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Abstract. AGM belief change aims at modeling the evolution of an agent’s be-
liefs about its environment. In many applications though, a set of agents sharing
the same environment must be considered. For such scenarios, beliefs about other
agents’ beliefs must be taken into account. In this work, we study private expan-
sion and revision operators in such a multi-agent setting. More precisely, we in-
vestigate the changes induced by a new piece of information made available to
one agent in the set. We point out an adaptation of AGM expansion and revision
postulates to this setting, and present expansion and revision operators.

1 Introduction

Belief change aims at finding adequate ways to make the beliefs of an agent evolve
when she faces new evidence. The main theoretical framework for belief change is
AGM (Alchourrón-Gärdenfors-Makinson) theory and its developments [1, 14, 13]. In
most works on belief revision, the belief set of the agent consists of beliefs about the
environment (the world), and is represented by a set of formulas in classical logic. How-
ever, in many applications, an agent is not alone in her environment, but shares it with
other agents, who also have beliefs. Beliefs about the beliefs of other agents is an im-
portant piece of information, in order to make the best decisions and to perform the
best actions. Using beliefs on beliefs of other agents is for instance crucial in game
theory [5, 6, 22, 18]. The most common logical tools for representing beliefs on beliefs
of other agents are epistemic logics. So belief change in epistemic logics is an impor-
tant issue. There exist some works on the connections between epistemic logics and
belief change theory. However most of them study how to encode belief change oper-
ators within models with accessibility relations representing plausibility levels, which
guide the revision process [23, 8, 10, 21]. Here, we are interested in another connection
between epistemic logics and belief change theory that is closer to the AGM approach.
Our objective is to design operators that change the beliefs of the agents in standard
KD45n models. This task is more complicated than in the standard AGM framework,
because, in a multi-agent context, the new pieces of evidence can take different forms.
For instance, a new piece of evidence can be either observed/transmitted/available to
every agent or only to some of them. This kind of issue has already been studied in
epistemic logics with announcements, where public and private announcements lead to
distinct belief changes [24, 4]. We use the terms ”public change” and ”private change”
in the following. A public change is a change that is produced by a piece of evidence
available to every agent. In this case, we are in the standard AGM case, and we can
use the standard AGM machinery in order to define adequate belief change operators.
A private change is a change that is produced by a piece of evidence available to one



agent only. This means that the beliefs of this agent must change, whereas the beliefs of
the other ones remain unchanged. In this case, we cannot directly apply AGM operators.
Specific operators are required and this is what we present in this work. More precisely
the aim of this paper is to define and study a multi-agent belief change setting, where
the beliefs of the agents are encoded by a KD45n model. We consider private change,
so a given agent receives some new piece of evidence, and one wants to define the new
KD45n model that represents the new epistemic situation. We consider only objective
pieces of evidence, i.e., evidences about the environment (world). The problem of con-
sidering change by subjective pieces of evidence, i.e., evidences about the beliefs of
other agents, is more difficult and is left for future work. We study both expansion and
revision. For each case, we provide a translation of AGM postulates for the multi-agent
setting, and some specific operators. The rest of the paper is as follows. First, we give
some formal preliminaries about KD45n models and AGM belief change theory. Then,
we translate the AGM postulates for expansion to the multi-agent setting. In the next
sections, we present a particular expansion operator, we translate the AGM postulates
for revision, and we point out a family of revision operators. Finally we discuss some
related works before concluding. For space reasons we cannot give the proofs, they can
be found in the corresponding technical report [11].

