomparable with respect to ≥f .

This result shows that we have obtained six truly different types of
distances.

Let us now illustrate the differences between these distances on a
small example.

Example 1. Consider the four models in Figure 1. The differences
between M1 and M2 are in w′1 and w′2 (height = 1). In the first
model agent 1 believes 0001 and agent 2 believes 1000, and in the
second model agent 1 believes 0011 and agent 2 believes 1100. The
difference between M1 and M3 is in w′′3 (height = 2). The differ-
ences between M1 and M4 are in w′′′3 , w′′′4 and w′′′5 (height = 2).
Table 1 reports the distances between those models. One can check
that dNB, dEBd, dENBγd , dT πγ , dWSγD and dWSγH do not order
these four models in the same way. Note also that the discounting
factor γ = 1/2 is not small enough to ensure that (D5) is satisfied
by each distance.

Another way to compare the distances under consideration is to
focus on the satisfaction of expected properties (D5)-(D7). Table 2
summarizes the obtained results.

6 USE OF DISTANCES FOR BELIEF REVISION
We show now how the families of distances considered in the pre-
vious sections can be exploited to revise Kripke models, or more
generally finite sets of Kripke models.

Revising a Kripke model by a formula could lead to several (but a
finite number of) models, being able to take account for such sets is
indeed essential in order to possibly iterate the revision.

Let α be a formula such that deg(α) = p and M′ be a finite
set of (finite, pointed KD45n) Keipke models containing at most m′

worlds.
In this case, each distance d of a family Ddm is defined on a finite

set M of finite Kripke models containing at most m worlds such
that m = max(m′, |A|p · |P|p+1). Doing so, we ensure that we can
compare all models ofM′ with the models of α.

We denote by Mod(α) the set of Kripke models M that satisfy
α. The revision of M by α is a set of Kripke models, noted M ◦
α. We expect from the revision operator ◦ that it satisfies a set of
rationality conditions, reminiscent of those proposed by Katsuno and
Mendelzon in the case of classical propositional logic [17]:

(R1) M◦ α ⊆ Mod(α)
(R2) ifM∩Mod(α) 6= ∅, thenM◦ α =M∩Mod(α)
(R3) if Mod(α) 6= ∅, thenM◦ α 6= ∅
(R4) if Mod(α) = Mod(β), thenM◦ α =M◦ β
(R5) (M◦ α) ∩Mod(β) ⊆M◦ (α ∧ β)
(R6) if (M◦ α) ∩Mod(β) 6= ∅,

thenM◦ (α ∧ β) ⊆ (M◦ α) ∩Mod(β)

In the case of classical propositional logic, Katsuno and Mendel-
zon gave a representation theorem for characterizing all revision op-
erators satisfying the expected conditions. This theorem is based on
the concept of faithful assignment. It is interesting to adapt this con-
cept to our framework to obtain conditions which are sufficient to
ensure the rationality of a revision operator:

Definition 25 (Faithful assignment). A faithful assignment is a
mapping that associates with any finite set M of Kripke models a
pre-order ≤M on the set of Kripke models, such as:

◦ if M1 ∈M and M2 ∈M, then M1 'M M2 ;
◦ if M1 ∈M and M2 6∈ M, then M1 <M M2 ;
◦ ifM1 =M2, then ≤M1=≤M2

We have the following result:

Proposition 17. Let ◦ be a revision operator that associates with any
finite setM of Kripke models and any formula α of L a set of Kripke
models. If there exists a faithful assignment that associates with each
finite set of Kripke modelsM a nœtherian6 total pre-order≤M such
thatM◦ α = min(Mod(α),≤M) , then ◦ satisfies (R1)-(R6).

Proof. The proof is identical to the proof of the representation the-
orem in [17] except that interpretations are replaced by finite sets of
KD45n pointed finite Kripke models and propositional formulas are
replaced by formulas of L.

Assume that there is a faithful assignment that maps M to a
nœtherian total pre-order ≤M. We define a revision operation ◦ by
M◦ α = Min(Mod(α),≤M). We show that ◦ satisfies postulates
(R1)-(R6). It is obvious that postulate (R1) follows from the defini-
tion of the revision operation ◦. It is also obvious that postulates (R3)
and (R4) follow from the definition of the faithful assignment.

We show postulate (R2). It suffices to show that ifM∩Mod(α)
is not empty then M ∩ Mod(α) = Min(Mod(α),≤M). M ∩
Mod(α) ⊆ Min(Mod(α),≤ϕ) follows from the conditions of the
faithful assignment. To prove the other containment, we assume that
M ∈ Min(Mod(α),≤ϕ) and M 6∈ M ∩ Mod(α). Since M ∩
Mod(α) is not empty, there is a KD45n Kripke model M ′ such that
M ′ ∈M∩Mod(α). ThenM 6≤M M ′ follows from the conditions
of the faithful assignment. Morover, M ′ ≤M M follows from the
conditions of the faithful assignment. Hence, M is not minimal in
Mod(α) with respect to ≤M. This is a contradiction.

