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Abstract
We present and evaluate a new compiler, called
D4, targeting the Decision-DNNF language. As the
state-of-the-art compilers C2D and Dsharp tar-
geting the same language, D4 is a top-down tree-
search algorithm exploring the space of proposi-
tional interpretations. D4 is based on the same in-
gredients as those considered in C2D and Dsharp
(mainly, disjoint component analysis, conflict anal-
ysis and non-chronological backtracking, compo-
nent caching). D4 also takes advantage of a dy-
namic decomposition approach based on hyper-
graph partitioning, used sparingly. Some simplifi-
cation rules are also used to minimize the time
spent in the partitioning steps and to promote the
quality of the decompositions. Experiments show
that the compilation times and the sizes of the
Decision-DNNF representations computed by D4
are in many cases significantly lower than the ones
obtained by C2D and Dsharp.

1 Introduction
Knowledge compilation (KC) is acknowledged as a challeng-
ing approach for circumventing the intractability of many
practical reasoning problems based on propositional repre-
sentations (see [Cadoli and Donini, 1998; Darwiche, 2014;
Marquis, 2015] for surveys). Since its very beginning, re-
search on KC has been developed following a number of di-
rections, including the identification of the compilability of
some problems, the definition and the study of new target lan-
guages for KC, the design and the evaluation of compilers,
and the use of the KC languages, compilers and reasoners in
various applications.

As the previous works [Darwiche, 2004; Muise et al.,
2012; Oztok and Darwiche, 2014; 2015a], we are concerned
with the third research direction in this paper: our objective
is to describe a new compiler, called D4.1 D4 is a top-down
compiler associating with every input CNF formula an equiv-
alent Decision-DNNF representation. Like the state-of-the-art
compilers C2D and Dsharp targeting the same language, D4

1D4: a Decision-DNNF compiler based on Dynamic
Decomposition.

is a tree-search algorithm exploring the whole space of propo-
sitional interpretations. Accordingly, D4 takes advantage of
the techniques used in C2D and Dsharp for efficiency rea-
sons (mainly, disjoint component analysis, conflict analy-
sis and non-chronological backtracking, component caching).
However, the decomposition heuristics used for guiding the
exploration of the search space in D4 differs from the ones
considered in C2D and in Dsharp, while trying to keep the
best of them. Thus, like Dsharp, D4 computes a dynamic de-
composition of the input CNF formula under the current par-
tial assignment (disjoint components are not computed prior
to the search as with C2D). However, like C2D, D4 partitions
the dual hypergraph associated with the input CNF formula
under the current partial assignment to find a decomposition
(while the branching heuristics of Dsharp is based on the
VSADS score of the variables). What is brand new in D4 is
that the decomposition is achieved in a parsimonious way
(hypergraph partitioning is not used at each decision step)
and that some simplification rules are used to minimize the
time spent in the partitioning steps and to promote the qual-
ity of the resulting decompositions. In order to assess D4 and
to compare it with C2D and Dsharp, we performed exper-
iments on many benchmarks, coming from several families.
The results obtained clearly show the benefits offered by D4.

The rest of the paper is organized as follows. After some
formal preliminaries (Section 2), our compiler D4 is pre-
sented in Section 3. An empirical evaluation is provided in
Section 4, before the concluding section (Section 5). The
runtime code of D4, the benchmarks used, and some addi-
tional empirical results are available on line from https:
//www.cril.univ-artois.fr/KC/.

2 Formal Preliminaries
We consider a propositional language PROPPS defined from
a finite set PS of propositional symbols and the standard con-
nectives. PROPPS is interpreted in a classical way. For every
formula Σ in PROPPS , Var(Σ) is the set of propositional
variables occurring in Σ. A CNF formula Σ is a conjunction
of clauses, where a clause is a disjunction of literals. Every
CNF is viewed as a set of clauses, and every clause is viewed
as a set of literals. For every literal `, var(`) denotes the vari-
able x of ` (var(x) = x and var(¬x) = x), and ∼` de-
notes the complementary literal of ` (i.e., for every variable
x, ∼x = ¬x and ∼¬x = x). The conditioning of a CNF for-



mula Σ by a literal ` = x (resp. ` = ¬x) is the CNF formula
Σ | ` obtained by removing from Σ every clause containing
x (resp. ¬x) and removing from the remaining clauses every
occurrence of ¬x (resp. x).