2 Preliminaries

We consider a propositional language L0 built up from a finite set of propositional
variables P and the usual connectives. ⊥ and > represent respectively contradiction
and tautology. Let K be a belief set (i.e., a deductively closed set of formulas) and let
ϕ be a formula. K + ϕ denotes the expansion of K by ϕ, which is the new belief set
obtained by adding ϕ to K. And K ∗ ϕ denotes the revision of K by ϕ. Alchourrón,
Gärdenfors and Makinson [1, 14] pointed out some postulates for the expansion and
revision of belief sets. These postulates logically encode the constraints expected on
the behaviour of expansion/revision operators. Several representation theorems in terms
of maximal consistent sets [1], plausibility relations on formulas [14], or plausibility
relations on worlds exist [17], allowing to define operators with the expected properties.
We are interested here in a framework with several agents, each of them having her
own beliefs about the state of the world and about the beliefs of the other agents.. This
requires the use of epistemic logic. Formally, let A = {1, . . . , n} be a finite set of
agents. We consider the language L containing the propositional language L0 plus one
belief operator Bi for each agent i ∈ A. In addition, we sometimes use Bk

i to abbreviate
a sequence of k operators Bi (i.e., B0

iϕ abbreviates ϕ and Bk+1
i ϕ abbreviates BiB

k
i ϕ,

for k ≥ 0.) A formula of the form Biϕ is read ‘agent i believes that ϕ is true’. Formulas
in L0 are also called objective formulas, while subjective formulas are formulas which
are not objective. In order to give the right interpretation to our formulas, especially, to
the operators Bi, we use the standard system KD45n for n-agent doxastic logic [12].
Such a system consists of the set of formulas in L that can be derived using some
axioms and inference rules. The same set of validities can be captured using a semantic
approach. The most common one is based on Kripke models.

Definition 1 (Kripke Model). A Kripke model is a tuple 〈W,R, V 〉 where W 6= ∅ is
a set of possible worlds, R = {Ri | i ∈ A}, with Ri a binary accessibility relation



for agent i that is serial, transitive and Euclidean, and V : W → 2P is a valuation
function. For each world w ∈ W , V (w) is the set of propositional variables which are
true at w. A pointed Kripke model is a pair (M,w), where M = 〈W,R, V 〉 is a Kripke
model and w ∈W is the real world.

Ri(w) denotes the set of possible worlds that are accessible from w for agent i, that
is, Ri(w) = {w′ | (w,w′) ∈ Ri}. We note (M,w) |= ϕ the fact that the formula
ϕ is satisfied at the world w in the model M . This notion is defined using the usual
satisfaction relation such that (M,w) |= Biϕ iff ∀w′ ∈ W if (w,w′) ∈ Ri then
(M,w′) |= ϕ. We use ‖ϕ‖M to denote the set of possible worlds of M that satisfy ϕ,
that is, ‖ϕ‖M = {w : w ∈ W and (M,w) |= ϕ}. Two pointed Kripke models may
satisfy the same set of formulas, and are then considered equivalent. It is known that
if two pointed Kripke models are bisimilar1 (noted (M,w)↔–(M ′, w′)), then they are
equivalent. A pointed KD45n model (M,w) represents a set of n belief sets K(M,w)

i ,
one for each agent i ∈ A, where K(M,w)

i = {ϕ | (M,w) |= Biϕ}. We also define the
objective belief set of agent i (i.e., what i believes about the state of the world). This is
the set O(M,w)

i = K
(M,w)
i ∩ L0. In the following, for simplicity reasons, we make the

assumption that the new piece of evidence is a consistent formula. Making a change by
an inconsistent formula is allowed by AGM postulates, but is not of much interest in
practical applications. Furthermore, the axiom D forbids inconsistent beliefs.

