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Summary
Goal: discuss probabilistic fuzzy systems to estimate 

density functions constrained by linguistic information

Outline:
• Introduction
• Fuzzy models and interpretability
• Probabilistic Fuzzy Systems (PFS)

– Mamdani PFS
– Takagi-Sugeno PFS

• Parameter estimation in PFS
• Application examples

– VaR estimation
– Modelling of conditional returns in financial markets

• Conclusions
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Fuzzy systems
Many successful applications and solutions
• Data analysis and modelling
• Image processing
• Control systems
• Household appliances
• Consumer electronics
• Multi-agent system design
• Decision making under uncertainty
• Information retrieval
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Mamdani fuzzy models
• Fuzzy antecedents, 

fuzzy consequents
if x is A and y is B then z is C

• Compositional rule of inference
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Takagi-Sugeno fuzzy models
• Fuzzy antecedents, crisp consequents
• Consequent is a crisp function of inputs

if x is A and y is B then z = f(x,y)
• Zero-order Sugeno: constant consequent

if x is A and y is B then z = c
• First-order Sugeno: linear consequent

if x is A and y is B then z = ax+by+c
• Overall output is a weighted average of individual rule 

outputs
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1st order Sugeno
double input

• If X is Small and
Y is Small then
z = -x+y+1

• If X is Small and 
Y is Large then
z = -y+3

• If X is Large and
Y is Small then
z = -x+3

• If X is Large and
Y is Large then
z = x+y+2
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Interpretability of fuzzy models
• Design a model s.t.

– Model complexity is small (nr. of rules and linguistic terms)
– Linguistic terms and rules are sufficiently distinct
– Clear semantics can be associated with the linguistic terms



5

16-Oct-2008 LFA 2008

Redundancy after clustering
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Similarity based simplification

Reduce redundancy in rule and term set to improve 
transparency 

• Merge similar antecedent fuzzy sets
– create generalized concepts
– reduce the number of terms

• Remove sets similar to universal set (always fires)
– reduce number of terms

• Combine / merge similar consequents
– reduce the number of consequent values

• Combine rules with equal antecedents
– reduce number of rules
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Deterministic output, probabilistic 
uncertainty

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

1

2

3

4

5

6

Function approximation

x

y

16-Oct-2008 LFA 2008

Density estimation and fuzzy systems

• After defuzzification, fuzzy systems implement 
a nonlinear mapping from inputs to outputs

• Output is assumed to be deterministic: regular 
fuzzy systems cannot estimate densities

• Many problems require estimation of 
densities: extend fuzzy systems to estimate 
density

• In doing so, linguistically interpretable models 
can also be developed for probability density 
estimation

probabilistic fuzzy systems
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Applications of density estimation
• Computing error bounds on models

• Value-at-risk estimation for financial risks

• Linguistic descriptions of probability distributions

• Ore-grade estimations

• Linguistic descriptions for stochastic time series
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Probabilistic vs. fuzzy systems
Probabilistic systems
• Consider uncertainty as 

randomness
• Emphasis on statistical 

properties of data
• Axiomatic grounding
• Assumptions often 

taken as a priori

Fuzzy systems
• Emphasis on linguistic 

uncertainty
• Statistical properties of 

data often ignored
• Function approximation 

properties 
(deterministic)

• Focus on linguistic 
grounding
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Hammer principle

If your only tool is a 
hammer, you start 
seeing the whole world 
as a nail
(H.-J. Zimmermann)
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Preliminaries

Probability of a fuzzy event:

• Crisp

• Fuzzy (Zadeh, 1968)
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Simple estimation
• Let  x1, …, xn be a random sample on a domain X
• The probability of a crisp event A can be estimated by

• The probability of a fuzzy event Ai can be estimated 
by

assuming that X is well-formed, i.e.
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Deterministic and probabilistic rules
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Model parameters: qq CA  ,

If current returns are large, 
then future returns will be large

If current returns are large, 
then future returns will be large with probability ρ1

future returns will be small with probability 1-ρ1
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Probabilistic fuzzy rules
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If x is A4 then 
y is B1 with probability p(B1 | A4), 
and y is B2 with probability p(B2 | A4), 
and y is B3 with probability p(B3 | A4).

