Proofs
For every f, g € F,, wenote f = g when for every € {0,1}", f(x) = 1 implies that g(x) = 1.

Proof of Proposition 1

Proof One first needs the following lemma that gives a recursive characterization of the set sr(a, f) of sufficient reasons for
an instance « given a Boolean classifier f when x is a positive instance of f (in the case when x is a negative instance of f,
just replace f by —f).

Lemma 1 For any Boolean function f € F,, and any instance x € {0, 1}", the following inductive characterization of sr(x, f)

holds:
sr(xz,1) ={1}
sr(x,0) ={} _ _
(@, f) =sr(@ (fIONSIO)U{ENL b € sr(a, [ ) st te = f [0}
where Var( ) C Var(f) and ty =1

sr(x, (f | O) A (f|0) = maz({t, Nty ity e sr(z, f|L),t; € sr(zx, f| 0O}, ).

Proof Let us recall first the following inductive characterization of pi(f), the set of prime implicants of f € F,,, based on
the Shannon decomposition of f over any of its variables x (see e.g., [Brayton er al., 1984]):

pi(l)  ={1}

pil0) =)

pilh) = pi(f 1D A o) -
T Atz tz € pi(f | T)st. Bt € pi((f | T)A(f| ), tz =t}
Wa Aty ity €pi(f|a)st. Bt cpi(f|Z)A(f|2)),ts =t}

where z € Var(f)
and

pi((f [Z) A (f | %)) = maz({tz Nty 2 tz € pi(f | T), te € pi(f | 2)}, ).

For the base cases sr(x,1) = {1} and sr(x,0) = {}, the result is obvious. For the general case, taking x € Var(¢), we
have:

sr(w, f)  ={t € pi(f) : ta =t}

={tepi(f|D)N(f|2)):ta =t}

U{t € {TAtz:tz € pi(f | Z)st. Bt € pi((f | Z) A (f | @), tz = '}, and t, =t}
U{te({x(}\f )t(e‘pl()])”|x) t. Bt € pi((f|Z)A(f|2)),te =t'}, and ty =t}
= sr(x, T T

U{t e {T Atz itz € pi(f | T) st Bt € pi(f | T) A (f | 2),tz = '}, and tg =t}
U{te{a Aty ity €pi(f|a)st. Bt € pi((f |Z)A(f | 2)),te Et'}, and ty, =t}

Now, since « is an instance, whatever ¢, it cannot be the case that t, = ¢
is similar). In this situation, no element of {Z A tz : tz € pi(f | T) s.t. At € pi
belong to sr(x, f). As a consequence, we get that:
sr(x, f)  =sr(x, (f[Z)A(f]2)) _
U{te {Untp:tecpi(f|O)st. Pt €cpi((fION(f|E),te =1}, andt, =t}
where Var(¢) C Var(f) andty, = ¢

and t, |= £. Suppose that £ = z (the case / = T
((f | Z)A(f | z)),tz =t}, and ty =t} can

If t = £ Aty is such that ¢, |= t holds, then we have ¢,, |= t,. Hence, we have:
sr(z, f) =sr(z,(f|Z)A(f|2)) -
U{lAty:tp€sr(z, flOst Bt cpi((fIONf]E),te =t}
where Var(¢) C Var(f) andty, = ¢

Consider now the condition 3¢’ € pi((f | OA(f|0),t =t and suppose that it is satisfied. Since pi((f | ONAf]O) =
maz({t; Nty 2 t; € pi(f | £), 4, € pi(f | )}, ), there exist 17 € pi(f | £) and ) € pi(f | £) such that t" = t; A t}. Thus, we
have ¢, |= 1 A t;, and in particular ¢, |= ¢ holds. But since ¢, and t;, are prime implicants of f | 76, this implies that ¢, = ¢
holds. Furthermore, from ¢, [= ¢ At} we get that ¢, [= t7. In addition, a prime implicant ¢; of f | ¢ such that ¢, |= ¢; exists if

and only if t, = f | £. Altogether, the condition 3t € pi((f | £) A (f | £)), t¢ |= t' is equivalent to ¢, |= f | £. Thus, we get
that:



sr(@, f) = sr(@, (f1ON(f]0) _
U{lAtg:ty€sr(z, f|l)sttebefle}
where Var(¢) C Var(f) and t, = ¢

