
Constraint-Based Symmetry Detection in General Game Playing

Paper 1939

Abstract
Symmetry detection is a promising approach for re-
ducing the search tree of games. In General Game
Playing (GGP), where any game is compactly rep-
resented by a set of rules in the Game Description
Language (GDL), the state-of-the-art methods for
symmetry detection rely on a rule graph associated
with the GDL description of the game. Though
such rule-based symmetry detection methods can
be applied to various tree search algorithms, they
cover only a limited number of symmetries which
are apparent in the GDL description. In this paper,
we develop an alternative approach to symmetry
detection in stochastic games that exploits con-
straint programming techniques. The minimax
optimization problem in a GDL game is cast as a
stochastic constraint satisfaction problem (SCSP),
which can be viewed as a sequence of one-stage
SCSPs. Minimax symmetries are inferred accord-
ing to the microstructure complement of these
one-stage constraint networks. Based on a theoret-
ical analysis of this approach, we experimentally
show on various games that the recent stochas-
tic constraint solver MAC-UCB, coupled with
constraint-based symmetry detection, significantly
outperforms the standard Monte Carlo Tree Search
algorithms, coupled with rule-based symmetry
detection. This constraint-driven approach is also
validated by the excellent results obtained by our
player during the last GGP competition.

1 Introduction
The topic of General Game Playing (GGP) is to develop arti-
ficial agents capable of playing a wide variety of games, with-
out any human intervention [Genesereth et al., 2005]. In a
GGP tournament, the rules of an unknown game are supplied
to the agent and, after a short period of deliberation, the agent
must be able to play this game effectively against other play-
ers. The game rules are represented in the Game Description
Language (GDL) [Love et al., 2008]. Basically, a GDL pro-
gram is a set of first-order logical clauses specifying the initial
state of the game, the legal moves of each player, the effects
of these moves, and the scores obtained at terminal states.

Recent versions of GDL [Schiffel and Thielscher, 2014;
Thielscher, 2016] are expressive enough to cover various
classes of finite-horizon games including, in particular,
stochastic games in which a distinguished “chance” player is
used to simulate the probabilistic effects of joint actions.

Conceptually, any turn-based two-player zero-sum (deter-
ministic or stochastic) game has an optimal, minimax value
function that specifies the expected outcome of the game, for
every possible state, under perfect play by all players. In the-
ory, such games may be solved by recursively computing the
value function in a search tree of size bd, where b is the num-
ber of legal moves per state, and d is the number of moves
needed to reach a terminal state. Yet, even for games of
moderate size, exhaustive search is unfeasible in GGP tourna-
ments, due to the short deliberation time allowed to players.

To this point, symmetry detection is a popular inference
method for reducing exploration in a search space, by
transferring knowledge between equivalent regions of this
space. As games typically involve many equivalent states
and moves, such similarities can be exploited for transfer-
ring the value function between nodes of the search tree.
Furthermore, since most symmetry detection methods are
implemented using graph automorphism algorithms [McKay
and Piperno, 2014], the main component for inferring game
symmetries is a graphical structure from which a permuta-
tion group is induced. Ideally, this permutation group should
be as close as possible to the group of minimax symmetries,
which preserve the optimal strategies of the game.

Most approaches to symmetry detection in GGP rely
on some rule graph associated with the GDL repre-
sentation [Kuhlmann and Stone, 2007; Schiffel, 2010;
Zhang et al., 2015]. Basically, a rule graph contains nodes
for the terms, atoms, and rules of the GDL representation,
together with edges connecting these symbols. Any auto-
morphism of this rule graph is a symmetry that preserves the
game semantics. However, only a restricted subset of game
symmetries can be recognized from such automorphisms, due
to the syntactical bias imposed by the GDL representation.

In this paper, we propose an alternative approach to
symmetry detection in stochastic games, inspired from
constraint programming techniques. A Constraint Satis-
faction Problem (CSP) consists in a set of variables, each
associated with a domain of values, and a set of constraints
specifying allowed combinations of values for subsets of

variables. A CSP solution is an assignment of variables to
values that satisfies all constraints. A common approach
for detecting solution symmetries in CSPs is to use the
microstructure complement of the network [Jégou, 1993;
Cohen et al., 2006]. This structure is a hypergraph, whose
nodes are associated with variable-value pairs, and whose
hyperedges joint sets of nodes which are “disallowed” by
some constraint. Any automorphism of this hypergraph,
called constraint symmetry, is a solution symmetry.

Since stochastic games are sequential decision problems,
they generally cannot be reduced to CSPs. Instead, our
approach is to encode a GDL program and its minimax
objective function into a Stochastic Constraint Satisfac-
tion Problem (SCSP) [Walsh, 2002; Tarim et al., 2006;
Hnich et al., 2012]. This problem involves variables, do-
mains and constraints, but the variables are partitioned into
decision variables, encoding state descriptions and players’
actions, and stochastic variables, encoding the actions of
the chance player. Any solution of the SCSP is a minimax
strategy of the GDL game. By construction, such a network
can be viewed as a sequence of one-stage SCSPs, each spec-
ifying a game turn. Our symmetry detection method uses the
microstructure complement of these one-stage SCSPs, from
which constraint symmetries form a subgroup of the group
of minimax symmetries. Importantly, these microstructure
complements can also be exploited for detecting symmetries
between approximate minimax strategies, which are found
by combining constraint propagation and bandit exploration.

We provide an experimental evaluation of this approach
using the MAC-UCB algorithm for solving SCSPs [Koriche et
al., 2016]. We show on various games that MAC-UCB, cou-
pled with constraint-based symmetry detection, significantly
outperforms Monte Carlo Tree Search algorithms, coupled
with rule-based symmetry detection. We also emphasize that
this approach was implemented in the “Woodstock” player,
which has won the 2016 International GGP competition.

