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Abstract

Random forests have long been considered as powerful model
ensembles in machine learning. By training multiple decision
trees, whose diversity is fostered through data and feature
subsampling, the resulting random forest can lead to more
stable and reliable predictions than a single decision tree. This
however comes at the cost of decreased interpretability: while
decision trees are often easily interpretable, the predictions
made by random forests are much more difficult to under-
stand, as they involve a majority vote over multiple decision
trees. In this paper, we examine different types of reasons that
explain “why” an input instance is classified as positive or
negative by a Boolean random forest. Notably, as an alterna-
tive to sufficient reasons taking the form of prime implicants
of the random forest, we introduce majoritary reasons which
are prime implicants of a strict majority of decision trees. For
these abductive explanations, the tractability of the generation
problem (finding one reason) and the minimization problem
(finding one shortest reason) are investigated. Experiments
conducted on various datasets reveal the existence of a trade-
off between runtime complexity and conciseness. Sufficient
reasons - for which the identification problem is DP-complete
- are slightly larger than majoritary reasons that can be gen-
erated using a simple linear-time greedy algorithm, and sig-
nificantly larger than minimal majoritary reasons that can be
approached using an anytime PARTIAL MAXSAT algorithm.

Introduction

Over the past two decades, rapid progress in statistical ma-
chine learning has led to the deployment of models endowed
with remarkable predictive capabilities. Yet, as the spectrum
of applications using statistical learning models becomes in-
creasingly large, explanations for why a model is making
certain predictions are ever more critical. For example, in
medical diagnosis, if some model predicts that an image is
malignant, then the doctor may need to know which features
in the image have led to this classification. Similarly, in the
banking sector, if some model predicts that a customer is a
fraud, then the banker might want to know why. Therefore,
having explanations for why certain predictions are made is
essential for securing user confidence in machine learning
technologies (Miller 2019; Molnar 2019).
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This paper focuses on classifications made by random
forests, a popular ensemble learning method that con-
structs multiple randomized decision trees during the train-
ing phase, and predicts by taking a majority vote over the
base classifiers (Breiman 2001). Since decision tree ran-
domization is achieved by essentially coupling data sub-
sampling (or bagging) and feature subsampling, random
forests are fast and easy to implement, with few tuning pa-
rameters. Furthermore, they often make accurate and ro-
bust predictions in practice, even for small data samples and
high-dimensional feature spaces (Biau 2012). For these rea-
sons, random forests have been used in various applications
including, among others, computer vision (Criminisi and
Shotton 2013), crime prediction (Bogomolov et al. 2014),
ecology (Cutler et al. 2007), genomics (Chen and Ishwaran
2012), and medical diagnosis (Azar et al. 2014).

Despite their success, random forests are much less inter-
pretable than decision trees. Indeed, the prediction made by
a decision tree on a given data instance can be easily inter-
preted by reading the unique root-to-leaf path that covers the
instance. By contrast, there is no such direct reason in a ran-
dom forest, since the prediction is derived from a majority
vote over multiple decision trees. So, a key issue in random
forests is to infer abductive explanations, that is, to capture
in concise terms why a data instance is classified as positive
or negative by the model ensemble.

Related Work. Explaining random forest predictions has
received increasing attention in recent years (Bénard et al.
2021; Choi et al. 2020; Izza and Marques-Silva 2021). No-
tably, in the classification setting, (Choi et al. 2020; Izza
and Marques-Silva 2021) have focused on sufficient reasons,
which are abductive explanations involving only relevant
features (Darwiche and Hirth 2020). Informally, if we view
any random forest classifier as a Boolean function f, then a
sufficient reason for classifying a data instance x as positive
by f is a prime implicant t of f covering x. By construc-
tion, removing any feature from a sufficient reason ¢ would
question the fact that ¢ explains the way x is classified by
f. Note that if f is described by a single decision tree, then
generating a sufficient reason for any input instance x can be
done in linear time. Yet, in the general case where f is repre-
sented by an arbitrary number of decision trees, the problem
of identifying a sufficient reason has recently shown to be



DP-complete (Izza and Marques-Silva 2021). Despite this
intractability statement, the empirical results reported by the
authors indicate that a MUS-based algorithm for computing
sufficient reasons proves quite efficient in practice.