The dual hypergraph of a CNF formula Σ is DH(Σ) =
(Nd, Hd) where Nd = Σ and Hd = {{δ ∈ Σ | x ∈
Var(δ)} | x ∈ Var(Σ)}. The nodes of Nd correspond to
the clauses of Σ and the hyperedges of Hd are labelled by
sets of variables of Σ (for each variable x, the corresponding
hyperedge is the set of clauses ClsΣ(x) of Σ containing x).
Example 1 Let Σ = (a ∨ b) ∧ (a ∨ ¬c) ∧ (a ∨ ¬d) ∧
(b ∨ ¬c) ∧ (b ∨ ¬d). We have DH(Σ) = (Nd, Hd), with
Nd = {n1, n2, n3, n4, n5} (n1 (resp. n2, n3, n4, n5) corre-
sponds to a ∨ b (resp. a ∨ ¬c, a ∨ ¬d, b ∨ ¬c, b ∨ ¬d) and
Hd = {{n1, n2, n3}, {n1, n4, n5}, {n2, n4}, {n3, n5}} (la-
belled respectively by {a}, {b}, {c}, and {d}).
BCP denotes a Boolean Constraint Propagator [Zhang and

Stickel, 1996; Moskewicz et al., 2001], which is a key com-
ponent of many solvers. BCP(Σ) returns {∅} if there exists a
unit refutation from the clauses of the CNF formula Σ, and
it returns the set of literals (unit clauses) which are derived
from Σ using unit propagation in the remaining case. As a
side effect, BCP ”virtually” simplifies Σ by conditioning it
by the unit clauses which are generated. For efficiency rea-
sons, such a simplification is not ”physically” performed on
the CNF (instead the set of literals derived using unit propa-
gation is maintained).
d-DNNF is the language consisting of the Boolean circuits

with a single output (its root), where each input is a literal
or a Boolean constant, and each internal gate is either a de-
composable ∧ gate of the form N = ∧(N1, . . . , Nk) (”de-
composable” means here that for each i, j ∈ {1, . . . , k} with
i 6= j the subcircuits of N rooted at Ni and Nj do not share
any common variable) or deterministic ∨ gate of the form
N = ∨(N1, . . . , Nk) (”deterministic” means here that for
each i, j ∈ {1, . . . , k} with i 6= j the subcircuits of N rooted
at Ni and Nj are jointly inconsistent).

Decision-DNNF is defined in the same way, except that
deterministic ∨ gates are replaced by decision gates of the
form N = ite(x,N1, N2). x is the decision variable at
gate N , it does not occur in the subcircuits N1, N2, and
ite is a ternary connective whose semantics is given by
ite(X,Y, Z) = (¬X ∧ Y ) ∨ (X ∧ Z) (”ite” means ”if ...
then ... else ...: if X then Z else Y ).
Example 2 (Example 1 cont’ed) The Decision-DNNF rep-
resentations given on Figure 1 are equivalent to the CNF for-
mula Σ considered in Example 1 (the nodes labelled by ∧
are decomposable ∧ nodes and the circled nodes are deci-
sion nodes).

Decision-DNNF representations, also known as decompos-
able decision graphs [Fargier and Marquis, 2006], can be
turned in linear time into specific d-DNNF representations.
Indeed, when one replaces in a Decision-DNNF representa-
tion a decision node of the form N = ite(x,N1, N2) by
N = (¬x ∧ N1) ∨ (x ∧ N2), the two ∧ nodes which are
conveyed by the replacement are decomposable ones (x ap-
pears neither inN1 nor inN2) and the ∨ node is deterministic
((¬x ∧N1) ∧ (x ∧N2) is inconsistent).
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Figure 1: Two Decision-DNNF representations.