2 Games and Symmetries
2.1 Stochastic Games
The problems under consideration in this study are finite-
horizon combinatorial games that incorporate probabilistic
choices. A game signature consists in a tuple (I, F,A),
where I = {1, · · · , k} is the set of players, F is a finite set
of fluents used to describe game states, and A is a finite set
of actions or moves. A stochastic game over the signature
(I, F,A) is a tuple G = (s1, S†, L, P, u), where:
• s1 ∈ 2F is the initial state, and S† ⊆ 2F is the set of

terminal states,
• L : I × 2F → 2A maps each player i and each state s

to the set Li(s) of legal moves of i at s,
• P : 2F × Ak × 2F → [0, 1] maps each state s and joint

action a ∈ L(s) to a probability distribution P (· | s,a)
over 2F , where L(s) = L1(s)× · · · × Lk(s),
• u : I × S† → R maps each player i and each terminal

state s to the utility ui(s) of i at s.
A history (or finite play) of length T in G is a sequence of

the form (s1,a1, s2, · · · , sT−1,aT , sT) where at ∈ L(st)

and P (st+1 | st,at) > 0, for t ∈ {1, · · · , T − 1}. G is called
a T -horizon game if every history of length T in G includes
a terminal state in S†, and conversely, every terminal state in
S† is included in some history of length T in G.

As usual, a pure stationary strategy is a map from states
to actions. Of particular interest in this study is the minimax
strategy for which the value function (for player i) is

V ∗i (s) =

{
maxai

mina−i
Q∗i (s,a) if s 6∈ S†

ui(s) otherwise

where Q∗i (s,a) =
∑
s′∈S

P (s′ |s,a)V ∗i (s′) (1)

and where ai ranges over Li(s), and a−i ranges over the pro-
jection of L(s) onto I \ {i}. This strategy is optimal for the
important class of turn-based two-player zero-sum stochastic
games [Condon, 1992], given by k = 2, u1(s) = −u2(s)
for s ∈ S†, and L1(s) = {>} or L2(s) = {>} for s ∈ SG ,
where > is a distinguished “noop” action with no effects.

Evaluating the minimax value function in combinatorial
games is generally intractable. A natural approach to alle-
viate this issue is to approximate V ∗i by a “depth-bounded”
minimax value that limits the recursion to some fixed depth d,
and applies a heuristic evaluation function when d is reached
[Lanctot et al., 2013]. Given a map V̂i : S → R such that
V̂i(s) = ui(s) when s ∈ S†, the depth-d minimax strategy is

V d
i (s) =

{
maxai

mina−i
Qd

i (s,a) if d > 0 and s 6∈ S†
V̂i(s) otherwise

where Qd
i (s,a) =

∑
s′∈S

P (s′ |s,a)V d−1
i (s′). (2)

2.2 Game Symmetries
Intuitively, a symmetry in a set O of objects is a permutation
over O that leaves some property of those objects unchanged.
The particular group of symmetries that we obtain depends
on the property we choose to preserve. In this paper, two
main types of game symmetries are distinguished: structural
symmetries that preserve the game structure, and minimax
symmetries that preserve the minimax strategies of the game.
Given a stochastic game G with signature (I, F,A), a struc-
tural symmetry of G is a bijective function σ on I ∪ F ∪ A
such that for all i ∈ I, f ∈ F, s, s′ ∈ SG , and a ∈ Ak,

σ(i) = i, σ(a) ∈ A, σ(f) ∈ F (3a)
σ(f)∈ s1 iff f ∈ s1 (3b)
σ(s)∈S† iff s ∈ S† (3c)
σ(a)∈Li(σ(s)) iff a∈Li(s) (3d)

P (σ(s′) | σ(s), σ(a)) = P (s′ | s,a) (3e)
ui(σ(s)) = ui(s) (3f)

where σ(s)={σ(f) |f ∈ s}, and σ(a)= (σ(a1),· · · ,σ(ak)).
A minimax symmetry is a bijective function σ over I ∪F ∪A
satisfying conditions (3a-3c) together with

V ∗i (σ(s)) = V ∗i (s) (4)
for all i ∈ I and s ∈ SG . By extension, depth-d minimax
symmetries are defined by replacing (4) with

V d
i (σ(s)) = V d

i (s) (5)

Any structural symmetry is a minimax symmetry, since
the conditions (3d-3f) imply that two states with equivalent
subgames must have the same minimax value. Yet, structural
symmetries and depth-d minimax symmetries are generally
incomparable, excepted for d = T in T -horizon games.

3 Rule-Based Symmetry Detection
3.1 GDL Representations
In the GGP setting, games are represented by first-order strat-
ified logic programs, using the GDL language that includes
several keywords specifying the game dynamics. Stochastic
games are captured by an extension of GDL that describes
the chance player random [Schiffel and Thielscher, 2014].
Example 1. In the standard Tic-Tac-Toe game, two players
1 and 2 take turns by marking the cells in a grid until a row,
column or diagonal is filled by a player. We focus here on
a randomized variant of this game for the 2 × 2 grid; the
players 1 and 2 can only choose a row or a column, and the
exact position in the chosen line is drawn at random by the
chance player. For instance, the rules

next(row(X, I))← does(I,chooseRow(X))

next(col(Y, I))← does(I,chooseCol(Y))

next(cell(X, Y, I))← does(random, mark(X, Y, I))

specify the effects of players’ actions. Namely, if a player I
selects a row X (resp. a column Y) in the current state, then
the fluent row(X, I) (resp. col(Y, I)) is true in the next state,
and if the chance player random marks a position (X, Y) with
player I in the current state, then the fluent cell(X, Y, I) is
true in the next state. Alternatively, the rules:

legal(random, mark(X, Y, I))←
true(row(X, I)), true(cell(X, Y, ∗)) (6a)

legal(random, mark(X, Y, I))←
true(col(Y, I)), true(cell(X, Y, ∗)) (6b)

capture the legal moves of the chance player: marking a cell
(X, Y) with I is possible if the position (X, Y) is available (∗),
and the row X or column Y is chosen by player I.