In addition to model-based explanations described above,
model-agnostic explanations can be applied to random
forests. Notably, the LIME method (Ribeiro, Singh, and
Guestrin 2016) extrapolates a linear threshold function g
from the behavior of the random forest f around an input
instance x. For the ANCHOR method (Ribeiro, Singh, and
Guestrin 2018), the extrapolated model g takes the form of
a decision rule. Yet, even if in both cases a prime implicant
of g can be easily computed, the resulting explanation is not
guaranteed abductive since ¢ is only an approximation of f.

Contributions. In this paper, we introduce several new
notions of abductive explanations: direct reasons, which ex-
tend to the case of random forests the corresponding notion
defined primarily for decision trees, and majority reasons,
which are abductive explanations taking into account the av-
eraging rule of random forests. Informally, a majoritary rea-
son for classifying an instance x as positive by some random
forest f is a prime implicant ¢ of a majority of decision trees
in f that covers . What make direct and majoritary reasons
valuable is the possibility of inferring them in a tractable
way, whilst there is no similar tractability result when deal-
ing with sufficient reasons, unless P = NP.

More specifically, we examine in this study the tractability
of both the generation (finding one explanation) and the min-
imization (finding one shortest explanation) problems for di-
rect reasons and majoritary reasons. As far as we know, all
complexity results related to random forest explanations are
new, if we make an exception for the intractability of gen-
erating sufficient reasons, which was recently established in
(Izza and Marques-Silva 2021). Notably, direct reasons and
majoritary reasons can be derived in time polynomial in the
size of the input (the instance and the random forest used to
classify it). By contrast, the identification of minimal majori-
tary reasons is NP-complete, and the identification of mini-
mal sufficient reasons is X5-complete.

Based on these results, we provide algorithms for deriv-
ing random forest explanations, which open the way for an
empirical comparison. Our experiments made on standard
benchmarks reveal the existence of a trade-off between the
runtime complexity of finding (possibly minimal) abductive
explanations and the conciseness of such explanations. In
a nutshell, majoritary reasons and minimal majoritary rea-
sons offer interesting compromises in comparison to, re-
spectively, sufficient reasons and minimal sufficient reasons.
Indeed, the size of majoritary reasons and the computational
effort required to generate them are generally smaller than
those obtained for sufficient reasons. Furthermore, minimal
majoritary reasons outperform minimal sufficient reasons,
since the latter are too computationally demanding. In fact,
using an anytime PARTIAL MAXSAT solver for minimizing
majoritary reasons, we derive concise explanations which
are typically much shorter than all other forms of abduc-
tive explanations. Proofs and additional empirical results are
provided as supplementary material.

Preliminaries

For an integer n, let [n] = {1,--- ,n}. By F, we denote the
class of all Boolean functions from {0,1}"™ to {0, 1}, and we
use X,, = {z1, -+ ,x,} to denote the set of input Boolean
variables. Any Boolean vector € {0,1}" is called an in-
stance. For any function f € F,,, an instance & € {0,1}" is
called a positive example of f if f(x) = 1, and a negative
example if f(x) = 0.

We refer to f as a propositional formula when it is de-
scribed using the Boolean connectives A (conjunction), V
(disjunction) and — (negation), together with the constants
1 (true) and O (false). As usual, a literal I; is a variable x;
or its negation —x;, also denoted Z;. A term t is a conjunc-
tion of literals, and a clause c is a disjunction of literals. A
DNF formula is a disjunction of terms and a CNF formula is
a conjunction of clauses. The set of variables occurring in
a formula f is denoted Var(f). In the following, we shall
often treat instances as terms, and terms as sets of literals.
For an assignment z € {0, 1}, the corresponding term is

n
t, = /\ x;" where x? =7Z;and z} = 25
i=1

A term t covers an assignment z if ¢ C t,. An implicant of
a Boolean function f is a term that implies f, that is, a term
t such that f(z) = 1 for every assignment z covered by ¢.
A prime implicant of f is an implicant ¢ of f such that no
proper subset of ¢ is an implicant of f.

