• Thèse soutenue le :
  • 2008-11-28
  • Salle des thèses

Résumé

Dans cette thèse, nous nous intéressons à la modélisation du problème de détection d’intrusions à base de modèles graphiques. Nous avons d’abord défini un ensemble de variables essentielles en tenant compte des attaques actuelles et des caractéristiques du trafic normal. Ensuite, nous avons analysé la faiblesse des réseaux Bayésiens et des arbres de décisions dans la détection des nouvelles attaques. Nous avons proposé deux directions pour résoudre ce problème: la première propose des adaptations pour les réseaux Bayésiens et les arbres de décisions standard afin de les adapter aux objectifs de l’approche comportementale pour mieux détecter les nouvelles attaques. La deuxième direction propose une combinaison en série visant à doter une approche par classification d’un module comportemental et d’un module de diagnostic. Enfin, nous nous sommes intéressés au traitement des événements d’audit lorsque les observations sont incertaines ou incomplètes. Nous avons commencé par analyser l’application de la règle de Jeffrey pour la révision de distributions de possibilités avec des observations incertaines. Nous avons proposé ensuite un algorithme efficace pour la révision de la distribution de possibilités codée par un réseau possibiliste naïf. Cet algorithme est particulièrement approprié pour la classification avec des observations entachées d’incertitude car il permet de réaliser la classification en temps polynomial grâce à une série de transformations équivalentes appliquées au réseau possibiliste initial.

Composition du jury

  • Ludovic Mé, Professeur, Supélec-Rennes
  • Nahla Benamor, Maître de conférences-HDR, ISG-Tunis, Tunisie
  • Salem Benferhat, Professeur des Universités, Université d’Artois
  • Yassine Djouadi, Maître de conférences-HDR, Université de Tizi Ouzou, Algérie
  • Habiba Drias, Professeur, Institut National d’Informatique INI, Algérie
  • Eric Grégoire, Professeur des Universités, Université d’Artois
  • Sandra Sandri, Chargée de recherches, Artificial Intelligence Research Institute IIIA, Espagne