For a set R of GDL rules, the dependency graph of R
associates a node with each literal L in R, and an arc (L, L′)
if L occurs in the body of some rule with head L′.

Because GDL is Turing complete [Saffidine, 2014], even
for “valid” programs [Love et al., 2008], we focus here on a
propositional fragment of this language (including random),
denoted P-GDL, satisfying two properties:
(7a) the number of ground instances of functional terms

and the size of clauses are bounded, and
(7b) the dependency graph of the program is acyclic.

Any P-GDL program R can be rewritten into an equivalent
ground instance Rg of size polynomial in |R|. The ground
terms in Rg are partitioned into a set I+ = {0, 1, · · · , k}
of players, where 0 denotes the chance player, a set F of
fluent terms, a set A of action terms, and a set U of utility

constants. Similarly, the rules in Rg can be partitioned into
six categories:

role(i)

init(f)

terminal← L1, · · · , Lq
legal(i, a)← L1, · · · , Lq′
next(f)← does(0, a0), · · · , does(k, ak)
goal(i, ν)← L1, · · · , Lq′′

where i ∈ I+, ν ∈ U , f ∈ F and and a, a0, · · · , ak ∈ A.
Furthermore, each Lj is an atom Aj or its negation not Aj ,
where Aj is an expression of the form true(f) or f1 6= f2.

The Clark’s completion [Clark, 1978] of Rg is the set of
propositional formulas Rc, where (i) each symbol not in Rg
is replaced with ¬, (ii) each atom A occurring as a head of
some rule is associated with its set BA of bodies, i.e.

BA = {L1 ∧ · · · ∧ Lq | A← L1, · · · , Lq ∈ Rg}
and (iii) for each atom A, all rules with head A are replaced
with a single formula A ↔

∨
BA. For an atom A, we use

Rg ` A to denote that A is true in the (unique) stable model of
Rg , and we use Rc |= A to denote that Rc ∧¬A is unsatisfiable.
By Corollary 4.21 in [Ben-Eliyahu and Dechter, 1994], if Rg
satisfies (7b), we must have Rg ` A iff Rc |= A, that is, Rg and
Rc are logically equivalent.

Let G(R) = (s1, S†, L, P, u) be the stochastic game over
the signature (I, F,A), where I = I+ \ {0}, and such that

f ∈ s1 iff Rg ` init(f),
s ∈ S† iff Rg ∪ true(s) ` terminal,

a ∈ Li(s) iff Rg ∪ true(s) ` legal(i, a),
ui(s) = ν iff Rg ∪ true(s) ` goal(i, ν), and

P (s′ |s,a)= 1
|L0(s)| if s′∈ρ(s,a), and 0 otherwise.

Here, true(s) = {true(f) | f ∈ s}, and ρ(s,a) is the set
of states s′ for which there is an action a0 ∈ L0(s), such that
for all f ′ ∈ s′, Rg ∪ true(s)∪{does(i, ai)}ki=0 ` next(f ′).
Thus, P (· | s,a) is a uniform distribution over the states
updated from s, using the moves (a0,a) coupling the action
profile a of players, and all possible actions a0 ∈ L0(s).
Example 2. In the ground instance Rg of the GDL program
R describing the randomized Tic-Tac-Toe game for the
2 × 2 grid, the rules (6a) and (6b) are each replaced with
8 ground formulas, obtained by instantiating the variables
X ∈ {x1, x2}, Y ∈ {y1, y2}, and I ∈ {1, 2}. Notably, in the
ground formulas

legal(random, mark(x1, y2, 1))←
true(row(x1, 1)), true(cell(x1, y2, ∗)) (8a)

legal(random, mark(x1, y2, 1))←
true(col(y2, 1)), true(cell(x1, y2, ∗)) (8b)

row(x1, 1), col(y2, 1) and cell(x1, y2, ∗) are fluent terms,
and mark(x1, y2, 1) is an action term. If we assume that in
the current state s, the first player has chosen row x1, and
the number of free positions in x1 is y, then the probability
distribution P (· | s,a) over the next states using the action
profile a = (mark(x1, y2, 1),>,>) is simply 1/y.

legal

random mark(x1, y2, 1)

true1

cell(x1, y2, ∗)

r2

true3

col(y2, 1)

r1

true2

row(x1, 1)

Figure 1: The ground rule graph of formulas (8a) and (8b).

3.2 Rule Graphs
For the propositional fragment of GDL examined in this
study, we use a simplified version of the (enhanced) rule
graph specified in [Schiffel, 2010]. Formally, the ground
rule graph of a P-GDL program R is the colored graph
G = (N,E, χ) over Rg , such that

• each ground term t ∈ I+ ∪ F ∪ A ∪ U is mapped to a
distinct node nt; if t is a player i ∈ I+, then χ(nt) = i,
if t is a utility value ν ∈ U , then χ(nt) = ν, if t is a
fluent term in F , then χ(nt) = fluent, and if t is an
action term in A, then χ(nt) = action;

• each atom A of the form p(t1, · · · , tq) is mapped to
a distinct node nA with color χ(nA) = p, and a clique
over {nA, nt1 , · · · , ntp};
• each literal L of the form not A is mapped to a distinct

node nL with χ(nL) = not, and an edge (nL, np);

• each rule r of the form A ← L1, · · · , Lq is mapped to a
distinct node nr with color χ(nr) = rule, and a clique
over {nr, nA, nL1 , · · · , nLq}.