With these basic notions in hand, a (Boolean) decision
tree on X, is a binary tree 7', each of whose internal nodes
is labeled with one of n input variables, and whose leaves
are labeled 0 or 1. Without loss of generality, every vari-
able is supposed to occur at most once on any root-to-leaf
path. The value T'(«) of T on an input instance « is given
by the label of the leaf reached from the root as follows: at
each node go to the left or right child depending on whether
the input value of the corresponding variable is O or 1, re-
spectively. A (Boolean) random forest on X, is an ensemble
F ={Ty,- -, T}, where each T; (i € [m]) is a decision
tree on X,,, and such that the value F'(x) is given by

1 oif LS Ti(x) > 3
F — m i=1"1 2
@) {0 otherwise.

The size of F is given by |F| = >~ | |T;|, where |T;] is the
number of nodes occurring in 7;. The class of decision trees
on X, is denoted DT,,, and the class of random forests with
at most m decision trees (with m > 1) over DT,, is denoted
RF,, . Finally, RF,, is the union of all RF,, ,,, for m > 1.

Example 1. The random forest F = {T1,T5, T3} in Figure
1 is composed of three decision trees. It separates Cattleya
orchids from other orchids using the following features: x1:
“has fragrant flowers”, xo: “has one or two leaves”, x3:
“has large flowers”, and x4: “is sympodial”.

We conclude this section with two important properties
of random forests. The first property is related to the fact
that any decision tree 7' can be transformed into its negation
—T' € DT, by simply reverting the label of leaves. Negating
a random forest can also be achieved in polynomial time:
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Figure 1: A random forestfor recognizing Cattleya orchids.
The left (resp. right) child of any decision node labelled by
x; corresponds to the assignment of x; to O (resp. 1).

Proposition 1.  There exists a linear-time algorithm that
computes a random forest ~F € RF,, p,, equivalent to the
negation of a given random forest F' € RF,, p,.

For the second property, it is well-known that any decision
tree T' can be encoded in linear time into an equivalent dis-
junction of terms DNF(7'), where each term coincides with
a 1-path (i.e., a path from the root to a leaf labeled with 1),
or a conjunction of clauses CNF(T'), where each clause is the
negation of term describing a O-path. Yet, when switching to
random forests, the picture is quite different:

Proposition 2. Any CNF or DNF formula can be converted
in linear time into an equivalent random forest, but there is
no polynomial-space translation from RF to CNF or to DNF.

Random Forest Explanations

The key focus of this study is to explain why a random forest
classifies some data instance as positive or negative. This
calls for a notion of abductive explanation'. Specifically, an
abductive explanation for an instance x € {0,1}" given a
Boolean function f € F,, is an implicant ¢ of f (resp. —f) if
f(x) =1 (resp. f(x) = 0) that covers . Such an abductive
explanation always exists, since ¢ = ¢, is such a (trivial)
explanation. So, in the rest of this section, we shall mainly
concentrate on concise forms of abductive explanations.

Direct Reasons

For a decision tree T € DT,, and a data instance « € {0,1}",
the direct reason of x given T is the term tL corresponding
to the unique root-to-leaf path of 7" that covers «. This sim-
ple form of abductive explanation can be extended to ran-
dom forests as follows:

Definition 1. Let F = {Ty,...,T,,} be a random forest

in RF,, ,, and x € {0, 1}" be an instance. Then, the direct

reason for x given F is the term t% defined by

F AV ty  ifF(z)=1
ifF(x)=0

x tT,;
T,€F:T;(x)=0 "z

!'Unlike (Ignatiev, Narodytska, and Marques-Silva 2019), we do
not require those explanations to be minimal w.r.t. set inclusion, in
order to keep the concept distinct (and actually more general) than
the one of sufficient reasons.

By construction, ¢ is an abductive explanation that can
be computed in O(|F|) time.

