
Proofs

For every f, g 2 Fn, we note f |= g when for every x 2 {0, 1}n, f(x) = 1 implies that g(x) = 1.

Proof of Proposition 1

Proof One first needs the following lemma that gives a recursive characterization of the set sr(x, f) of sufficient reasons for
an instance x given a Boolean classifier f when x is a positive instance of f (in the case when x is a negative instance of f ,
just replace f by ¬f ).

Lemma 1 For any Boolean function f 2 Fn and any instance x2 {0, 1}n, the following inductive characterization of sr(x, f)
holds:

sr(x, 1) = {1}
sr(x, 0) = {}

sr(x, f) = sr(x, (f | `) ^ (f | `)) [ {` ^ t` : t` 2 sr(x, f | `) s.t. t` 6|= f | `}

where Var(`) ✓ Var(f) and tx |= `

and
sr(x, (f | `) ^ (f | `)) = max ({t` ^ t` : t` 2 sr(x, f | `), t` 2 sr(x, f | `)}, |=).

Proof Let us recall first the following inductive characterization of pi(f), the set of prime implicants of f 2 Fn, based on
the Shannon decomposition of f over any of its variables x (see e.g., [Brayton et al., 1984]):

pi(1) = {1}
pi(0) = {}

pi(f) = pi((f | x) ^ (f | x))
[{x ^ tx : tx 2 pi(f | x) s.t. @t 2 pi((f | x) ^ (f | x)), tx |= t}

[{x ^ tx : tx 2 pi(f | x) s.t. @t 2 pi((f | x) ^ (f | x)), tx |= t}

where x 2 Var(f)
and

pi((f | x) ^ (f | x)) = max ({tx ^ tx : tx 2 pi(f | x), tx 2 pi(f | x)}, |=).

For the base cases sr(x, 1) = {1} and sr(x, 0) = {}, the result is obvious. For the general case, taking x 2 Var(`), we
have:

sr(x, f) = {t 2 pi(f) : tx |= t}

= {t 2 pi((f | x) ^ (f | x)) : tx |= t}

[{t 2 {x ^ tx : tx 2 pi(f | x) s.t. @t0 2 pi((f | x) ^ (f | x)), tx |= t
0
}, and tx |= t}

[{t 2 {x ^ tx : tx 2 pi(f | x) s.t. @t0 2 pi((f | x) ^ (f | x)), tx |= t
0
}, and tx |= t}

= sr(x, (f | x) ^ (f | x))
[{t 2 {x ^ tx : tx 2 pi(f | x) s.t. @t0 2 pi((f | x) ^ (f | x)), tx |= t

0
}, and tx |= t}

[{t 2 {x ^ tx : tx 2 pi(f | x) s.t. @t0 2 pi((f | x) ^ (f | x)), tx |= t
0
}, and tx |= t}

Now, since x is an instance, whatever `, it cannot be the case that tx |= ` and tx |= `. Suppose that ` = x (the case ` = x

is similar). In this situation, no element of {x ^ tx : tx 2 pi(f | x) s.t. @t 2 pi((f | x) ^ (f | x)), tx |= t}, and tx |= t} can
belong to sr(x, f). As a consequence, we get that:

sr(x, f) = sr(x, (f | x) ^ (f | x))
[{t 2 {` ^ t` : t` 2 pi(f | `) s.t. @t0 2 pi((f | `) ^ (f | `)), t` |= t

0
}, and tx |= t}

where Var(`) ✓ Var(f) and tx |= `

If t = ` ^ t` is such that tx |= t holds, then we have tx |= t`. Hence, we have:
sr(x, f) = sr(x, (f | x) ^ (f | x))

[{` ^ t` : t` 2 sr(x, f | `) s.t. @t0 2 pi((f | `) ^ (f | `)), t` |= t
0
}

where Var(`) ✓ Var(f) and tx |= `

Consider now the condition 9t
0
2 pi((f | `) ^ (f | `)), t` |= t

0 and suppose that it is satisfied. Since pi((f | `) ^ (f | `)) =
max ({t0

`
^ t

0
` : t

0
`
2 pi(f | `), t0` 2 pi(f | `)}, |=), there exist t0

`
2 pi(f | `) and t

0
` 2 pi(f | `) such that t0 = t

0
`
^ t

0
`. Thus, we

have t` |= t
0
`
^ t

0
`, and in particular t` |= t

0
` holds. But since t` and t

0
` are prime implicants of f | `, this implies that t` ⌘ t

0
`

holds. Furthermore, from t` |= t
0
`
^ t

0
` we get that t` |= t

0
`
. In addition, a prime implicant t0

`
of f | ` such that t` |= t

0
`

exists if
and only if t` |= f | `. Altogether, the condition 9t

0
2 pi((f | `) ^ (f | `)), t` |= t

0 is equivalent to t` |= f | `. Thus, we get
that:



sr(x, f) = sr(x, (f | `) ^ (f | `))
[{` ^ t` : t` 2 sr(x, f | `) s.t. t` 6|= f | `}

where Var(`) ✓ Var(f) and tx |= `

Finally, if t 2 max ({tx ^ tx : tx 2 pi(f | x), tx 2 pi(f | x)}, |=), then by construction t is such that there exist
tx 2 pi(f | x) and tx 2 pi(f | x) satisfying t = tx ^ tx. If tx |= t holds, then tx |= tx and tx |= tx hold. Hence
tx 2 sr(x, f | x) and tx 2 sr(x, f | x). Consequently, t 2 max ({tx ^ tx | tx 2 sr(x, f | x), tx 2 sr(x, f | x)}, |=). ⇤

From the inductive characterization of sr(x, f) given by the previous proposition, we can easily derive a bottom-up algorithm
allowing to derive sr(x, f) when f is represented by a decision tree.

Consider now a decision tree T of depth k � 1 having the following form:

0 1

0 1

. . .

0 1 0 1

T has 2k � 1 decision nodes and 2k leaves. Suppose that the variables associated with the decision nodes are in one-to-one
correspondence with the decision nodes (i.e., they are all distinct). The number of variables occurring in T is thus n = 2k � 1,
therefore T has 2n+1 nodes. Consider now the instance x 2 {0, 1}n such that xi = 1 for every i 2 [n]. We are going to prove
by induction on the depth k of such a tree T that x has 2k�1 minimal reasons given T , each of them containing k literals. The
proof takes advantage of the recursive characterization of the set of all sufficient reasons for an instance given a decision tree,
as made precise by Lemma 1.

• Base case k = 1. We have n = 1. T consists of a decision node labelled by the single variable of Xn, say x, a left child
that is a 0-leaf and a right child that is a 1-leaf. T is equivalent to x and x is implied by tx. Hence, x is the unique sufficient
reason for x given T , so it is also the unique minimal reason for x given T . As expected, the number of minimal reasons
for x given T is equal to 2k�1. The size of the unique minimal reason is k = 1.

• Inductive step k > 1. Let x be the variable of Xn labelling the root node of T . By construction, the left child Tl of T
is equivalent to a single variable, say xl, that is the unique minimal reason for x given Tl. The right child Tr of T has
the same form as T , but with depth k � 1. By induction hypothesis, we know that x has 2k�2 minimal reasons given Tr,
each of them containing k� 1 literals. As shown by Lemma 1, provided that the variables labelling the decision nodes are
pairwise distinct, the minimal reasons for x given T are obtained by extending every minimal reason for x given Tr with
xl and by extending every minimal reason for x given Tr with x. Accordingly, x has 2⇥ (2k�2) = 2k�1 minimal reasons
given T and each of them contains k � 1 + 1 = k literals.

Finally, since n = 2k� 1, we have k = n+1
2 and the number of minimal reasons for x given T is equal to 2k�1 = 2

p
n�1. ⇤

Proof of Proposition 2

Proof The decision boils down to checking whether the term t
S
x defined as the subset of tx over S is an implicant of at least

b
m
2 c+ 1 decision trees of F , and this can be tested in polynomial time since the language of decision trees offers the implicant

query (see e.g., [Audemard et al., 2020]). If the test is positive, the greedy algorithm presented in the paper can be used to
extract a majoritary reason for x given F by starting with t

S
x instead of starting with tx. ⇤



Proof of Proposition 3

Proof A majoritary reason for x given F that satisfies C exists precisely when tx |= C, which can be tested in time
O(n+ |F |). If the test is positive and C belongs to propositional fragment offering a polynomial-time implicant test (e.g., C is
a CNF formula), deriving such a reason is tractable as well: the greedy algorithm can be leveraged (at each step, it is enough to
test whether the current term is an implicant of at least bm

2 c+ 1 decision trees of F , and is still an implicant of C). ⇤

Proof of Proposition 4

Proof Let < be any linear ordering over Xn that extends . Xn ordered by < can be obtained by topologically sorting
the graph over Xn associated with . Let F = {T1, . . . , Tm} and x be such that F (x) = 1 (the case when F (x) = 0 can
be handled in the same way by considering a random forest equivalent to ¬F instead of F ; such a random forest equivalent
to ¬F can be computed in linear-time in the size of F , see Proposition 1 in [Audemard et al., 2021]). Let us run the greedy
algorithm (described in the paper) on x and F = {T1, . . . , Tm}, where instead of trying to eliminate the literals associated
with the characteristics of x in any fixed, yet arbitrary way, sort them first in ascending order w.r.t. < (i.e., the characteristics
associated with the less prioritized features are considered first). Let t be the resulting term. Then t is an inclusion-preferred
majoritary reason for x given F . Indeed, towards a contradiction, suppose that this is not the case. This means that there exists
a term t

0 such that tx |= t
0 and t

0 @ t, i.e., 9i 2 {1, . . . , p}8j 2 {1, . . . , i � 1}, t0[Sj ] = t[Sj ] and t
0[Si] ⇢ t[Si]. Thus there

exists a literal ` 2 t such that var(`) = {x}, x 2 Si, ` 62 t
0, and for every literal based on a variable that precedes x in the

enumeration given by <, t and t
0 coincide.