3 An Improved Decision-DNNF Compiler: D4
Our top-down compiler D4 associates with every input CNF
formula Σ an equivalent Decision-DNNF representation. It
elaborates over C2D and Dsharp.

In C2D (reasoning.cs.ucla.edu/c2d/) [Dar-
wiche, 2001; 2004], the generation of the decision nodes in
the resulting Decision-DNNF representation is guided by a de-
composition tree (dtree) of the input CNF instance Σ, which is
computed first. Both the time required to generate a Decision-
DNNF representation of Σ and the size of the representation
are linear in the size of Σ, yet exponential in the width of the
dtree which is used.

In Dsharp (www.haz.ca/research/dsharp/)
[Muise et al., 2012], the generation of the decision nodes
is not guided by a decomposition tree, but a dynamic
decomposition approach is considered instead. During the
search, the variable selected by the branching heuristics
is one with a maximal Variable State Aware Decaying
Sum (VSADS) score [Sang et al., 2005], as in the (exact)
model counters sharpSAT (sites.google.com/
site/marcthurley/sharpsat) [Thurley, 2006]
and Cachet (www.cs.rochester.edu/˜kautz/
Cachet/index.htm) [Sang et al., 2004]. Implicit BCP
is used at every decision point in order to find some failed
literals, i.e., literals which are falsified in every model of
the formula corresponding to the decision point. The literals
which belong to clauses that became binary in the most re-
cent call to BCP are selected as candidates for failed literals.
A conflict clause is learned for each failed literal found.
Dsharp also incorporates a restricted form of backbone
detection, based on BCP.

As it is the case for the previous compilers
C2D and Dsharp [Huang and Darwiche, 2007;
Muise et al., 2012], the Decision-DNNF representation
of Σ which is computed by D4 corresponds to the trace of
a solver. We used our own solver solve, which is based
on the state-of-the-art SAT solver MiniSAT 2.2 [Eén and
Sörensson, 2003]. solve is called at each decision point,
and if a model is found, instead of stopping, the search
backtracks up to the level of the last decision node which
has been created. Assumptions are exploited in solve,
so that the clauses which are learnt at each call to solve
can be kept for the subsequent calls. D4 exploits the same
techniques as the ones used in C2D and Dsharp for effi-
ciency reasons (mainly, disjoint component analysis, conflict
analysis and non-chronological backtracking, component
caching2). However, the decomposition heuristics used by

2In our cache implementation, following the approach already



D4 for guiding the exploration of the search space is different
from the ones considered in C2D and Dsharp.

The pseudo-code of D4. Algorithm 1 provides the pseudo-
code of the compiler D4. The compilation of a given CNF
formula Σ is achieved by calling D4(Σ, ∅).

Algorithm 1: D4(Σ, LV )
input : a CNF formula Σ
input : a list of variables LV
output : the root node N of a Decision-DNNF

representation of Σ

S← solve(Σ);1
if S = {∅} then return leaf(⊥);2
if Var(Σ) = ∅ then return aNode(S, [leaf(>)]);3
if cache(Σ) 6= nil then return aNode(S, [cache(Σ)]);4
comps ← connectedComponents(Σ);5
LNd ← [];6
foreach c ∈ comps do7

LVc ← restrict(LV,Var(c));8
if LVc = ∅ or9

#(Var(S) ∩Var(c)) > 1
10#(Var(c)) then

LVc ← sort(HGP(c));
v ← head(LVc);10
LVc ← tail(LVc);11
Nd ← ite(v , D4(c|¬v , LVc), D4(c|v , LVc));12
LNd ← add(Nd , LNd);13