Example 2. Based on Example 1, consider the instance x =
(1,1,1,1). Since F(x) = 1, it is recognized as a Cattleya
orchid. The direct reason for x given F' is ti =x1 ANxg N\
x3 A x4. Consider now the instance ' = (0, 1,0,0), which
is not recognized as a Cattleya orchid, since F(x) = 0. The
direct reason for ' given F is tg, =29 AN T3 A\ Ty.

Sufficient Reasons

Another valuable notion of abductive explanation is the one
of sufficient reason?, defined for any Boolean classifier (Dar-
wiche and Hirth 2020). In the setting of random forests, such
explanations can be defined as follows:

Definition 2. Let F' € RF,, be a random forest and x &
{0,1}™ be an instance. A sufficient reason for x given F
is a prime implicant t of F (resp. =F) if F(x) = 1 (resp.
F(x) = 0) that covers x.

Example 3. For our running example, xo N\ x3 N\ x4 and
x1 A x4 are the sufficient reasons for x given F. T4 and
T1 A\ T3 are the sufficient reasons for x' given F.

Importantly, all features occurring in a sufficient reason
t are relevant. Indeed, removing any literal from ¢ would
question the fact that ¢ implies £'. Note that the direct reason
tE for x given F may contain arbitrarily many more features
than a sufficient reason for « given F', since this is already
known in the case where F' consists in a single decision tree
(Izza, Ignatiev, and Marques-Silva 2020).

The problem of finding a sufficient reason ¢ for an input
instance € {0,1}" given random forest F' € RF,, has
recently been shown DP-complete (Izza and Marques-Silva
2021). In fact, even the apparently simple task of checking
whether ¢ is an implicant of F' is already hard:

Proposition 3. Let F' be a random forest in RF,, and t be a
term over X,,. Then, deciding whether t is an implicant of F'
is CONP-complete.

The above result is in stark contrast with the computa-
tional complexity of checking whether a term ¢ is an impli-
cant of a decision tree 7'. This task can be solved in polyno-
mial time, using the fact that T can be converted (in linear
time) into its clausal form CNF(T'), together with the fact
that testing whether ¢ implies CNF(7") can be done in O(|T|)
time. That mentioned, in the case of random forests, the im-
plicant test can be achieved via a call to a SAT oracle:

Proposition 4. Let F = {T4,...,T,,} be a random forest
of RF,, m, and t be a (satisfiable) term over X,,. Let H be
the CNF formula

{(; V) :ie[m],ceCNF(-T;)} UCNF (iyz > ”;)

i=1
where  {y1,...,ym} are fresh variables and
CNF (Zzl Yi > %) is a CNF encoding of the cardi-
nality contraint Z:’;l y; > 5. Then, t is an implicant of '
if and only if H A\t is unsatisfiable.

2Sufficient reasons are also known as prime-implicant explana-
tions (Shih, Choi, and Darwiche 2018).



Based on such an encoding, the sufficient reasons for an
instance x given a random forest F' can be characterized in
terms of MUS (minimal unsatisfiable subsets), as suggested
in (Izza and Marques-Silva 2021). This characterization is
useful because many SAT-based algorithms for computing
a MUS (or even all MUSes) of a CNF formula have been
pointed out for the past decade (Audemard, Lagniez, and
Simon 2013; Liffiton et al. 2016; Marques-Silva, Janota, and
Mencia 2017), and hence, one can take advantage of them
for computing sufficient reasons.

Going one step further, a natural way for improving the
clarity of sufficient reasons is to focus on those of minimal
size. Specifically, given F' € RF,, and « € {0, 1}", a mini-
mal sufficient reason for x with respect to F' is a sufficient
reason for  given I’ of minimal size.

Example 4. For our running example, x1 \ x4 is the unique
minimal sufficient reason for x given F', and T 4 is the unique
minimal reason for x’ given I

As a by-product of the characterization of a sufficient rea-
son in terms of MUS (Izza and Marques-Silva 2021), a min-
imal sufficient reason for x given f can be viewed as a min-
imal MUS. Thus, we can exploit algorithms for computing
minimal MUSes (see e.g., (Ignatiev et al. 2015)) in order to
infer minimal sufficient reasons. However, deriving a mini-
mal sufficient reason is computationally harder than deriving
a sufficient reason:

Proposition 5. Ler F' € RF,, * € {0,1}", and k € N.
Then, deciding whether there exists a minimal sufficient rea-
son t for & given F containing at most k features is 3b-
complete.