Proposition 1. Let R be a P-GDL program and G be its
ground rule graph. Then, any automorphism of G is a
structural symmetry of G(R).
Example 3. As depicted in Figure 1, the ground rule graph
of the ground formulas (8a) and (8b) includes two similar
four-cliques. An automorphism of this graph can be obtained
by permuting the nodes r1, true2 and row(x1, 1), with r2,
true3 and col(y2, 1), respectively.

Note that the group of automorphisms of G depends on
how the game is described by Rg . For example, suppose
that two actions a and a′ have the same preconditions
and effects, but Rg uses two rules legal(i, a) ← A and
legal(i, a) ← not A for action a, and one fact legal(i, a′)
for a′. Then, no automorphism in G can permute a and a′
because the neighbors of na and na′ are not equivalent.

4 Constraint-Based Symmetry Detection
The key idea of this study is to translate GDL programs into
stochastic constraint networks, from which the microstruc-
ture complement can be used for detecting various types of

symmetries. We focus on a slight generalization of the orig-
inal SCSP model [Walsh, 2002] that incorporates conditional
probability distributions over stochastic variables.

Formally, a Stochastic Constraint Satisfaction Problem is
a tuple N = (X,Y,D,C, P, θ), where

• X = (x1, · · · , xn) is an ordered finite set of variables,

• Y ⊆ X is the set of stochastic variables,

• D = {D(xi)}ni=1 is a set of finite domains each
associated with a variable in X ,

• C is a set of constraints,

• P = {Py}y∈Y is a set of conditional probability tables
each associated with a variable in Y , and

• θ ∈ [0, 1] is a threshold value.

Any variable in X \ Y is called a decision variable. Given
an ordered subset Z = (z1, · · · , zm) of variables in X , we
denote by D(Z) the relation D(z1) × · · · × D(zm). An in-
stantiation on Z is a tuple v ∈ D(Z), also written as a set of
pairs variable-value {(z1, v1), · · · , (zm, vm)}. The instantia-
tion v is complete if Z = X . For a subset Z ′ ⊆ Z, we use
v|Z′ to denote the projection {(zi, vi) : zi ∈ Z ′} of v ontoZ ′.

As usual, each constraint c ∈ C is defined over a set of
variables scpc ⊆ X , called the scope of c, and consists in
a mapping from D(scpc) to {0, 1}. Any instantiation v on
scpc for which c(v) = 1 (resp. c(v) = 0) is called allowed
(resp. disallowed). Each conditional probability table Py is
defined over a set of variables scpy ⊆ X occurring before y
in X , and maps every instantiation v on scpy to a probability
distribution Py(· | v) over D(y).

The probability P (v) and the consistency C(v) of a
complete instantiation v are respectively given by

P (v) =
∏
y∈Y

Py(v|{y} | v|scpy
) and C(v) =

∏
c∈C

c(v|scpc
)

An instantiation v is globally consistent (GC) if it can be
extended to a complete instantiation v′ such that C(v′) = 1.

A policy π for N is a tree, in which nodes are labeled
according to the ordering X; the root is labeled with x1, and
each child of a node xi is labeled with xi+1. Each outgoing
edge of xi is labeled with a value in D(xi); decision nodes
have a unique child, and stochastic nodes yi have |D(yi)|
children. Each leaf is labeled with the value C(v) of the
complete instantiation v connecting that leaf to the root. The
expected consistency of a policy π is given by

C(π) =
∑
v

P (v)C(v)

where v ranges over the root to leaf paths of π. A solution
of N is a policy π such that C(π) ≥ θ. Note that in the
particular case where θ = 1, π is a solution of N iff every
instantiation in π is GC.

Finally, N is T -stage SCSP if X is partitioned into T
stages, i.e. X = (Z1, Y1, · · · , ZT , YT), where (Z1, · · · , ZT)
is a partition of X \ Y , and (Y1, · · · , YT) is a partition of Y .

4.1 From GDL to SCSP
Based on the framework suggested in [Koriche et al., 2016],
any P-GDL program R can be encoded into a multi-stage
SCSP, where each stage simulates a game turn. Formally, let
Rg be the ground instance of R, where I+ = {0, 1, · · · , k}
is the set of players, A is the set of actions, F is the set
of fluents, and U is the set of utility values. Let Rc be the
Clark’s completion of Rg , and T be a positive integer. Then,
the T -stage SCSP of R is the tupleNR,T = (X,Y,D,C, P, θ)
such that θ = 1, and
• X = (Z1, Y1, · · · , ZT , YT), where each Zt includes

a Boolean variable ωt indicating the presence of a ter-
minal state, a set of Boolean variables {fj,t}nj=1, each
associated with a distinct fluent in F , a set of variables
{ai,t}ki=1 with domainA, each associated with a distinct
player i, and a set of variables {ui,t}ki=1 with domain U
each associated with a player i. Each Yt includes a single
variable a0,t with domain A, associated with random;
• C = C1 ∪ · · · ∪ CT , where C1 includes constraints en-

coding the unary clauses over init in Rc, and for every
stage t, Ct includes a constraint cA,t encoding the rule
A ↔

∨
BA in Rc. Constraints over legal for the same

player i are merged into a single constraint legali,t;

• P = {P1, · · · , PT }, where Pt encodes the conditional
probability distribution of at,0 at stage t. The scope
of Pt is given by the scope {fj,t}mj=1 of the constraint
legal0,t (minus a0,t), and for each instantiation v on
this scope, Pt(· | v) is the uniform distribution over the
set legal moves {a ∈ A | legal0,t(a,v) = 1}.