3 Private Expansion

Our goal in this section is to provide an extension of the AGM postulates to a multi-
agent setting. We focus on private expansion operators: only one agent increases her
beliefs, on a private announcement, the beliefs of other agents as well as the higher
order beliefs remain unchanged. Let us denote the result of the private expansion of
the model (M,w) by the objective formula ϕ for agent a as the model (M,w) +aϕ =
(M ′, w′) = (〈W ′, R′, V ′〉, w′). The AGM postulates for expansion can be rewritten as
follows:
(En0) V ′(w′) = V (w)
(En1) If (M,w) 6|= Ba¬ϕ then (M,w) +a ϕ ∈ KD45n

(En2) (M,w) +a ϕ |= Baϕ
(En3) (M,w) |= Biψ iff (M,w) +a ϕ |= Biψ, for i 6= a
(En4) If (M,w) 6|= Ba¬ϕ then (M,w) |= Bk

aBiψ iff (M,w) +a ϕ |= Bk
aBiψ, for

i 6= a and k ≥ 1
(En5) If (M,w) |= Baψ then (M,w) +a ϕ |= Baψ
(En6) If (M,w) |= Baϕ then (M,w) +a ϕ↔–(M,w)
(En7) If (M1, w1) |= Biψ implies (M2, w2) |= Biψ then

(M1, w1) +a ϕ |= Biχ implies (M2, w2) +a ϕ |= Biχ
(En8) For all (M ′, w′), if (M ′, w′) satisfies (En1)–(En7) then (M,w) +a ϕ |= Baψ

implies (M ′, w′) |= Baψ

Most of these postulates are a translation of AGM ones for KD45n models. The other
ones mostly translate the fact that the only things that change are the beliefs of agent a
about the state of the world. (En0) says that the true world does not change: as usual

1 for the definition, see [9]



in belief revision the world does not change,2 it is only the beliefs of the agents that
evolve. (En1) says that, in the event that new piece of information does not contradict
the beliefs of the agent, after the private expansion, the model remains KD45n. Indeed,
when the expansion is done by a formula that contradicts the beliefs of the agent, the
result infringes the axiom D for the agent. The model is therefore no longer KD45n. In
fact, it may happen that the model is not KD45n if the agent a makes an expansion by
a formula that contradicts her current beliefs. (En2) is the success postulate. It states
that after the private expansion by ϕ, the agent a believes ϕ. Postulate (En3) states
that the beliefs of all agents except a do not change. Postulate (En4) states that the
beliefs of the agent a about other agents do not change. These two postulates can be
seen as an adaptation of Parikh relevant revision postulates in this multi-agent setting
[19]. Postulates (En5) and (En6) ensure that if ϕ is already believed by agent a then
the private expansion does not change anything, so the resulting model is bisimilar to
the initial one. Postulate (En7) is the translation of the monotonicity property. It states
that, if a model allows more inferences than another one, then the expansion of the first
one allows more inferences than the expansion of the second one. Postulate (En8) is
the minimality postulate. It states that the result of the expansion of the model by ϕ is a
minimal belief change. These postulates imply that:

Proposition 1. There is a unique (up to modal equivalence) private expansion operator
satisfying (En0)–(En8).

The following proposition shows that our private expansion operator is closely re-
lated to the AGM expansion operator.

Proposition 2. Let +a be the pivate expansion operator for a satisfying postulates
(En0)–(En8). The + operator defined by O(M,w)

a + ϕ = O
(M,w)+aϕ
a is the AGM

expansion operator (i.e., it satisfies (K+1)–(K+6) [1]).

4 A Private Expansion Operator
Let us now give a constructive definition of the private expansion operator characterized
in the previous section. In the remainder of this paper, we use as a notation for the newly
created worlds (due to expansion or revision) vew. This notation means that the world vew
is a “copy” of the world w (this copy is essential to avoid losing the higher-order beliefs
of the agent who performs the expansion or the revision of her beliefs) and having the
valuation e.