Deterministic vs. probabilistic FS

X

A4

B2

Y If x is A4 then y is B2

A5A3A1

A2B1

B3
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Probability of a fuzzy statement
What is the probability that a randomly selected 

French person is very tall?

• Probability is unlikely (low, small, etc.)

• Probability is about 0.4

• Probability is 0.422 PFS approach
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Probabilistic fuzzy system
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Probabilistic Mamdani systems

 )Pr( with                          

...and and  )Pr(  with                          

...and and  )Pr(  with                          

 then  is  If : Rule

11

qNN

qjj

q

qq

|ACCy

|ACCy

|ACCy

AR

=

=

=

x

∑∑
= =

==
Q

q
jqj

N

j
q z|ACyy

1 1

)Pr()()|E( xx βReasoning:

Centroid of fuzzy consequent set Cj

16-Oct-2008 LFA 2008

Probabilistic TS systems
Zero-order probabilistic Takagi-Sugeno
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Constrained consequent partition

y
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Histograms
• Let  x1, …, xn be a random sample from a univariate

distribution with pdf f(x)
• Let the characteristic functions χi(x) (defining crisp 

bins/intervals Ai) constitute a crisp partitioning:
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• A histogram estimates f(x) as follows:
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Fuzzy histograms
• Let  x1, …, xn be a random sample of size n from a 

univariate distribution with pdf f(x) 
• Let the membership functions functions μi(x) (defining 

fuzzy bins Ai) constitute a fuzzy partitioning:
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• A fuzzy histogram estimates f(x) as follows:
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Crisp vs. fuzzy histogram

pdf normal distribution Crisp histogram Fuzzy histogram
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Two interpretations

• Original interpretation:

densities localbetween ion interpolatan  concerns

)(
)(   

)(
)( )(

^

∑
∫

∑
∫

==
i i

i
i

i i

ii

dxx
px

dxx
pxxf

μ
μ

μ
μ

• Another interpretation:

i

i i

i
i

i i

ii

p

dxx
xp

dxx
pxxf

 with  weightedpdfs, of sum a concerns

)(
)(   

)(
)( )(

^

∑
∫

∑
∫

==
μ
μ

μ
μ

16-Oct-2008 LFA 2008

Relation to deterministic FSs
• Zero-order Takagi-Sugeno system

Takagi-Sugeno reasoning ∑
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Probabilistic fuzzy systems
• Essentially a fuzzy system that estimates a probability 

density function, i.e. the fuzzy system approximates a 
p.d.f.

• Usually p.d.f. is conditional on the input
• Linguistic information is coded in fuzzy rules
• Related to density estimation techniques such as 

Parzen windows and kernel based density estimation
• Combine linguistic uncertainty with probabilistic 

uncertainty
• Different types of fuzzy systems can be extended to 

the PFS equivalent (e.g. Mamdani fuzzy systems, 
Takagi-Sugeno fuzzy systems)

summary
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PFS design
• Identifying mental world vs. observed world 

(van den Eijkel 1999)
• Mental world: linguistic descriptions, fuzzy 

conceptualization, experts’ knowledge
• Observed world: data measurements, probability 

density functions, optimal consequent parameters
• Optimal design given a mental world: application of 

conditional probability measures for fuzzy events
• Optimal design given an observed world: nonlinear 

optimization techniques
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Implications for adaptation/learning

• Adaptation/learning required for two 
fundamentally different quantities

• Tracking of changes in mental models as well 
as observed data is required

• In general, more flexibility through more 
parameters

• Suited for different types of 
adaptation/learning
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Parameter estimation
• Parameters

– Antecedent membership functions
– Consequent membership functions
– Probability parameters of rules

• Estimation methods
– Joint estimation: estimate all parameters 

simultaneously (complex optimisation, local 
optimum)

– Sequential estimation: estimate membership 
functions first (expert driven or data driven) and 
then estimate probability parameters (membership 
weighted counting or maximum likelihood)
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Parameter estimation using a 
sequential method
• First the antecedent membership functions 
μAq(x) are estimated. This can be done using, 
for example, fuzzy c-means clustering.