Based on this construction, we can observe that for
each stage Xt = (Zt, Yt), the scopes of the constraints
terminalt, legali,t and goali,t, together with the scope of
the table Pt, are all covered by the variables in Xt. Thus, the
only component that connects a stage and its successor is the
constraint nextt, which determines the values of fluents at
turn t+ 1, given the actions simultaneously played in turn t.
Example 4. Consider again the randomized Tic-Tac-Toe
game for the 2 × 2 grid. By Clark’s completion, the ground
formulas (8a) and (8b) are merged into a single formula:

legal(random, mark(x1, y2, 1))↔
true(row(x1, 1)), true(cell(x1, y2, ∗)) ∨
true(col(y2, 1)), true(cell(x1, y2, ∗))

At each stage t, this formula is encoded into a legal0,t
constraint with scope mark0,t, row(x1, 1)t, col(y2, 1)t and
cell(x1, y2, ∗)t. The relation of this constraint states that the
value (x1, y2, 1) is allowed for the action variable mark0,t iff
the fluent variable cell(x1, y2, ∗)t is true, and at least one
of the fluent variables row(x1, 1)t and col(y2, 1)t is true.
Similarly, by Clark’s completion, the ground formula
next(cell(x1, y2, 1))← does(random, mark(x1, y2, 1))

is replaced with

next(cell(x1, y2, 1))↔ does(random, mark(x1, y2, 1))

and then encoded at each stage t into a next0,t constraint
which states the fluent variable cell(x1, y2, 1)t+1 is true at
turn t+ 1 iff the value of mark0,t at turn t is (x1, y2, 1).

4.2 Microstructure complements
We have now all ingredients in hand to extend the notion of
microstructure complement [Cohen et al., 2006] to stochastic
constraint networks. Given an SCSP N , the microstructure
complement of N is the hypergraph H, where the set of
nodes is the collection of all variable-value pairs {(x, v) |
x ∈ X, v ∈ D(x)}, and the set of hyperedges is the union
over all constraints c ∈ C of the instantiations on scpc which
are disallowed by c. Thus, v = {(z1, v1), · · · , (zk, vk)}
is a hyperedge of H iff {z1, · · · , zk} is the scope of some
constraint c ∈ C for which C(v) = 0.

By extension, the microstructure complement of NR,T is
the colored hypergraphHR,T , wherein nodes and hyperedges
are defined as above, and the coloring function χ of HR,T

maps each node (x, v) to a triplet, given as follows:

• if x is a fluent variable fj,t, then χ(x, v) = (t, ?, ?),

• if x is a terminal variable ωt, then χ(x, v) = (t, ?, v),

• if x is an action variable ai,t then χ(x, v) = (t, i, ?), and

• if x is a utility variable ui,t then χ(x, v) = (t, i, v),

where ? is an arbitrary symbol disjoint from I+ ∪ U . By
construction, different colors are assigned to variables of
different type, and to variables occurring at different stages.
Any color-preserving automorphism of HR,T is called a
constraint symmetry of NR,T .

Proposition 2. Let R be the P-GDL program of a T -horizon
game. Then, any constraint symmetry of NR,T is a structural
symmetry of G(R).

It is important to keep in mind that any solution policy of
NR,T is just a “legal strategy” that satisfies all game rules. In
order to encode minimax policies, let N ∗R,T be the extension
of NR,T to the constraints C∗ = (C∗1 , · · · , C∗T), where
C∗t = Ct ∪ {V ∗i,t, Q∗i,t}ki=1. Here, V ∗i,t and Q∗i,t are used to
encode the minimax strategy (1). Namely, the scopes of V ∗i,t
and Q∗i,t are respectively given by {fj,t}nj=1 ∪ {ui,t} and
{fj,t}nj=1∪{ai,t}ki=1∪{ui,t}, where ui,t is the utility variable
of player i. The state-value constraint V ∗i,t maps any state s to

ui,t =

{
maxai mina−i Q

∗
i,t(s,a) if ωt = 0,

goali,t(s) otherwise.

Correspondingly, the action-value constraint Q∗i,t maps any
state s and action profile a to

ui,t =
∑
a0

Pt(a0 | s,a)V ∗i,t+1(s)

where a0 ranges over all values in D(a0,t) such that
legal0,t(a0, s) = 1. By enforcing global consistency over
N ∗R,T , we must have Q∗i,t(s,a) = V ∗i,t(s), which in turn
implies that only optimal actions for player i are kept in
the instantiations (s,a) which are GC. The network N d

R,T is
defined analogously using the d-depth minimax strategy (2).

Proposition 3. Let R be the P-GDL program of a T -horizon
game. Then, any constraint symmetry of N ∗R,T (resp. N d

R,T)
is a minimax (resp. d-depth minimax) symmetry of G(R).

(x1, y1, ∗)

x1
(x1, y2, ∗) y1

x2
(x2, y1, ∗) y2

(x2, y2, ∗)chooseRow1,t

mark0,t

chooseCol1,t

Figure 2: A sub-hypergraph of the micro-structure complement
associated with the one-stage SCSP of Example 5.

Though theoretically interesting, the above result can be
difficult to implement due to the large size of the microstruc-
ture complement of a T -stage SCSP. Fortunately, N ∗R,T can
be viewed as a sequence of one-stage SCSPs, each associated
with a restricted microstructure complement. Concretely, the
tth one-stage SCSP of N ∗R,T is the restriction N∗R,t of N ∗R,T
to the stage Xt, that is, N∗R,t = (Xt, Yt, D,C

∗
t , Pt, θ). The

corresponding microstructure complement is the projection
H∗R,t of HR,T onto the variables Xt, satisfying the following
backward consistency condition: if vt is a tuple on Xt which
does not include any hyperedge in H∗R,t, then there is an
extension v of vt on (X1, · · · , Xt) which does not include
any hyperedge in H∗R,1 ∪ · · · ∪ H∗R,t. For the stochastic
constraint networkN d

R,T , the tth one-stage SCSP Nd
R,t and its

microstructure complement Hd
R,t are defined in a similar way.