Majoritary Reasons

Based on the above considerations, a natural question arises:
does there exist a middle ground between direct reasons,
which can include many irrelevant features but are easy to
calculate, and sufficient reasons, which only contain relevant
features but are potentially much harder to infer? Inspired
by the way prime implicants can be computed when dealing
with decision trees, we can reply in the affirmative using the
notion of majoritary reasons, defined as follows.

Definition 3. Let F = {T1,...,T,,} be a random forest in
RF,.m and © € {0,1}" be an instance. Then, a majoritary
reason for x given F' is a term t covering x, such that t is an
implicant of at least |3 | + 1 decision trees T; (resp. —T;)
if F(x) =1 (resp. F(x) = 0), and for every | € t, ¢t \ {I}
does not satisfy this last condition.

Example 5. Based on our running example, the majoritary
reasons for x given F are x1 N\ xo N\ x4, x1 N\ T3 N\ x4, and
xoAx3Axy. All these explanations are more concise than the
direct reason tf. For ', the majoritary reasons given F are
X1 ATy, 2 N T4, and T1 N\ x2 N\ T3. Note that the majoritary
reasons r1 A xo Axy and x1 Ax3 Axy for x given F include
an irrelevant variable for the task of classifying x using F

*Minimal sufficient reasons should not to be confused with
minimum-cardinality explanations (Shih, Choi, and Darwiche
2018), where the minimality condition bears on the features set to
1 in the data instance x.

since x1 N\ x4 is a sufficient reason for x given F. Similarly,
all majoritary reasons for ' given F contain an irrelevant
variable for the task of classifying x’ using F.

In general, majoritary reasons and of sufficient reasons do
not coincide. Indeed, a sufficient reason is a prime implicant
(covering x) of the forest F', while a majoritary reason is an
implicant ¢ (covering x) of a majority of decision trees in the
forest F', satisfying the additional condition that ¢ is a prime
implicant of at least one of these decision trees.

A key observation justifying this difference is that even
if every implicant of a Boolean function f is an implicant
of the function f V g, it is not always the case that every
prime implicant of f is a prime implicant of f V g. To this
point, consider our running example and take the term ¢ =
x1A\x3Axy. Here, t is a majoritary reason forx = (1,1,1,1)
given F, since it covers , it is a prime implicant of 77, and
it is an implicant of T5. Thus, ¢ is an implicant of f = T AT5
(it is a prime one), and hence an implicant of F', using the
fact that F is logically equivalent to (T3 AT5) V (T AT3) V
(T> A T5). However, ¢ is not a prime implicant of F'. Indeed,
the sub-term x; A x4 is a sufficient reason for x given F',
since it is a prime implicant of F' that covers .

Viewing majoritary reasons as “weak” forms of sufficient
reasons, they can include irrelevant features:

Proposition 6. Let F = {T1,...,T,,} be a random forest
of RFpm and x € {0,1}" such that F(x) = 1. Unless
m < 3, it can be the case that every majoritary reason for
x given F contains arbitrarily many more features than any
sufficient reason for x given F.

What makes majoritary reasons valuable is that they are
abductive and can be generated in linear time. The evidence
that any majoritary reason ¢ for & given F' is an abductive
explanation comes directly from the fact that if ¢ implies a
majority of decision trees in F, then it is an implicant of F'
(note that the converse implication does not hold in general).