Definition 2. Expansion of (M,w0) by ϕ for agent a.
Let (M,w0) = (〈W,R, V 〉, w0) be a KD45n pointed model, and ϕ be a consistent
objective formula (i.e., ϕ ∈ L0). We define the private expansion of (M,w0) by ϕ for
agent a as (M,w0) +a ϕ = (〈W ′, R′, V ′〉, w′0), such that:

– E = {V (w) | w ∈ Ra(w0) ∩ ‖ϕ‖M}
– W ′ =W ∪Wϕ ∪ {w′0} where

• Wϕ =
⋃

w∈Ra(w0)

Wϕ
w and Wϕ

w =
⋃

e∈E
{vew}

– R′a = Ra ∪Rϕ
a ∪R0

a where
• Rϕ

a = {(wϕ
1 , w

ϕ
2 ) | w

ϕ
1 , w

ϕ
2 ∈Wϕ}

2 When the world evolves, one has to use update [16, 15].



• R0
a = {(w′0, wϕ) | wϕ ∈Wϕ}

– R′i = Ri ∪R
−→ϕ
i ∪R0

i , for i 6= a, where

• R
−→ϕ
i = {(vew, w′) | wRiw

′ and vew ∈Wϕ}, for i 6= a
• R0

i = {(w′0, w) | (w0, w) ∈ Ri}, for i 6= a

– V ′(w) = V (w), for w ∈W
– V ′(vew) = e, for vew ∈Wϕ

– V ′(w′0) = V (w0)

When the agent a expands her beliefs, the model must change in order to represent
these new beliefs, but the beliefs of other agents should remain unchanged. The new
set of possible worlds W ′ contains all possible worlds of the initial model plus a new
real world w′0 and a set of worlds Wϕ representing the new beliefs of a. The set Wϕ

contains a copy of each world in Ra(w0) which does not contradict ϕ. The new acces-
sibility relation R′a contains the initial relation Ra and the set R0

a. The set R0
a consists

of pairs (w′0, w
ϕ) where wϕ ∈Wϕ, thus modifying the beliefs of the agent performing

the expansion. The set Rϕ
a consists of the pairs (wϕ

1 , w
ϕ
2 ) ∈ Wϕ. The worlds in Wϕ

thus form a clique, because they are equally plausible for the agent performing the ex-
pansion. Each accessibility relationR′i, for i 6= a, contains the initial relationRi and the
sets R0

i and R
−→ϕ
i . The set R0

i consists of all pairs (w′0, w) such that (w0, w) ∈ Ri, thus
preserving the beliefs of agents not performing expansion and higher-order beliefs of all
agents. The set R

−→ϕ
i consists of pairs (vew, w

′), where vew ∈Wϕ such that (w,w′) ∈ Ri,
thus keeping higher-order beliefs of the agent performing the expansion. We can now
show that:

Proposition 3. The operator + satisfies (En0)–(En8).

As a direct consequence of Proposition 1, we know that this operator is the unique
private expansion operator. Let us now illustrate the behaviour of this private expansion
operator on a simple example.

Example 1. Consider the KD45n model (M,w0) of Figure 1. In this situation, agent 1
believes ¬p and she believes that agent 2 also believes ¬p. Agent 2 believes ¬p ∧ ¬q,
and she believes that agent 1 believes ¬p. After the expansion by q, agent 1 must believe
¬p∧q. The obtained model (M ′, w′0) is reported as well on Figure 1. The world having
the valuation ¬p ∧ q has to be duplicated in order to keep the higher-order beliefs of
agent 1. Contrastingly, the beliefs of agent 2 remain unchanged, so in particular she still
believes that agent 1 believes ¬p.

(M,w0)
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Fig. 1. (M,w0) +1 q



5 Private Revision
Let us turn now to the definition of private revision operators. These operators behave
like expansion when there is no inconsistency between the beliefs of the agent and the
new piece of evidence, but, unlike expansion, do not trivialize when this is not the case.