Proposition 4. Let R be the P-GDL program of a T -horizon
game. Then, for every t ∈ {1, · · · , T}, any constraint
symmetry of N∗R,t (resp. Nd

R,t) preserves the minimax (resp.
d-depth minimax) strategies of G(R).

From a practical viewpoint, constraint symmetries of
one-stage SCSPs can be exploited for reducing the search of
minimax strategies: once an instantiation vt on the stage Xt

has been proved GC, automorphisms of Hd
R,t can be applied

to derive symmetric GC instantiations at this stage. Equiva-
lently, if any extension of vt has reached a dead end, then all
symmetric instantiations of vt at stage Xt can be ignored.
Example 5. Consider the randomized 2 × 2 Tic-Tac-Toe
game after a couple of turns. During the first stage, player
1 selected chooseRow(x1), and the chance player marked
(x1, y1) with 1. Next, player 2 selected chooseCol(y2), and
the chance player marked (x2, y2) with 2. Figure 2 depicts
the microstructure complement of the third one-stage SCSP.
For the sake of clarity, only action variables of players 0
(random) and 1 are represented. We can here observe that all
legal moves for player 1 are symmetrical. Indeed, the auto-
morphism obtained by permuting the symbols “1” and “2” in
the values of the action variables, yields a symmetry between
rows x1 and x2, and a symmetry between columns y1 and
y2. Analogously, the automorphism given by permuting the
symbols “x” and “y” in those values, gives rise to a symmetry
between row x1 (resp. x2) and column y1 (resp. y2).

5 Experiments
Based on our framework, we now present a series of exper-
iments conducted on a cluster of Intel Xeon E5-2643 CPU
3.3 GHz with 64 GB of RAM and four threads under Linux.
All problems used in experiments are turn-based two-player
zero-sum games. Specifically, we focus on 25 representative
games: 20 deterministic GDL games, and 5 stochastic GDL
games (with random). For all games, we used the 2015
Tiltyard Open (International GGP Competition) setup: 180s
for the start clock (deliberation time before the first turn) and
15s for the play clock (deliberation time per turn).

MAC-UCB-SYM. In order to implement our constraint-
based symmetry detection method, we used (a variant of)
the MAC-UCB algorithm developed in [Koriche et al., 2016].
Any GDL description R is first translated into the Clark’s
completion of its ground instance Rc, which is then encoded
into a T -stage SCSP NR,T . The horizon T was fixed to 200.
The goal of MAC-UCB is to find d-minimax strategies, that is,
solution policies for the SCSP N d

R,T . The MAC (Maintaining
Arc Consistency) technique searches solution policies up to
depth d, and the UCB (Upper Confidence Bounds) stochastic
bandit method estimates the value V̂ (s) of states s at
depth d. In what follows, MAC-UCB-SYM is the upgrading
of MAC-UCB that incorporates symmetry detection using the
microstructure complement of one-stage SCSPs. The choice
of the depth d was derived by partitioning the deliberation
time into three ratios (rMAC, rUCB, rSYM), which correspond to
the proportions of runtime allocated for MAC, FLAT-UCB, and
symmetry detection, respectively. Based on a sensitivity anal-
ysis of MAC-UCB-SYM, we used the ratios (45%, 30%, 25%).

MAC-UCB-SYM satisfies the condition of backward con-
sistency by iteratively expanding the partial instantiations
of a policy tree rooted at the initial state s1. For a partial
instantiation v on (X1, · · · , Xt−1) which is consistent with
all constraints in (Cd

1 , · · · , Cd
t−1), the algorithm stores in

Hd
R,t all hyperedges et such that v ∪ et is inconsistent with

Nd
R,t. So, for any independent set vt of Hd

R,t, the instantiation
v ∪ vt is guaranteed to be consistent with (Cd

1 , · · · , Cd
t).

We used the NAUTY algorithm [McKay and Piperno, 2014]
for detecting automorphisms of microstructure complements.
Concretely, MAC-UCB-SYM uses a hash table of 32Gb with a
hash function specified in [Zobrist, 1990]. For each one-stage
SCSP Nd

R,t, we store in the hash table the tuples vt on Xt for
which the value Qd(vt) has been estimated by MAC-UCB.1
When the algorithm expands a partial instantiation v on
(X1, · · · , Xt−1) with an independent set vt of Hd

R,t, we
detect whether vt is symmetric to some tuple v′t in the
hash-table. If so, the value Qd(v′t) is directly mapped to
Qd(vt) without exploring the whole subtree up to depth d.

GGP Competitors. MAC-UCB-SYM was compared to sev-
eral General Game Players: the first player is the (multiagent
version) of the UCT algorithm [Sturtevant, 2008], which is
the state-of-the-art method for deterministic games. The

1Here, Qd(vt) = Qd
i,t(s,a) where (s,a) is the projection of vt

onto the fluent and action variables {fj,t}nj=1 ∪ {ai,t}ki=1 of Xt.

