• Thèse soutenue le :
  • 2017-12-12
  • faculté des sciences

La thèse porte sur la résolution des problèmes de satisfaisabilité booléenne (SAT) dans un cadre massivement parallèle. Le problème SAT est largement utilisé pour résoudre des problèmes combinatoires de première importance comme la vérification formelle de matériels et de logiciels, la bio-informatique, la cryptographie, la planification et l’ordonnancement de tâches. Plusieurs contributions sont apportées dans cette thèse. Elles vont de la conception d’algorithmes basés sur les approches « portfolio » et « diviser pour mieux régner », à l’adaptation de modèles de programmation parallèle, notamment hybride (destinés à des architectures à mémoire partagée et distribuée), à SAT, en passant par l’amélioration des stratégies de résolution. Ce travail de thèse a donné lieu à plusieurs contributions dans des conférences internationales du domaine ainsi qu’à plusieurs outils (open sources) de résolution des problèmes SAT, compétitifs au niveau international.

Mots-clés: SAT, solveurs SAT, parallèle, calcul distribué, modèles de programmation hybride