We show postulates (R5) and (R6). It is obvious that if (M ◦
α) ∩ Mod(β) is empty then (R6) holds. Hence, it suffices to
show that if Min(Mod(α),≤M) ∩ Mod(β) is not empty then
Min(Mod(α),≤M)∩Mod(β) = Min(Mod(α∧β),≤M) holds.

Assume that M ∈ Min(Mod(α),≤M) ∩ Mod(β) and
M 6∈Min(Mod(α∧β),≤M). Then, sinceM ∈Mod(α∧β), there
is a KD45n finite Kripke model M ′ such that M ′ ∈ Mod(α ∧ β)
and M ′ <M M . This contradicts M ∈Min(Mod(α),≤M).
Therefore, we obtain Min(Mod(α),≤M) ∩ Mod(β) ⊆
Min(Mod(α ∧ β),≤M).

To prove the other containment, we asume that M ∈
Min(Mod(α ∧ β),≤M) and M 6∈ Min(Mod(α),≤M) ∩
Mod(β). Since M ∈ Mod(β), M 6∈ Min(Mod(α),≤M)
holds. Since we assume that Min(Mod(α),≤M) is not empty,
suppose that M ′ is a KD45n finite pointed Kripke model of
Min(Mod(α),≤M) ∩Mod(β). Then M ′ ∈ Mod(α ∧ β) holds.
Since we assume that M ∈ Min(Mod(α ∧ β),≤M) and ≤M is

6 A pre-order on a set E is nœtherian if there is no sequence of element of E
that is infinite and strictly decreasing for the pre-order.



total, M ≤M M ′ holds. Thus M ∈ Min(Mod(α),≤M follows
from M ′ ∈Min(Mod(α),≤M). This is a contradiction.

Given a distance d between Kripke models and a finite set of
Kripke modelsM, we note for any Kripke models M , d(M,M) =
min
M′∈M

(d(M,M ′)) and height(M) = max
M∈M

(height(M)). As M
is finite, we can ensure that d(M,M) and height(M) are defined.
On this basis, one can easily associate with d and M a total pre-
order ≤M by stating that M1 ≤M M2 if and only if d(M1,M) ≤
d(M2,M).

To ensure that ≤M is nœtherian, we consider two additional con-
ditions on d :

Definition 26 (Bounded distance). A distance d is said to be
bounded if and only if for all finite set of Kripke modelsM, for all
formula α of L such that deg(α) = k, for all Kripke models M2

such that

◦ M2 satisfies α ;
◦ height(M2) > max(k + 1, height(M)),

there is a Kripke model M1 such that

◦ M1 satisfies α ;
◦ height(M1) ≤ max(k + 1, height(M)) ;
◦ d(M1,M) ≤ d(M2,M).

Definition 27 (Minimal model condition). A distance d between
Kripke models satisfies the minimal model condition if and only if
for all models M1 and M2, d(M1,M2) = d(µ(M1), µ(M2)).

When d is bounded, for any model M2 ∈ Mod(α), we know
that there is a model M1 ∈ Mod(α) such that height(M1) ≤
max (deg(α) + 1, height(M)) and d(M1,M) ≤ d(M2,M). Yet,
there is a finite number of models M1 of Mod(α) (up to bisimula-
tion) verifying height(M1) ≤ max (deg(α) + 1, height(M)), this
ensure that ≤M is nœtherian.

Definition 28 (Revision Operator). Let d be a bounded distance
verifying the minimal model condition. Let M be a set of KD45n
finite pointed Kripke models and let α be a formula. We assign to
M a nœtherian total pre-order ≤dM on KD45n finite Kripke mod-
els defined as follows: M1 ≤dM M2 if and only if d(M1,M) ≤
d(M2,M).
The revision operation ◦d associated with
this pre-order ≤dM is defined semantically:

M◦d α = min(Mod(α),≤dM).

So M is closer toM than M ′ when its distance with the models
ofM is lower than the distance of M ′ with the models ofM.

Proposition 18. Let d be any bounded distance verifying the mini-
mal model condition. The operator ◦d satisfies (R1)-(R6).

Proof. From proposition 17, it suffices to show that the assignment
defined in Definition 28 is a faithful assignment. Clearly ≤dM is a
total pre-order because ≤ is a total pre-order. We are going to show
that it is faithful.

• If M ∈ M and M ′ ∈ M then d(M,M) = d(M ′,M) = 0 by
definition of ≤dM. So we can not have M <dM M ′.

• If M ∈ M and M ′ 6∈ M then d(M,M) = 0 and d(M ′,M) =
k with k > 0. So d(M,M) < d(M ′,M), i.e. M ≤dM M ′.

• Finally, ifM≡M′ then clearly ≤dM=≤dM′ .

The last point is to check whether some of the distances introduced
satisfy the relevant conditions. Fortunately, this is the case:

Proposition 19. dNB, dEBd, dENBγh , dT πγ and dWSγH are
bounded and satisfy the minimal model condition.