Deterministic GDL games
Game MAC-UCB UCT UCT-SYM GRAVE GRAVE-SYM SANCHO

Amazons torus 10×10 84.2 (±1.2%) 96.0 (±2.2%) 98.1 (±1.7%) 78.4 (±3.4%) 86.7 (±2.7%) 86.2 (±3.1%)
Breakthrough suicide 93.0 (±2.3%) 93.1 (±1.6%) 81.9 (±3.7%) 59.4 (±0.9%) 73.2 (±2.9%) 77.8 (±4.0%)
Chess 76.4 (±2.5%) 95.8 (±1.8%) 95.3 (±2.1%) 88.1 (±4.2%) 95.4 (±2.5%) 87.9 (±2.1%)
Connect Four 20×20 87.5 (±3.5%) 97.0 (±1.2%) 100.0 (±0.0%) 65.1 (±3.1%) 88.5 (±2.2%) 96.0 (±0.9%)
Connect Four Simultaneous 73.7 (±2.8%) 87.8 (±1.7%) 96.1 (±0.9%) 77.2 (±3.4%) 93.2 (±3.6%) 82.0 (±2.6%)
Copolymer with pie 73.9 (±1.5%) 87.2 (±2.3%) 93.3 (±0.5%) 80.2 (±1.6%) 91.6 (±1.8%) 77.9 (±3.6%)
Dots and boxes suicide 65.4 (±1.7%) 95.2 (±0.9%) 83.7 (±2.4%) 80.5 (±1.6%) 70.3 (±2.7%) 88.0 (±1.5%)
English Draughts 85.1 (±2.8%) 97.9 (±1.3%) 97.4 (±1.3%) 70.1 (±4.1%) 71.2 (±3.1%) 59.3 (±1.5%)
Free For All 2P 53.4 (±0.7%) 81.5 (±2.4%) 84.8 (±1.9%) 61.2 (±0.7%) 72.3 (±1.6%) 71.2 (±2.3%)
Hex 84.0 (±1.4%) 100.0 (±0.0%) 100.0 (±0.0%) 74.2 (±3.2%) 89.8 (±2.9%) 78.1 (±1.5%)
Knight Through 81.2 (±2.4%) 96.0 (±1.3%) 90.6 (±2.6%) 82.1 (±3.5%) 81.2 (±2.3%) 88.1 (±2.6%)
Majorities 84.4 (±2.6%) 95.7 (±1.6%) 96.8 (±1.4%) 81.2 (±2.6%) 92.3 (±2.3%) 87.2 (±3.2%)
Pentago 53.1 (±1.5%) 84.8 (±3.1%) 66.2 (±2.8%) 72.1 (±2.3%) 58.4 (±2.8%) 54.3 (±0.9%)
Quarto 54.9 (±1.6%) 87.1 (±3.4%) 65.6 (±2.6%) 65.2 (±3.2%) 63.8 (±1.6%) 57.9 (±2.3%)
Sheep and Wolf 74.8 (±3.2%) 92.5 (±2.4%) 94.6 (±0.9%) 64.4 (±3.7%) 63.2 (±3.6%) 62.1 (±1.5%)
Shmup 58.0 (±1.7%) 88.2 (±2.6%) 63.7 (±2.2%) 55.3 (±1.5%) 52.1 (±0.2%) 53.0 (±0.6%)
Skirmish zero-sum 85.4 (±2.5%) 98.7 (±0.4%) 100.0 (±0.0%) 77.7 (±1.6%) 95.8 (±2.3%) 67.4 (±4.2%)
TicTac Chess 2P 94.9 (±3.4%) 97.6 (±0.7%) 96.5 (±0.4%) 76.3 (±1.3%) 93.2 (±2.3%) 86.1 (±3.3%)
TTCC4 2P 84.4 (±2.3%) 97.3 (±1.2%) 97.2 (±2.1%) 62.4 (±2.3%) 85.7 (±3.1%) 65.8 (±4.1%)
Reversi Suicide 72.2 (±3.2%) 100.0 (±0.0%) 100.0 (±0.0%) 66.1 (±2.7%) 78.7 (±2.2%) 58.2 (±2.2%)

Stochastic GDL games

Backgammon 92.1 (±2.7%) 98.0 (±0.6%) 96.1 (±1.4%) 70.2 (±4.5%) 86.8 (±3.9%) 100.0 (±0.0%)
Can’t Stop 88.2 (±1.7%) 94.1 (±2.3%) 96.8 (±1.7%) 93.4 (±1.3%) 93.7 (±3.2%) 100.0 (±0.0%)
Kaseklau 73.5 (±3.6%) 73.4 (±1.3%) 72.1 (±0.9%) 67.4 (±2.8%) 60.2 (±3.2%) 88.1 (±2.6%)
Pickomino 75.4 (±1.8%) 74.3 (±2.4%) 82.4 (±2.8%) 87.1 (±3.0%) 95.6 (±1.0%) 92.1 (±2.9%)
Yahtzee 87.4 (±1.6%) 88.2 (±2.3%) 83.1 (±3.3%) 64.1 (±3.2%) 60.9 (±2.5%) 91.8 (±3.3%)

Table 1: Results of MAC-UCB-SYM against each GGP player.

second player is Cazenave’s GRAVE algorithm (2015), that
implements the Generalized Rapid Action Value Estimation
technique, a generalization of RAVE [Gelly and Silver, 2007].
The last player is SANCHO (version 1.61c), a Monte Carlo
Tree Search method elaborated by S. Draper and A. Rose,
which has won the 2014 GGP Competition. Rule-based
symmetry detection methods were implemented for UCT
and GRAVE, yielding the UCT-SYM player and GRAVE-SYM
player, respectively. By analogy with MAC-UCB-SYM,
UCT-SYM and GRAVE-SYM used NAUTY for detecting au-
tomorphisms in the ground rule graph, together with a hash
table for exploiting symmetries. Based on a sensitivity analy-
sis of these players, UCT-SYM (resp. GRAVE-SYM) used 20%
(resp. 25%) of its deliberation time for symmetry detection.

Experiments were conducted on 66, 000 game contests,
namely, 300 matches for each deterministic game, and 1000
matches for each stochastic game, in order to consider the
probabilistic effect of outcomes. For the sake of fairness, the
role of players was exchanged during each match.

Results. In Table 1, each column reports the proportion of
wins of MAC-UCB-SYM against the selected adversary. For
example, the third row of the second column indicates that,
for the Chess game, MAC-UCB-SYM wins 95.8% of contests
against UCT with a standard deviation of 1.8%.