N∧ ← aNode(S,LNd);14
cache(Σ)← N∧;15
return N∧;16

At line 1, solve is called on Σ. S is equal to {∅} if Σ is
inconsistent, and in this case a Decision-DNNF representation
of it (leaf(⊥)) is generated at line 2. Otherwise S is equal
to BCP(Σ) (please keep in mind that BCP simplifies Σ).
The second base case is addressed at line 3: if Σ (once
simplified by BCP) contains no variable, then a ∧ node is
generated; aNode({`1, . . . , `k}, [N1, . . . , Nm]) generates
a ∧ node with k + m children: the k literals from the set
{`1, . . . , `k} and the m nodes from the list [N1, . . . , Nm].
Hence aNode(S, [leaf(>)]) returns a ∧ node gathering all
the literals of S (completed by a > leaf for handling the
case S is empty). At line 4, one first determines whether
the current formula Σ has already been encountered or not
during the search. One takes advantage of the cache func-
tion which associates CNF formulae with Decision-DNNF
representations given by their root nodes. If Σ has already
been found, then the algorithm simply returns the root node
of the corresponding stored Decision-DNNF representation.
At line 5 connectedComponents returns a set comps of CNF
formulae, the connected components of Σ. The loop at line
7 considers every element c of comps successively. For a
given c, the variables of LV are restricted to those in c. One
then tests at line 9 whether the resulting list LVc is empty or

used in our MDDG compiler [Koriche et al., 2015], we do not store
in the current bucket the clauses which have not been shortened.

not, and if the number of literals obtained by applying BCP
on Σ when projected onto the set of variables of the current
component c is large enough (at least 10% of the number
of variables of c). If at least one of the two conditions is
satisfied, then one updates the current list LVc of variables.
HGP(c) computes a cutset of the dual hypergraph of c after
applying to it some simplification rules. The variables of this
cutset are sorted according to their VSADS score (the largest
score first) to produce an updated list sort(HGP(c)). Then
one selects the first variable v of LVc (line 10) and remove
it from LVc (line 11). A decision node Nd with decision
variable v is computed next, via two recursive calls to D4
corresponding to the two ways of conditioning v in c (line
12). Nd is then added to the list LNd of nodes at line 13,
which has been initialized to the empty list before the loop
(line 6). Then a ∧ node N∧ gathering the literals of S and the
decision nodes of LNd is generated (line 14), and added to
the cache (associated with the entry Σ) (line 15), and finally
returned as the result of the main call (line 16).

Dynamic decomposition based on hypergraph partition-
ing. Like Dsharp, D4 computes a dynamic decomposition
of the input formula under the current partial assignment (dis-
joint components are computed during the search and not
prior to the search). However, like C2D -dt method 1, D4
partitions the dual hypergraph associated with the current for-
mula to find a decomposition. Basically, the HGP procedure
takes advantage of the PaToH partitioner – Partitioning Tools
for Hypergraph, v. 3.2 (http://bmi.osu.edu/˜umit/
software.html) [Catalyürek and Aykanat, 2011] to do
the job. PaToH is similar to hMETIS (the partitioner ex-
ploited by C2D) but, unlike hMETIS, it runs on the 64 bit
architecture used for our experiments. Given the dual hyper-
graph DH(Σ) = (Nd, Hd) of Σ, PaToH roughly looks for a
subset C of Hd containing as few elements as possible such
that removing the cutset C from Hd leads to a hypergraph
containing at least two disjoint components having sizes as
close as possible (see [Catalyürek and Aykanat, 2011] for
more details). When the variables corresponding to the ele-
ments of C are assigned (whatever the way they are assigned)
it is guaranteed that the current formula conditioned by the
corresponding assignment has at least two disjoint compo-
nents, so that a decomposable ∧ node can be generated in the
compiled form.