Finally, if t € maz({tz ANty : tz € pi(f | T),tx € pi(f | =)}, =), then by construction ¢ is such that there exist
tz € pi(f | T) and t, € pi(f | x) satisfying ¢ = ¢z A t,. If t,, | ¢ holds, then ¢, = ¢z and t, = ¢, hold. Hence
tz € sr(x, f | T) and t, € sr(x, f | ). Consequently, t € maz({tz Aty | tz € sr(x, f | T),t, € sr(z, [ | 2)}, ). O

From the inductive characterization of sr(x, f) given by the previous proposition, we can easily derive a bottom-up algorithm
allowing to derive sr(x, f) when f is represented by a decision tree.
Consider now a decision tree 7" of depth £ > 1 having the following form:

T has 2k — 1 decision nodes and 2k leaves. Suppose that the variables associated with the decision nodes are in one-to-one
correspondence with the decision nodes (i.e., they are all distinct). The number of variables occurring in 7" is thus n = 2k — 1,
therefore 7" has 2n + 1 nodes. Consider now the instance « € {0,1}™ such that z; = 1 for every ¢ € [n]. We are going to prove
by induction on the depth k of such a tree 7" that 2 has 2~ minimal reasons given 7', each of them containing k literals. The
proof takes advantage of the recursive characterization of the set of all sufficient reasons for an instance given a decision tree,
as made precise by Lemma 1.

e Base case K = 1. We have n = 1. T consists of a decision node labelled by the single variable of X,,, say z, a left child
that is a O-leaf and a right child that is a 1-leaf. T is equivalent to x and z is implied by ¢,. Hence, x is the unique sufficient
reason for & given 7', so it is also the unique minimal reason for = given T". As expected, the number of minimal reasons
for « given T is equal to 2*~!. The size of the unique minimal reason is k = 1.

e Inductive step k > 1. Let x be the variable of X, labelling the root node of 7. By construction, the left child 7; of T'
is equivalent to a single variable, say x;, that is the unique minimal reason for x given 7;. The right child 7;. of T has
the same form as 7', but with depth k& — 1. By induction hypothesis, we know that 2 has 2*~2 minimal reasons given 7},
each of them containing k& — 1 literals. As shown by Lemma 1, provided that the variables labelling the decision nodes are
pairwise distinct, the minimal reasons for x given T are obtained by extending every minimal reason for x given 7. with
x; and by extending every minimal reason for & given T with z. Accordingly,  has 2 x (2¥=2) = 2#~! minimal reasons
given 7" and each of them contains k¥ — 1 + 1 = k literals.

Finally, since n = 2k — 1, we have k = “T“ and the number of minimal reasons for x given T is equal to 2F~1 = 2v»—1 ]
Proof of Proposition 2

Proof The decision boils down to checking whether the term ¢5 defined as the subset of ¢, over S is an implicant of at least
| 5 | + 1 decision trees of F', and this can be tested in polynomial time since the language of decision trees offers the implicant
query (see e.g., [Audemard er al., 2020]). If the test is positive, the greedy algorithm presented in the paper can be used to
extract a majoritary reason for & given F' by starting with t;i instead of starting with . O



Proof of Proposition 3

Proof A majoritary reason for x given F' that satisfies C' exists precisely when ¢, = C, which can be tested in time
O(n + |F|). If the test is positive and C belongs to propositional fragment offering a polynomial-time implicant test (e.g., C' is
a CNF formula), deriving such a reason is tractable as well: the greedy algorithm can be leveraged (at each step, it is enough to
test whether the current term is an implicant of at least | % | 4- 1 decision trees of F", and is still an implicant of C). g

Proof of Proposition 4

Proof Let < be any linear ordering over X, that extends <. X, ordered by < can be obtained by topologically sorting
the graph over X, associated with <. Let F' = {77, ...,T,,} and « be such that F'(x) = 1 (the case when F'(xz) = 0 can
be handled in the same way by considering a random forest equivalent to —F' instead of F'; such a random forest equivalent
to = F' can be computed in linear-time in the size of F’, see Proposition 1 in [Audemard ez al., 2021]). Let us run the greedy
algorithm (described in the paper) on « and F' = {T1,...,T,,}, where instead of trying to eliminate the literals associated
with the characteristics of x in any fixed, yet arbitrary way, sort them first in ascending order w.r.t. < (i.e., the characteristics
associated with the less prioritized features are considered first). Let ¢ be the resulting term. Then ¢ is an inclusion-preferred
majoritary reason for x given F'. Indeed, towards a contradiction, suppose that this is not the case. This means that there exists
aterm t’ such that t, =t and t' T ¢, ie., 3i € {1,...,p}Vj € {1,...,i — 1}, ¢'[S;] = t[S;] and ¢'[S;] C ¢[S;]. Thus there
exists a literal ¢ € ¢ such that var(¢) = {z}, x € S;, £ ¢ t/, and for every literal based on a variable that precedes x in the
enumeration given by <, ¢ and ¢’ coincide.