• Then the probability parameters Pr(Cj|Aq) are 
estimated by setting the probability 
parameters equal to estimates of conditional 
probabilities.
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Estimation of probability parameters
• Conditional probabilities Pr(Cj | Aq) can be assessed 

directly by using the definition of the probability of joint 
events:

• This method does not provide maximum likelihood 
estimates of the probability parameters.
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Bias in parameter estimation
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Underlying data generation process
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Parameter estimation
using maximum likelihood (1)

• Both the antecedent membership functions μAq(x) and the 
probability parameters pjq are estimated by maximizing the 
likelihood of the training examples, which is given by

• This is equivalent to minimization of the negative log-
likelihood

.)|(ˆ
1
∏
=

=
n

k
kkypL x

∑
=

−
n

k
kkyp

1

).|(ˆln x

16-Oct-2008 LFA 2008

Parameter estimation
using maximum likelihood (2)

• The optimization problem is constrained by

• An unconstrained optimization problem can be obtained 
by using auxiliary variables ujq that are related to the 
probability parameters pjq according to the softmax
function
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Experimental comparison (1)

• Use Gaussian membership functions

• The centers cql are determined using fuzzy c-means 
clustering

• The widths σql are set equal to σql = minj′ ≠ j ||cq – cq′||
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Experimental comparison (2)
• Misclassification rates

• Calculated using ten-fold cross-validation
• Standard deviations reported within parentheses

0.023
(0.041)

0.029
(0.021)Maximum likelihood

0.034
(0.048)

0.261
(0.036)Sequential method

WineWisconsin 
breast cancer
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Value-at-risk
• Quantifies downside risk (risk of making 

losses in financial markets)
• Single number for senior management
• Indicates maximum loss with certainty c that a 

portfolio of assets might suffer over a horizon 
of h days

• Most VaR models reduce to estimating the 
volatility of the returns of a portfolio

returnsVaR

Distribution of 
returns over h days

1-c
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Probabilistic fuzzy VaR model
• One day estimations for returns 

(h = 1)
– Input: yesterday’s returns, 

output: today’s returns
• Consider return distributions of 

the total portfolio
• Output membership functions 

defined by the modeller
• Input membership functions 

determined by FCM clustering 
and replacing the clusters by 
Gaussian membership functions

• Probability parameters 
determined by maximum 
likelihood estimation

• Output membership functions 
are scaled by a data-dependent 
value z
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Modelling algorithm
1. Collect price series; compute one-period returns; create 

training and test data
2. Determine antecedent membership functions: apply fuzzy c-

means clustering to compute the locations of the membership 
functions and use cluster covariance to obtain the spreads

3. Select the number of consequent membership functions and 
form an output partition; determine the scaling factor z.

4. Determine optimal probability parameters by maximum 
likelihood

5. Compute the estimated conditional probability distribution 
function for the one-period returns for each observation in the 
test set

6. Given the conditional probability distribution functions, compute 
the VaR

7. Validate the model
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Density estimation and approximation

returns

Distribution of returns 
over 1 day

VaR

1-c
Estimated
distribution
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Experimental study
• Daily returns for six large companies from Dow Jones 

and Shanghai Stock Exchange
• Data collected for 1000 days
• Training data for first 500 days
• Optimal value of parameter z determined by simple 

search for each data set
• Comparison with a GARCH(1,1) model
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Back testing results
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Analyzing financial returns

Try to determine serially correlated periods
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GARCH modeling
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Rule base