Let us denote the result of the private revision of the model (M,w) by the objective
formula ϕ for agent a to be the model (M,w) ?aϕ = (M ′, w′) = (〈W ′, R′, V ′〉, w′).
The AGM postulates for revision can be rewritten as follows:
(Rn0) V ′(w′) = V (w)
(Rn1) (M,w) ?a ϕ ∈ KD45n

(Rn2) (M,w) ?a ϕ |= Baϕ
(Rn3) (M,w) |= Biψ iff (M,w) ?a ϕ |= Biψ, for i 6= a
(Rn4) (M,w) |= Bk

aBiψ iff (M,w) ?a ϕ |= Bk
aBiψ, for i 6= a

(Rn5) If (M,w) ?a ϕ |= Biψ then (M,w) +a ϕ |= Biψ
(Rn6) If (M,w) 6|= Ba¬ϕ, then (M,w) +a ϕ↔–(M,w) ?a ϕ
(Rn7) If (M1, w1)↔–(M2, w2) and |= ϕ ≡ ψ, then (M1, w1) ?a ϕ↔–(M2, w2) ?a ψ
(Rn8) If (M,w) ?a (ϕ ∧ ψ) |= Biχ then ((M,w) ?a ϕ) +a ψ |= Biχ
(Rn9) If (M,w) ?a ϕ 6|= Ba¬ψ, then ((M,w) ?a ϕ) +a ψ |= Biχ implies (M,w) ?a

(ϕ ∧ ψ) |= Biχ.
(Rn1) ensures that the model obtained after a revision is still a KD45n model. (Rn2)
is the success postulate, it states that ϕ is believed by a after the revision. (Rn3) states
that the beliefs of all agents except a do not change. (Rn4) states that the beliefs of
the agent a about other agents do not change. These two postulates can be seen as an
adaptation of Parikh relevant revision postulates in this multi-agent setting [19]. (Rn5)
and (Rn6) state that when the new piece of evidence is consistent with the beliefs of
the agent, revision is just expansion. (Rn7) is an irrelevance of syntax postulate, stating
that if two formulas are logically equivalent, then they lead to the same revision results.
(Rn8) and (Rn9) state when the revision by a conjunction can be obtained by a revision
followed by an expansion. Let us now show that the revision operators satisfying those
postulates are conservative extensions of the usual AGM belief revision operators:

Proposition 4. Let ?i be an revision operator satisfying postulates (Rn0)–(Rn9). The
? operator defined as O(M,w)

i ? ϕ = O
(M,w)?iϕ
i is an AGM revision operator (i.e., it

satisfies (K*1)–(K*8) [1]).

6 A Family Of Private Revision Operators
Let us now define a family of private revision operators. These operators are defined
similarly to the expansion operator of the previous section, but in the cases when the
new piece of evidence is inconsistent with the current beliefs of the agent they use a
classical AGM belief revision operator ◦ in order to compute the new beliefs of the
agent.

Definition 3. Revision of (M,w0) by ϕ for agent a.
Let (M,w0) = (〈W,R, V 〉, w0) be a KD45n model, let ϕ be a consistent objective
formula (i.e., ϕ ∈ L0), and let ◦ be an AGM revision operator. We define the private
revision of (M,w0) by ϕ for agent a (with revision operator ◦) as (M,w0) ?

◦
a ϕ =

(〈W ′, R′, V ′〉, w′0), such that:
– if Ra(w0) ∩ ‖ϕ‖M 6= ∅

• then E = {V (w) | w ∈ Ra(w0) ∩ ‖ϕ‖M}



• else E = {e | e ⊆ P and e |= O
(M,w0)
a ◦ ϕ}

– W ′ =W ∪Wϕ ∪ {w′0} where
• Wϕ =

⋃
w∈Ra(w0)

Wϕ
w and Wϕ

w =
⋃

e∈E
{vew}

– R′a = Ra ∪Rϕ
a ∪R0

a where
• Rϕ

a = {(wϕ
1 , w

ϕ
2 )|w

ϕ
1 , w

ϕ
2 ∈Wϕ}

• R0
a = {(w′0, wϕ)|wϕ ∈Wϕ}

– R′i = Ri ∪R
−→ϕ
i ∪R0

i for i 6= a, where
• R

−→ϕ
i = {(vew, w′)|wRiw

′, vew ∈Wϕ} for i 6= a
• R0

i = {(w′0, w)|(w0, w) ∈ Ri} for i 6= a
– V ′(w) = V (w) for w ∈W
– V ′(vew) = e for vew ∈Wϕ