The tractability of generating majoritary reasons lies in
the fact that they can be found using a simple greedy algo-
rithm. For the case where F'(x) = 1, start with ¢ = ¢, and
iterate over the literals [ of ¢ by checking whether ¢ deprived
of [ is an implicant of at least | % | + 1 decision trees of . If
so, remove [ from ¢ and proceed to the next literal. Once all
literals in ¢, have been examined, the final term ¢ is by con-
struction an implicant of a majority of decision trees in F,
such that removing any literal from it would lead to a term
that is no longer an implicant of this majority. So, ¢ is by con-
struction a majoritary reason. The case where F'(z) = 0 is
similar, by simply replacing each 7; with its negation in F'.
This greedy algorithm runs in O(n|F'|) time, using the fact
that, on each iteration, checking whether ¢ is an implicant of
T; (for each i € [m]) can be done in O(|T;|) time.

By analogy with minimal sufficient reasons, a natural way
of improving the quality of majoritary reasons is to seek for
shortest ones. Formally, a minimal majoritary reason for an
instance « € {0,1}" and a random forest F' € RF,, is a
minimal-size majoritary reason for  given F'.

Example 6. For our running example, the three majori-
tary reasons for x given I’ are minimal ones. Contrastingly,



among the majoritary reasons for ' given F, only T1 N\ T4
and xo N\ T4 are minimal.

Unsurprisingly, the optimization task for majoritary rea-
sons is more demanding than the generation task. Still, min-
imal majoritary reasons are easier to find than minimal suf-
ficient reasons. In more formal terms:

Proposition 7. Let F € RF,, « € {0,1}", and k € N.
Then, deciding whether there exists a minimal majoritary
reason t for x given I containing at most k features is NP-
complete.

A common approach for handling NP-optimization prob-
lems is to rely on modern constraint solvers. From this per-
spective, recall that a PARTIAL MAXSAT problem consists
of a pair (Csoft, Chara) Where Cyopr and Charq are (finite)
sets of clauses. The goal is to find a Boolean assignment that
maximizes the number of clauses c in Cyg; that are satisfied,
while satisfying all clauses in Ch4q-

Proposition 8. Let F' € RF,, ,, and x € {0,1}" be an in-
stance such that F(x) = 1. Let (Csoft, Chara) be an instance
of the PARTIAL MAXSAT problem such that:

Csoft = {fi X € tm} U {%1 1T € tm}
Charda = {(T; V ¢|z) : i € [m],c € CNF(T})}

U CNF (Zm:y, > 7;)

=1

where |y = c N1y is the restriction of c to the literals in t,
{y1,-..,ym} are fresh variables, and CNF(}_"  y; > )
is a CNF encoding of the contraint Z;il y; > 5. Let z* be
an optimal solution of (Csoft, Chard ) Then, the intersection
of to with t,« is a minimal majoritary reason for x given F.

Clearly, in the case where F'(x) = 0, it is enough to con-
sider the same instance of PARTIAL MAXSAT as above, ex-
cept that Chara = {(7; V ¢jz) : i@ € [m],c € CNF(—T;)} U
CNF(S", s > ).

Thanks to this characterization result, one can leverage
the numerous algorithms that have been developed so far
for PARTIAL MAXSAT (see e.g. (Ansétegui, Bonet, and
Levy 2013; Morgado, Ignatiev, and Marques-Silva 2014;
Narodytska and Bacchus 2014; Saikko, Berg, and Jarvisalo
2016)) in order to compute minimal majoritary reasons.

Experiments

Experimental Setup. The empirical protocol was as fol-
lows. We have considered 15 datasets for binary classi-
fication, which are standard benchmarks from the reposi-
tories Kaggle (www.kaggle.com), OpenML (www.openml.
org), and UCI (archive.ics.uci.edu/ml/). These datasets are
compas, placement, recidivism, adult, ad_data, mnist38,
mnist49, gisette, dexter, dorothea, farm-ads, higgs_boson,
christine, gina, and bank. mnist38 and mnist49 are subsets
of the mnist dataset, restricted to the instances of 3 and 8
(resp. 4 and 9) digits. Due to space constraints, additional
information about the datasets (especially the numbers and
types of features, the number of instances), and about the

random forests that have been trained (especially, the num-
ber of Boolean features used, the number of trees, the depth
of the trees, the mean accuracy) are reported as a supple-
mentary material.