When C2D -dt method 1 is used, a dtree is computed
entirely at start using hypergraph partitioning: a first cutset C
of the dual hypergraph (Nd, Hd) of Σ is computed, and then
one recursively looks for a decomposition of each of the two
hypergraphs (the resulting connected components) obtained
from the removal of C in (Nd, Hd), until a hypergraph with
a single node is obtained. Contrastingly, the decomposition
process followed by D4 is dynamic: for each assignment of
the variables of corresponding to the hyperedges of C, the
hypergraph associated with Σ conditioned by the assignment
(and possibly simplified further thanks to BCP) is a candidate
for a further decomposition. The variables of C are ordered
according to their VSADS score (the ones with a maximal
score being considered first as in Dsharp). That way, D4
tries to keep the best of the decomposition heuristics used by



the two compilers C2D and Dsharp.
Each of the static and dynamic decomposition approaches

has some pros and some cons. On the one hand, computing
a static decomposition as in C2D -dt method 1 limits the
number of calls to the hypergraph partitioner since there is
no need to compute a cutset for each assignment. This prop-
erty is not shared when a dynamic decomposition approach is
considered, as in D4. However, limiting the number of calls to
the hypergraph partitioner is important since hypergraph par-
titioning is time consuming. Especially, profiling the code of
D4, we observed that in average for the instances considered
in our experiments at least 50% of the computation time of D4
is consumed by PaToH (and for some instances the part of the
time consumed by PaToH exceeds 90%). On the other hand,
the static decomposition approach does not lead in general to
the most efficient decompositions; indeed, for each cutset C,
the chosen assignment of the variables corresponding to the
hyperedges of C (and the additional propagations which can
be made from it) can have a huge impact both on the size and
the structure of the resulting formula once simplified, so that
a different, and actually much better, decomposition can be
reached for it, compared to the ones associated with the other
assignments of the variables of C.

Example 3 (Example 1 cont’ed) C = {{n1, n2, n3}, {n1,
n4, n5}} is a cutset of DH(Σ): removing the elements of C
from Hd leads to two disjoint hypergraphs since the remain-
ing hyperedges {n2, n4}, {n3, n5} do not share any node.
{n1, n2, n3} (resp. {n1, n4, n5}) are labelled by the sets of
variables {a} (resp. {b}), thus assigning those two variables
a and b in Σ (whatever the assignment) leads to two disjoint
components (one of them consists of the clause b∨¬c simpli-
fied by the assignment and the other one of the clause b ∨ ¬d
simplified by the assignment). This can be observed on Figure
1 (left). However, one can also observe on Figure 1 (right)
that assigning all the variables corresponding to the hyper-
edges of C is not necessary to generate disjoint components:
setting a to false is enough to get some disjoint components,
independently of the way b will be assigned. Thus consider-
ing b (which corresponds to the remaining hyperedge of C)
as the next branching variable when a has been set to false
is not guaranteed to be the best choice. For each connected
component resulting from the assignment of a to false, some
new decompositions should be looked for.

Improving the hypergraph partitioning steps. In order to
circumvent the complexity of the hypergraph partitioning
steps, the strategy used in D4 is twofold. On the one hand,
we avoid calling HGP at each recursion step or each time
a decision node must be generated. Thus, a new partition is
computed only if the condition at line 9 is satisfied, i.e., when
the current list of variables LVc is empty, or when the num-
ber of propagations obtained via BCP (projected onto the set
of variables of the current component c) is ”large enough”.
On the other hand, we designed some specific rules which
are used inside HGP and aim at simplifying the hypergraph
(both in terms of the number of its nodes and in terms of the
number of its hyperedges) associated with the current formula
c before calling PaToH on it. The simplification achieved
can also lead PaToH to find better decompositions. It guar-

antees that the CNF formula BCP(c | γc) contains at least
two disjoint components when γc is any total assignment
of the variables from the list LVc computed at line 9. One
first exploits an algorithm for the detection of literal equiva-
lences based on BCP. This algorithm, which is a by-product
of the algorithm equivSimpl reported in [Lagniez and Mar-
quis, 2014], is used for determining for each literal ` appear-
ing in the current formula c a list of equivalent literals (its
equivalence class). Those lists are generated by computing
for each `, BCP(c ∪ {`}) and BCP(c ∪ {∼ `}).3 Once this has
been done, for each var(`), the variables v`1, . . . , v