0.16790.20630.28080.20770.1374High
0.04680.21360.46660.22930.0437Average
0.13900.23020.29540.20840.1271Low
0.06100.21400.44350.22650.0550All

Current return
0.050.0250-0.025-0.05

very highhighaveragelowvery lowFuture return

0.16790.20630.28080.20770.1374High
0.04680.21360.46660.22930.0437Average
0.13900.23020.29540.20840.1271Low
0.06100.21400.44350.22650.0550All

Current return
0.050.0250-0.025-0.05

very highhighaveragelowvery lowFuture return

Rule example:

If current return is Low, then a very low or very high future return 
is (very) likely.
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Conclusions
• Probabilistic fuzzy systems combine linguistic 

uncertainty and probabilistic uncertainty

• Very useful in applications where a 
probabilistic model (pdf estimation) has to be 
conditioned (or constrained) by linguistic 
information

• Added value of these models has been 
demonstrated in various applications
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Future research directions
• New estimation methods for the model parameters

– Joint estimation
– Information-theory based techniques
– Extending maximum likelihood techniques

• Interaction between linguistic knowledge and data-
driven estimation

• Optimizing model complexity, model simplification
• Interpretability of probabilistic fuzzy models
• Linguistic descriptions of probability density functions
• New applications



28

16-Oct-2008 LFA 2008

Bibliography
• J. van den Berg, W. M. van den Bergh, and U. Kaymak. Probabilistic and 

statistical fuzzy set foundations of competitive exception learning. In Proceedings 
of the Tenth IEEE International Conference on Fuzzy Systems, volume 2, pages 
1035–1038, Melbourne, Australia, Dec. 2001.

• J. van den Berg, U. Kaymak, and W.-M. van den Bergh. Probabilistic reasoning in 
fuzzy rule-based systems. In P. Grzegorzewski, O. Hryniewicz, and M. A. Gil, 
editors, Soft Methods in Probability, Statistics and Data Analysis, Advances in 
Soft Computing, pages 189–196. Physica Verlag, Heidelberg, 2002.

• U. Kaymak, W.-M. van den Bergh, and J. van den Berg. A fuzzy additive 
reasoning scheme for probabilistic Mamdani fuzzy systems. In Proceedings of 
the 2003 IEEE International Conference on Fuzzy Systems, volume 1, pages 
331–336, St. Louis, USA, May 2003.

• U. Kaymak and J. van den Berg. On probabilistic connections of fuzzy systems. 
In Proceedings of the 15th Belgium-Netherlands Artificial Intelligence 
Conference, pages 187–194, Nijmegen, Netherlands, Oct. 2003.

• J. van den Berg, U. Kaymak, and W.-M. van den Bergh. Financial markets 
analysis by using a probabilistic fuzzy modelling approach. International Journal 
of Approximate Reasoning, 35 :291–305, 2004.

• L. Waltman, U. Kaymak, and J. van den Berg. Maximum likelihood parameter 
estimation in probabilistic fuzzy classifiers. In Proceedings of the 14th Annual 
IEEE International Conference on Fuzzy Systems, pages 1098–1103, Reno, 
Nevada, USA, May 2005.

• D. Xu and U. Kaymak. Value-at-risk estimation by using probabilistic fuzzy 
systems. In Proceedings of the 2008 IEEE World Congress on Computational 
Intelligence (WCCI 2008), pages 2109–2116, Hong Kong, June 2008.

16-Oct-2008 LFA 2008

Timetable
Submission of full papers: January 9, 2009
Special session proposals: December 1, 2008
Acceptance notification: March 2, 2009
Camera-ready copy due: April 3, 2009
Early Registration: April 3, 2009 
Conference Secretariat
Center of Intelligent Systems – IDMEC  
Instituto Superior Técnico – TU Lisbon
Av. Rovisco Pais, 1049-001 Lisboa, Portugal
E-mail: ifsa-eusflat2009@ist.utl.pt
URL: http://www.ifsa2009.org
URL: http://www.eusflat2009.org