Proof. Let us give the proof for dENBγh (the proofs for the other
distances are similar).

Let ϕ be a formula of L such that deg(ϕ) = k. Let M =
〈W,R, V,w0〉 and M2 = 〈W2, R2, V2, w

2
0〉 be two Kripke mod-

els such that height(M) = k′, M2 satisfies ϕ and height(M2) >
max(k + 1, k′).

• If M |= ϕ, if suffices to take M1 = M .
• Else, let κ = max(k + 1, k′) and M1 be the restriction of M to κ

(noted (M � κ)) define as usual [7]. So M1 = 〈W1, R1, V1, w
1
0〉

such that W1 = {w ∈ W2| height( w) ≤ κ}, R1 = R2 ∩ (W1 ×
W1), V1 = {Vw ∈ V2|w ∈ W1} and w1

0 = w2
0 . Thus, M1 is a

copy of M2 up to a modal depth of κ. Clearly, M1 satisfies ϕ and
height(M1) ≤ κ.

• We show that dENBγh is bounded. To do so, we show that
dENBγh(M,M1) ≤ dENBγh(M,M2). We have two cases to
consider:

1. If all the differences between M and M2 are at a depth higher
than κ, then, clearly, M |= ϕ so we have a contradiction.

2. If some of the differences between M and M2 are at a depth
lower than κ, then, by definition of dENBγh , the fact that
height(M1) < height(M2) implies that dENBγh(M,M1) <
dENBγh(M,M2).

From the definition of these distances, it is obvious that they sat-
isfy the minimal model condition.

Consequently, we can define AGM revision operators on the sets
of KD45n models based on the five distances dNB, dEBd, dENBγh ,
dT πγ and dWSγH. The distances dENBγh , dT πγ et dWSγH appear
as the most interesting ones (among those considered here), because
they also satisfy all the expected properties (D1)-(D7).

We now illustrate the five revision operators corresponding to
these distances.

Example 2. Let us consider the Kripke model M0 in Figure 2. In
this situation, agent 1 believes ¬x ∧ y, agent 2 believes x ∧ ¬y and
agent 3 believes x ∧ y. Agent 1 believes that agents 2 and 3 believe
x ∧ y, agent 2 believes that agent 1 believes x ∧ y and that agent 3
believes ¬x∧ y, agent 3 believes that agents 1 and 2 believe ¬x∧ y.
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Figure 2: Finite Kripke Model Before Revision

Let us look at the outcome of the revision of this model by the
formula α = x ∧ B1(¬y) ∧ B2(¬x) ∧ B3(¬x ∧ ¬y) for our five
revision operators ◦dNB, ◦dEBd , ◦dENBγ

d
, ◦dT πγ and ◦dWSγH . We

are revising the model by changing the real world and beliefs about
the real world of the three agents.



Figure 3 shows two Kripke models M1 and M2. Although both
models M1 and M2 are selected as models resulting of the revision 7

by operators ◦dNB, ◦dEBd and ◦dENBγ
d

,M2 is the only model result-
ing from the revision of M0 by α for the revision operators ◦dWSγH
and ◦dT πγ .
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Figure 3: Finite Kripke Models After Revision

Let us consider ◦dNB. Since the valuation of the pointed world
must change to satisfy α, all the models of α are equidistant from
M0. Let us now consider ◦dEBd and ◦dENBγ

d
. Since the valuation of

the world accessible for agent 3 must completely change (from xy
to xy) to satisfy α, this time again, all models of α are equidistant
fromM0. Finally, for ◦dT πγ and ◦dWSγH , as the associated distances
consider the valuation of each world at each height of the model, the
closest model is one which coincides with M0 but for the valuations.
Thus, dT πγ and dWSγH appear as the most appropriate distances
for defining distance-based revision operators.

In [2] the modeled revision is a subjective revision, which means
that the new information is received by one of the agents of the sys-
tem (thus, after the revision, subjective models of this agent will be
modified). Here, the revision which is defined is that of the observer
of the multi-agent system, which describes the real world and the
beliefs of the agents.

7 Conclusion
In this paper we have investigated distances between KD45n Kripke
models. The aim was to characterize revision operators based on
these distances. We have identified properties that expected distances
should satisfu, introduced distances verifying those properties, and
showed that these distances are incomparable with respect to refine-
ment. Then, we have showed that the representation theorem in terms
of faithful assignment defined by Katsuno and Mendelzon [16] can
be adapted to define the revision of a KD45n Kripke model by a for-
mula. Finally, we have showed that all the distances we defined can
be used to define distance-based revision operators.

Clearly enough, the distances defined here make sense for other
classes of Kripke models than KD45n ones. However it is not clear
that the set of expected properties should remain the same. Identify-
ing reasonable conditions to be satisfied by distances when revising
for example preferences, programs, etc. is a perspective for further
research.
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