`
k associ-

ated with the literals of the equivalence class of ` (but var(`)
itself) are suppressed from the labels of the hyperedges of
DH(c), the hyperedges without any label are then removed
from this set, and the hyperedge Clsc(var(`)) is replaced by
Clsc(var(`)) ∪

⋃k
i=1 Clsc(v`i ). When all var(`) have been

considered, two rules are applied on the resulting hypergraph
in a systematic fashion in order to simplify it further. The sim-
plification process stops when no rule can be applied or when
the current hypergraph has a single hyperedge. The first rule
concerns the nodes of this hypergraph. Suppose that the cur-
rent set of nodes contains two distinct nodes ni, nj such that
every hyperedge of the current set of hyperedges containing
ni also contains nj . Then ni can be safely removed from the
current set of nodes, and from the hyperedges which contain
it. The labels of the hyperedges containing ni are marked and
added to the labels of the hyperedges containing nj . The sec-
ond rule concerns the unmarked labels of hyperedges of size
1 which can obviously be removed.

Example 4 Let Σ = (¬a ∨ b) ∧ (¬b ∨ c) ∧ (¬c ∨
a) ∧ (a ∨ c ∨ d). We have DH(Σ) = (Nd, Hd), with
Nd = {n1, n2, n3, n4} (n1 (resp. n2, n3, n4) corresponds
to ¬a ∨ b (resp. ¬b ∨ c, ¬c ∨ a, a ∨ c ∨ d) and
Hd = {{n1, n3, n4}, {n1, n2}, {n2, n3, n4}, {n4}} (labelled
respectively by {a}, {b}, {c}, and {d}). The first step leads to
identify the equivalence class of a as {a, b, c}. The resulting
hypergraph is ({n1, n2, n3, n4}, {{n1, n2, n3, n4}, {n4}}).
The set of labels of {n1, n2, n3, n4} is {a} and the set of la-
bels of {n4} is {d}. Then the nodes n1, n2, n3 are removed,
a is marked and added to the set of labels of {n4} which be-
comes {a, d}. Finally, label d is removed from this set. The
resulting hypergraph is thus ({n4}, {{n4}}) where {n4} is
labelled by {a}.

4 Empirical Evaluation
We have considered 703 CNF instances from the SAT LIBrary
www.cs.ubc.ca/˜hoos/SATLIB/index-ubc.
html, gathered into 8 data sets, as follows: BN (Bayesian
networks) (192), BMC (Bounded Model Checking) (18),
Circuit (41), Configuration (35), Handmade (58), Planning
(248), Random (104), Qif (7) (Quantitative Information Flow

3Running this algorithm is also useful for determining that some
literals are fixed in c, while they are not necessarily detected as such
when running BCP on c. Thus, if BCP(c ∪ {`}) = {∅}, then we
have c |= ¬`; if `′ ∈ BCP(c ∪ {`}) and `′ ∈ BCP(c ∪ {∼ `}), then
c |= `′. In D4, such literals are used to simplify c for the subsequent
computations.
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Figure 2: Comparing D4 with C2D, Dsharp, and a version of D4 where PaToH is applied at each decision node.



analysis - security). The experiments have been conducted
on Intel Xeon E5-2643 (3.30 GHz) processors with 32 GiB
RAM on Linux CentOS. A time-out of 1h and a memory-out
of 7.6 GiB has been considered for each instance.

We have computed the compilation times and the sizes of
the corresponding Decision-DNNF compiled forms obtained
by using D4, C2D -dt method 1, and Dsharp, on each
instance. The results are reported on the scatter plots given in
Figure 2. Each dot represents an instance; the time (in sec-
onds) needed to solve it or the size (in number of edges) of
the resulting compiled form, using the compiler correspond-
ing to the x-axis (resp. y-axis), is given by its x-coordinate
(resp. y-coordinate). Logarithmic scales are used for both co-
ordinates. In part (a) and (b) of the figure, the x-axis corre-
sponds to D4 while the y-axis corresponds to C2D. In part
(a) compilation times are reported while in part (b), sizes of
compiled forms are reported. Parts (c) and (d) present the cor-
responding results when Dsharp is used instead of C2D. In
(d) the number of edges reported for Dsharp is the number
of edges in the compressed representations.4 The numbers of
instances solved within the time and memory limits are 574
(over 703) for D4, 546 for C2D -dt method 1, and 467 for
Dsharp.