Now, let t, (resp. t’<w) be the conjunction of literals of ¢ (resp. t') based on variables that precede x in the enumeration
given by < and let ¢ be the conjunction of all the literals ¢’ based on variables that are after x in the enumeration given by <
and such that x satisfies ¢”’. Since ¢’ is an implicant of at least | % | + 1 decision trees of F" and satisfies ¢, = t’, and since
t, At" =t holds, t”, At" is an implicant of at least | %5 | 4 1 decision trees of I such that t, = t_, At". Butt, =t_,,
hence ¢, At is an implicant of at least | 5 | + 1 decision trees of F' such that « |= ¢, A t’. This conflicts with the fact that
¢ € t since / being kept by the greedy algorithm implies that ¢, A t” is not an implicant of at least | %5 | 4+ 1 decision trees of
F. O

Proof of Proposition 5

Proof First of all, one can easily check that, by construction, (1) an assignment v over X,, U Y satisfies Cl5,q if and only
if t, Nt is an implicant of more than % trees of F" and t,[Y] is an implicant of CNF(}>_"" | y; > %). Here , Y contains
{y1,...,ym} as a subset, plus additional variables used for the CNF encoding of the cardinality constraint .~ , y; > 5

Now, we prove that (2) if v satisfies Cl,;q and v maximizes the sum of the weights of clauses from Cy¢ that are satisfied,
then ¢, Nt is an implicant of more than 7 trees of /" and V¢ € t,, Nz, (t, Ntg) \ {£} does not satisfy this property. From (1)
one knows that ¢,, Nt,, is an implicant of more than % trees of F. Towards a contradiction, suppose that there exists £ € t, Nt,

such that (t,, Ntz) \ {£} is an implicant of more than 3 trees of F". Then let v’ be the assignment over X,, UY" such that v and

v’ coincide on every variable except the one of ¢, and ¢ € t,, while £ € t,. Thenif (¢, Ntz) \ {¢} is an implicant of more than

% trees of I, this is also the case for (s Ntz) \ {£} because (t, Nty) \ {£} = (ty Nty) \ {£}. Now, since t. [Y] =t[Y],

using (1) we get that v’ satisfies Cha,q. Moreover, by construction, w(v’) = w(v) +w(var(¥)). Since w(var(¢)) > 1, v is not
an assignment that maximizes the sum of the weights of clauses from Cyg that are satisfied, among those satisfying Charq.-
Finally, it remains to show that (3) if v is a solution of the WEIGHTED PARTIAL MAXSAT instance given by (Csofs, Chard)»
then ¢, N ¢, is a majoritary reason for x given F’ that is of minimal weight. From (2) we know that ¢,, N ¢, is a majoritary
reason for & given F', hence it remains to show that it is of minimal weight. Towards a contradiction, suppose that there exists
a majoritary reason t for « given F such that w(t) < w(t, Nt,). Let v’ be any assignment v over X,, UY that satisfies Chara
and is such that t C ¢, | € t, whenever var({) € X,, and £ & t, y; € t,» whenever ¢ satisfies every c[x] where ¢ € CNF(T;)
and i € [m], and finally 7; € t,» whenever ¢ does not satisfy every c[x] where ¢ € CNF(7};) and ¢« € [m]. Such a v’ exists
since t = t, Nt satisfies more than % trees of F' (as a consequence, to [{y1, - . ., Ym }] satisfies Sy > 7). It remains to
compare w(v’) to w(v). Let ¢’ be any term such that ¢' C t5,. We have w(t') = 3707 w(2:) =37, p var (i) W(@2)- 22121 w(w;)
is a constant (independent of t'). Hence, if w(t) < w(t, Ntz) holds, then we have 3 o v,y W(Ti) > D24 g var(ty nte) W(Ti)-
This conflicts with the fact that v is a solution of (Csot, Chard)- O
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