Categorical features have been treated as arbitrary num-
bers (the scale is nominal). As to numeric features, no data
preprocessing has taken place: these features have been bi-
narized on-the-fly by the random forest learning algorithm.
For this learner, we have used the version 0.23.2 of the
Scikit-Learn library (Pedregosa et al. 2011). The maximal
depth of any decision tree in a forest has been bounded at
8. All other hyper-parameters of the learning algorithm have
been set to their default value except the number of trees.
We made some preliminary tests for tuning this parameter
in order to ensure that the accuracy is good enough.

For every benchmark b, a 10-fold cross validation process
has been achieved: a set of 10 random forests have been
computed and evaluated from the labelled instances of b,
partitioned into 10 parts. One part was used as the test set
and the remaining 9 parts as the training set for generating a
forest. The classification performance on b was measured us-
ing the mean accuracy obtained over the 10 random forests.
For each benchmark b, each random forest F', and a pool of
25 instances « drawn at random from the test set (leading to
250 instances per dataset), we have run the algorithms de-
scribed in the previous section for deriving the direct reason
for x given F, a sufficient reason for  given F', a majoritary
reason  given I, a minimal majoritary reason for & given
F, and a minimal sufficient reason for « given F'.

For computing sufficient reasons and minimal majoritary
reasons, we took advantage of the Pysat library (Ignatiev,
Morgado, and Marques-Silva 2018) (version 0.1.6.dev15)
which provides the implementation of the RC2 PARTIAL
MAXSAT solver and an interface to MUSER (Belov and
Marques-Silva 2012). For majority reasons, we picked uni-
formly at random 50 permutations of the literals describ-
ing the instance and tried to eliminate those literals (within
the greedy algorithm) following the ordering corresponding
to the permutation. We kept a smallest explanation among
those that have been derived (of course, the correspond-
ing runtime that has been measured is the cumulated time
over the 50 tries). Sufficient reasons have been computed as
MUSes, as explained before.

We also derived a “LIME explanation” for each instance.
Such an explanation has been inferred as follows. Given an
input instance  under consideration, we first used LIME
(Ribeiro, Singh, and Guestrin 2016) to generate a linear
zero-threshold function w, € R™. In other words, the value
wy(z) of w, on any instance z is given by w,(z) = 1 if
w, z > 0, and w,(2) = 0 otherwise. Now, if z is classified
positively by w,, then in order to derive an explanation, it
is enough to sum in a decreasing way the positive weights
occurring in w,, until this sum exceeds (the opposite of) the
sum of all the negative weights occurring in w,. The term
t composed of the variables x; associated with the positive
weights which have been selected is, by construction, a min-
imal sufficient reason for x given w,, since for every x’ cov-
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Figure 2: Empirical results for the placement dataset.

ered by ¢, the inequality w, =’ > 0 holds.* Instances that are
classified negatively can be handled in a similar way.

All the experiments have been conducted on a computer
equipped with Intel(R) XEON E5-2637 CPU @ 3.5 GHz
and 128 Gib of memory. A time-out (TO) of 600s has been
considered for each instance and each type of explanation,
except LIME explanations.

Experimental Results. A first conclusion that can be
drawn from our experiments is the intractability of comput-
ing in practice minimal sufficient reasons (this is not sur-
prising, since this coheres with the complexity result given
by Proposition 5). Indeed, we have been able to compute
within the time limit of 600s a minimal reason for only 10
instances and a single dataset (compas).

Due to space limitations, we report hereafter empirical
results about three datasets only, namely placement, gisette
and dorothea. The results obtained on the other datasets are
similar and available as a supplementary material. placement
is a small dataset about the placement of 215 students in a
campus; students are described using 13 features, related to
their curricula, the type and work experience, and the salary.
An instance is labelled as positive when the student gets a
job. The random forests consist of 25 trees, and their mean
accuracy is 97.6%. gisette is much larger, including 5000
features and 7000 examples. Each feature is a pixel, and the
task is to separate the digits 4 and 9. The random forests
consist of 85 trees, and their mean accuracy is 96%. Fi-
nally, dorothea is a high-dimensional dataset, with 100,000
features and 1950 examples. Each instance is an organic
molecule, and the goal is to discriminate binding compounds
from non-binding ones. Here, the random forest consists of
71 trees, with a mean accuracy of 93%.