Now, let t<x (resp. t
0
<x) be the conjunction of literals of t (resp. t

0) based on variables that precede x in the enumeration
given by < and let t00 be the conjunction of all the literals `00 based on variables that are after x in the enumeration given by <

and such that x satisfies `
00. Since t

0 is an implicant of at least bm
2 c + 1 decision trees of F and satisfies tx |= t

0, and since
t
0
<x ^ t

00
|= t

0 holds, t0<x ^ t
00 is an implicant of at least bm

2 c + 1 decision trees of F such that tx |= t
0
<x ^ t

00. But t0x = t<x,
hence t<x ^ t

00 is an implicant of at least bm
2 c+ 1 decision trees of F such that x |= t<x ^ t

0. This conflicts with the fact that
` 2 t since ` being kept by the greedy algorithm implies that t<x ^ t

00 is not an implicant of at least bm
2 c+ 1 decision trees of

F . ⇤

Proof of Proposition 5

Proof First of all, one can easily check that, by construction, (1) an assignment v over Xn [ Y satisfies Chard if and only
if tv \ tx is an implicant of more than m

2 trees of F and tv[Y ] is an implicant of CNF(
Pm

i=1 yi >
m
2 ). Here , Y contains

{y1, . . . , ym} as a subset, plus additional variables used for the CNF encoding of the cardinality constraint
Pm

i=1 yi >
m
2 .

Now, we prove that (2) if v satisfies Chard and v maximizes the sum of the weights of clauses from Csoft that are satisfied,
then tv \ tx is an implicant of more than m

2 trees of F and 8` 2 tv \ tx, (tv \ tx) \ {`} does not satisfy this property. From (1)
one knows that tv\ tx is an implicant of more than m

2 trees of F . Towards a contradiction, suppose that there exists ` 2 tv\ tx,
such that (tv \ tx) \ {`} is an implicant of more than m

2 trees of F . Then let v0 be the assignment over Xn [ Y such that v and
v0 coincide on every variable except the one of `, and ` 2 tv while ` 2 tv0 . Then if (tv \ tx) \ {`} is an implicant of more than
m
2 trees of F , this is also the case for (tv0 \ tx) \ {`} because (tv0 \ tx) \ {`} = (tv \ tx) \ {`}. Now, since tv0 [Y ] = tv[Y ],

using (1) we get that v0 satisfies Chard. Moreover, by construction, w(v0) = w(v)+w(var(`)). Since w(var(`)) � 1, v is not
an assignment that maximizes the sum of the weights of clauses from Csoft that are satisfied, among those satisfying Chard.

Finally, it remains to show that (3) if v is a solution of the WEIGHTED PARTIAL MAXSAT instance given by (Csoft, Chard),
then tv \ tx is a majoritary reason for x given F that is of minimal weight. From (2) we know that tv \ tx is a majoritary
reason for x given F , hence it remains to show that it is of minimal weight. Towards a contradiction, suppose that there exists
a majoritary reason t for x given F such that w(t) < w(tv \ tx). Let v0 be any assignment v over Xn [ Y that satisfies Chard

and is such that t ✓ tv0 , l 2 tv0 whenever var(`) 2 Xn and ` 62 t, yi 2 tv0 whenever t satisfies every c[x] where c 2 CNF(Ti)
and i 2 [m], and finally yi 2 tv0 whenever t does not satisfy every c[x] where c 2 CNF(Ti) and i 2 [m]. Such a v0 exists
since t = tv0 \ tx satisfies more than m

2 trees of F (as a consequence, tv0 [{y1, . . . , ym}] satisfies
Pm

i=1 yi >
m
2 ). It remains to

compare w(v0) to w(v). Let t0 be any term such that t0 ✓ tx. We have w(t0) =
Pn

i=1 w(xi)�
P

xi 6inVar(t0) w(xi).
Pn

i=1 w(xi)
is a constant (independent of t0). Hence, if w(t) < w(tv\tx) holds, then we have

P
xi 62Var(t) w(xi) >

P
xi 62Var(tv\tx)

w(xi).
This conflicts with the fact that v is a solution of (Csoft, Chard). ⇤


	Introduction
	Decision Trees and Random Forests
	On Abductive Explanations
	On Preferred Abductive Explanations
	Dichotomous preferences over explanations
	More gradual preferences over explanations

	Experiments
	Conclusion