In light of these results, the following observations can be
made: (i) MAC-UCB-SYM outperforms MAC-UCB especially
for large games (ex: Amazons torus 10 × 10), which indi-
cates that constraint-based symmetry detection is an effective
method for reducing exploration in large search trees; (ii)
MAC-UCB-SYM also dominates UCT, GRAVE, and SANCHO,
even for deterministic games which is the class targeted by
these algorithms; and (iii) MAC-UCB-SYM is even better
against UCT-SYM and GRAVE-SYM for most games. The
last point clearly indicates that constraint-based symmetry
methods, used to recognize (approximate) minimax symme-
tries, are more effective than rule-based symmetry detection
methods, used to recognize structural symmetries.

6 Conclusion
In this paper, we have shown that constraint-based symmetry
detection can prove effective for solving GDL games.
Beyond the conclusive results obtained by coupling the
stochastic constraint solver MAC-UCB with constraint-based
symmetry detection, our framework emerges as a flexible
approach for recognizing various types of game symme-
tries. Notably, a key perspective of further research is to
detect equilibrium symmetries that preserve (mixed) Nash
equilibria, or correlated equilibria, using a constraint-based
approach for modeling these solution concepts.

References
[Ben-Eliyahu and Dechter, 1994] Rachel Ben-Eliyahu and

Rina Dechter. Propositional semantics for disjunctive
logic programs. Annals of Mathematics and Artificial
Intelligence, 12(1-2):53–87, 1994.

[Cazenave, 2015] Tristan Cazenave. Generalized rapid
action value estimation. In Proceedings of IJCAI, pages
754–760, 2015.

[Clark, 1978] Keith L. Clark. Negation as failure. In Logic
and Databases, pages 293–322. Plenum Press, 1978.

[Cohen et al., 2006] David Cohen, Peter Jeavons, Christo-
pher Jefferson, Karen E. Petrie, and Barbara M. Smith.
Symmetry definitions for constraint satisfaction problems.
Constraints, 11(2-3):115–137, 2006.

[Condon, 1992] Anne Condon. The complexity of stochastic
games. Information and Computation, 96:203–224, 1992.

[Gelly and Silver, 2007] Sylvain Gelly and David Silver.
Combining online and offline knowledge in UCT. In
Proceedings of ICML, pages 273–280, 2007.

[Genesereth et al., 2005] Michael Genesereth, Nathaniel
Love, and Barney Pell. General game playing: Overview
of the AAAI competition. AAAI Magazine, 26(2):62–72,
2005.

[Hnich et al., 2012] Brahim Hnich, Roberto Rossi, S. Ar-
magan Tarim, and Steven Prestwich. Filtering algorithms
for global chance constraints. Artificial Intelligence,
189:69–94, 2012.

[Jégou, 1993] Philippe Jégou. Decomposition of domains
based on the micro-structure of finite constraint-
satisfaction problems. In Proceedings of AAAI, pages
731–736, 1993.

[Koriche et al., 2016] Frédéric Koriche, Sylvain Lagrue,
Éric Piette, and Sébastien Tabary. General game playing
with stochastic CSP. Constraints, 21(1):95–114, 2016.

[Kuhlmann and Stone, 2007] Gregory Kuhlmann and Peter
Stone. Graph-based domain mapping for transfer learning
in general games. In Proceedings of ECML, pages
188–200, 2007.

[Lanctot et al., 2013] Marc Lanctot, Abdallah Saffidine, Joel
Veness, Christopher Archibald, and Mark H.M. Winands.
Monte Carlo *-minimax search. In Proceedings of IJCAI,
pages 580–586, 2013.

[Love et al., 2008] Nathaniel Love, Timothy Hinrichs,
David Haley, Eric Schkufza, and Michael Genesereth.
General game playing: Game description language
specification. Technical Report LG-2006-01, Stanford
University, 2008.

[McKay and Piperno, 2014] Brendan D. McKay and Adolfo
Piperno. Practical graph isomorphism, II. Journal of
Symbolic Computation, 60(0):94 – 112, 2014.

[Saffidine, 2014] Abdallah Saffidine. The game description
language is Turing complete. IEEE Transactions on Com-
putational Intelligence and AI in Games, 6(4):320–324,
2014.

[Schiffel and Thielscher, 2014] Stephan Schiffel and
Michael Thielscher. Representing and reasoning about
the rules of general games with imperfect information. J.
Artif. Intell. Res. (JAIR), 49:171–206, 2014.

[Schiffel, 2010] Stephan Schiffel. Symmetry detection in
general game playing. In Proceedings of AAAI, 2010.

[Sturtevant, 2008] Nathan R. Sturtevant. An analysis of
UCT in multi-player games. International Computer
Games Association Journal, 31(4):195–208, 2008.

[Tarim et al., 2006] S. Armagan Tarim, Suresh Manandhar,
and Toby Walsh. Stochastic constraint programming: A
scenario-based approach. Constraints, 11(1):53–80, 2006.

[Thielscher, 2016] Michael Thielscher. GDL-III: A proposal
to extend the game description language to general epis-
temic games. In Proceedings of ECAI, pages 1630–1631,
2016.

[Walsh, 2002] Toby Walsh. Stochastic Constraint Program-
ming. In Proceedings of ECAI, pages 111–115, 2002.

[Zhang et al., 2015] Haifeng Zhang, Dangyi Liu, and
Wenxin Li. Space-consistent game equivalence detection
in General Game Playing. In Proceedings of CGW, pages
165–177, 2015.

[Zobrist, 1990] Albert L. Zobrist. A new hashing method
with application for game playing. International Com-
puter Games Association Journal, 13(2):69–73, 1990.