– V ′(w′0) = V (w0)

The construction of the revised model is similar to the construction of the expanded
model discussed earlier. Only the new set of worlds Wϕ is different: if the new infor-
mation ϕ is considered possible by agent a, she performs an expansion, otherwise, each
of the worlds of the new set Wϕ has as valuation a (propositional) model of the new
information ϕ.

Let us now show that these operators exhibit the expected logical properties:

Proposition 5. The operators ?◦a satisfy (Rn0)–(Rn9).

Let us now illustrate the behaviour of these private revision operators on a simple
example.

Example 2. We consider the model (M,w0) of Figure 2, where agent 1 believes ¬x ∧
¬y and believes that agent 2 believes x ∧ y. Agent 2 believes x ∧ y and believes that
agent 1 believes x↔ y. After the revision by x∧y, agent 1 must believe x∧y. Whereas
the beliefs of agent 2 remain unchanged. The obtained model (M ′, w′0) is reported as
well in Figure 2. In this example, agent 1 uses Dalal’s AGM revision operator ◦D [17].
We can observe that the revised model obtained using Definition 3 may not be minimal.
Nevertheless, a minimal model can be obtained via a bisimulation contraction. Here,
this leads to the model (M ′′, w′0).
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Fig. 2. (M ′′, w′0)↔–(M,w0) ?
◦D
1 (x ∧ y)

Our approach to private revision can be encoded in a formalism called dynamic
epistemic logic [7]. To provide such an encoding, we need event models with assign-
ments, as proposed in [25]. The idea is, for a given formula ϕ, to create a specific event



model such that its execution simulates the revision by ϕ. An event model is a structure
N = 〈S, T, pre,pos〉, where S is a non-empty set of possible events; T = {Ti : i ∈ A},
where Ti is a binary accessibility relation for agent i; pre : S → L is a function that re-
turns, for each possible event s ∈ S, a formula in L representing its pre-condition; and
pos : S → (P → {>,⊥}) is a function that returns, for each possible event s ∈ S, its
post-condition. The post-condition is an assignemnt of propositional variables to > or
⊥. Thus, pos is used to reset the valuations after the execution of the events. A pointed
event model is a pair (N, s), where s ∈ S is the actual event. The product of (M,w)
by (N, s) is a new pointed model (MN , w.s) where MN = 〈WN , RN , V N 〉, WN =
{w.s | M,w |= pre(s)}, RN = {(w.s, w′.s′) : (w,w′) ∈ Ra and (s, s′) ∈ Ta} and
V N (w) = {p | pos(w)(p) = >}.

In the sequel, we show that the revision of Definition 3 is equivalent to a specific
model product. More precisely, (M,w0) ?

◦
a ϕ and (MN?◦a , w.s0) are bisimilar, where:

– S = {s0, s>} ∪ {sew | vew ∈Wϕ}
– Ta = {(s0, sew) | vew ∈Wϕ} ∪ {(se1w1

, se2w2
) | ve1w1

, ve2w2
∈Wϕ} ∪ {(s>, s>)}

– Ti = {(s0, s>), (s>, s>)} ∪ {(sew, s>) | vew ∈Wϕ}, for i 6= a
– pre(s0) =

∧
p∈V (w0)

p ∧
∧

p∈P\V (w0)

¬p

– pre(sew) =
∧

p∈V (w)

p ∧
∧

p∈P\V (w)

¬p

– pre(s>) = >

– pos(sew)(p) =

{
>, if e |= p

⊥, if e 6|= p

– pos(s0) = pos(s>) = ∅

The event model here is somewhat similar to the one we could make for expansion.
A main difference is that the clique of possible events sew is replaced by a single possible
event sϕ with pre(sϕ) = ϕ and pos(sϕ) = ∅.
Proposition 6. ((M,w0) ?