The experimental results obtained show that the compila-
tion times of D4 are significantly lower than the ones obtained
by C2D and Dsharp on many instances. More importantly,
the sizes of the Decision-DNNF representations computed by
D4 are substantially lower for the great majority of instances
(sometimes by several orders of magnitude) than the ones ob-
tained by C2D and Dsharp.

An important issue was to determine the very reasons of
the efficiency of D4 compared to C2D and Dsharp. Indeed,
beyond its specific decomposition heuristics, D4 is based on
a more recent SAT solver than the ones considered in those
two compilers. Does this explain the computational benefits
achieved by D4? In order to answer this question, we devel-
oped a Dsharp-like compiler based on D4, and we evaluated
this compiler on the same benchmarks set and considering the
same resource bounds as above. It turns out that the Dsharp-
like compiler has been able to solve 515 instances, which is
much more than Dsharp, but far less than the 574 instances
solved by D4. So it clearly appears that the gain offered by
D4 is not solely due to the use of a solver based on MiniSAT
(even if this helps). Assessing the impact of using PaToH
(with default setting, as used in D4) instead of hMETIS
was also an issue. Interestingly, a comparison of PaToH and
hMETIS has already been done, see http://bmi.osu.
edu/umit/PaToH/table1.html. It turns out PaToH
andhMETIS have similar performances, especially as to the
quality of the decompositions found. Similarly, in order to
assess the improvements obtained by limiting the time con-
sumed by PaToH by using it sparingly and after the applica-
tion of simplification rules (as implemented in D4), we have
also compared D4 with a version of it where PaToH is called
in an unrestricted fashion (i.e., when the condition at line 9

4Contrastingly, no reduction rules are applied to the Decision-
DNNF representations computed by D4, so that the sizes which are
reported correspond to uncompressed representations.
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Figure 3: Number of instances solved by D4, C2D, Dsharp,
Cachet, and sharpSAT in a given time.

is true) and no simplification rules are applied before call-
ing PaToH. This version of D4 with ”unrestricted” use of
PaToH solved ”only” 531 instances, and does not lead to size
improvements. More detailed results are reported in parts (e)
and (f) of Figure 2.

Finally, we wanted to assess the performances of D4 as a
model counter, and to compare it with miniC2D, Cachet
and sharpSAT on the same benchmarks set and with the
same resource bounds. miniC2D (http://reasoning.
cs.ucla.edu/minic2d/) [Oztok and Darwiche, 2015b]
is a compiler targeting the language Decision-SDD. While it
is based on a more recent SAT solver than the ones used in
C2D and Dsharp, it has been able to solve only 414 in-
stances (thus, far less than C2D). Cachet (resp. sharpSAT)
solved 525 (resp. 507) instances (over 703) within the time
and memory limits. The cactus plots in Figure 3 give for D4,
C2D, Dsharp, Cachet, and sharpSAT the number of in-
stances solved in a given time. The results show that while
D4 (as a compiler) requires some computational overhead for
generating compiled forms, it often proves quite efficient as
an exact model counter.

5 Conclusion
We have described D4, a new top-down, tree-search compiler
targeting the Decision-DNNF language. In D4, a dynamic de-
composition of the input CNF formula under the current par-
tial assignment is computed during the search. This decom-
position is based on hypergraph partitioning, used sparingly.
Specific hypergraph simplification rules are also used in or-
der to minimize the time spent in each partitioning step and to
promote the quality of the decompositions. Experiments have
shown that substantial computational savings can be obtained
using D4, both in terms of compilation times and (even more)
in terms of the sizes of the compiled forms which are gen-
erated. D4 also appears as a quite competitive model counter
for many instances (despite the computational overhead due
to the generation of the compiled form).
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