◦
a ϕ)↔–(MN?◦a , w0.s0).

7 Related Work
As explained in the introduction, there are some works on the connections between
epistemic logics and belief change theory, but most of them study how to encode belief
change operators within an epistemic model [23, 8, 10, 21]. Basically the problem is to
try to perform belief revision within the epistemic model. Contrastingly, we study in this
work how to perform belief revision (and expansion) on a KD45n model, representing
the beliefs of a group of agents. In the same vein, in [20] the authors study what they
call revision of KD45n models due to communication between agents: some agents
(publicly) announce (part of) their beliefs. Their model is closer to expansion than to
true revision, and concerns only subjective beliefs. In [15] the authors study action
progression in multi-agent belief structures. Their work is mainly about the effects of
actions using update, but they also briefly mention the problem of revision by objective
formulas. Their construction is related to the one we point out, but they do not study
the properties of the operators they considered. Finally the closest work to our own one



is the study of private expansion and revision made by Aucher [3, 2, 4]. The difference
is that Aucher considers an internal model of the problem, i.e., a model of the situation
viewed from each agent, so he does not use a KD45n model for modeling the system,
but one internal model by agent. He uses a notion of multi-agent possible worlds in
order to compute the result of the revision, so the result of the revision is a set of such
multi-agent worlds, whereas in this work we work with KD45n models, and we obtain
a unique KD45n model as result of a revision. It is easy to find a translation between
internal models and KD45n models, so one can look at the technical details between
the expansion and revision operators we present in this work and the one proposed (on
internal models) by Aucher [3, 2, 4]. Concerning expansion, it turns out that the two
operations are equivalent (that is not surprising since we proved that there is only one
rational expansion operator). First, note that it is possible to obtain an internal model
IM for agent a ∈ N from any KD45n model (M,w0). Indeed, it suffices to consider
the set formed of models (Mk, wk) generated from each wk such that wk ∈ Ra(w0).
Similarly, it is possible to obtain an internal event model IN for agent a ∈ A from the
event model (N, s0). Now, it is easy to see that the internal model for a obtained from
the product of (M,w0) by (N, s0) is the same as the product of IM by IN . Concerning
revision the situation is different. Aucher allows revision by subjective formulas and
compute distances between the corresponding (epistemic) models. We are interested
here only by revision with objective formulas. In this particular case Aucher’s revision
does not allow the agent concerned by the private revision to choose, among the models
of the objective formulas, the ones that are the most plausible. This is problematic since
it is one of the main goals of belief revision to make such a selection. We can do that
thanks to the underlying AGM revision operators in the definition of the private revision
operator. So our private revision result implies (usually strictly) the result given by
Aucher’s revision.

8 Conclusion

In this paper we investigate the problem of belief change in a multi-agent context. More
precisely we study private expansion and revision of KD45n models by objective for-
mulas. We present a set of postulates for expansion and revision close to the classical
AGM ones for the single agent case. We also define specific expansion and revision
operators and show that they satisfy the properties pointed out. As future work we plan
to consider different extensions of this work. The first issue to be considered is the
problem of private change by subjective formulas. For expansion the method will be
quite similar to the one we described here for objective formulas. But for revision the
subjective case is both more complicated and richer than the revision by objective for-
mulas, due to the minimality of change requirement. In fact some interesting metrics
can be defined and used to define minimal change for revision. Another issue we want
to address is group change. The idea is that the new evidence is not given privately to
only one agent, but to a group of agents. This case straightforwardly includes private
change and public change as special cases. So it is clearly the most general framework.
Interaction between the agents adds interesting additional problems, since each agent
of the group will have to revise her beliefs about the beliefs of the other agents of the
group receiving the same observation.
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