Figure 2 provides the results obtained for placement, us-
ing four plots. Each dot represents an instance. The first plot
shows the time needed to compute a reason on the x-axis,
and the size of this reason on the y-axis. On this plot, there
are no dots for minimal sufficient reasons, because their
computation did not terminate before the time-out. The plot
also highlights that all other reasons have been computed

*Indeed, the inequality w, &’ > 0 holds in the worst situation
where all the variables associated with a positive weight in w,, and
not belonging to ¢ are set to 0, whilst all the variables associated
with a negative weight in w,, are set to 1.

within the time limit, and in general using a small amount
of time. In particular, it shows that the direct reason can
be quite large, that the computation of LIME explanations
is usually more expensive than the ones of the other expla-
nations, and that LIME explanations can be very short> A
box plot about the sizes of all the explanations is reported
(the LIME ones and the direct reasons are not presented for
the sake of readibility). The figure also provides two scatter
plots, aiming to compare the size of majoritary reasons with
the size of sufficient reasons, as well as the size of the min-
imal majoritary reasons with the size of sufficient reasons.
These plots clearly show the benefits w.r.t. size reduction
that can be offered by considering majoritary reasons and
minimal majoritary reasons instead of sufficient reasons. At
first sight, these empirical observations may look surpris-
ing since, by construction, for any majoritary reason ¢ for x
given f (including the minimal ones) there exists at least one
sufficient reason for x given f that is implied by ¢ (hence
that cannot be larger). As to majoritary reasons, one must
keep in mind that the result that is reported is a shortest rea-
son out of a set of 50 majoritary reasons that are computed
for each x (so to say, we leverage the tractability of com-
puting such reasons to tackle the size issue). For minimal
majoritary reasons, the PARTIAL MAXSAT algorithm used
to compute them aims at minimizing the size of the reason
that is derived, while MUS algorithms for computing suffi-
cient reasons do not focus on the size (computing minimal
MUSes is much harder, as explained previously).

Figures 3 and 4 synthesize the results obtained for gisette
and dorothea, respectively. Conclusions similar to those
drawn for placement can be derived for gisette and dorothea,
with some exceptions. First of all, there are here no dots for
minimal majoritary reasons because their computation did
not terminate before the time-out. Furthermore, LIME ex-
planations are much longer. This can be partly explained by
the fact that the computation achieved by LIME relies on a
binary representation of the instance that is quite different
(and possibly much larger) than the one considered in the
representation of the random forest. Indeed, each decision
tree in the forest focuses only on a subset of most impor-

SRecall that LIME explanations are not guaranteed to be abduc-
tiv. See also (Narodytska et al. 2019) that reports some experiments
about ANCHOR explanations.
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Figure 4: Empirical results for the dorothea dataset.

tant features (in the sense of Gini criterion) found during the
learning phase. In our experiments, the size of LIME expla-
nations was typically large for high-dimensional datasets.

When minimal majoritary reasons are difficult to calcu-
late (as it is the case for gisette and dorothea), a natural ap-
proach is to approximate them. From this perspective, we
can take advantage of an incremental PARTIAL MAXSAT
algorithm, like LMHS (Saikko, Berg, and Jarvisalo 2016), to
do the job. Specifically, the result given in Proposition 8 pro-
vides a way to derive abductive explanations for an instance
x given a random forest F' in an anytime fashion. Basically,
using LMHS, a Boolean assignment z satisfying all the hard
constraints of Cp,q and a given number, say k, of soft con-
straints from Cg.p; is looked for (k is set to O at start). If
such an assignment is found, then one looks for an assign-
ment satisfying k£ + 1 soft constraint, and so on, until an
optimal solution is found or a preset time bound is reached.
In many cases, the most demanding step from a computa-
tional standpoint is the one for which & is the optimal value
(but one ignores it); we look for an assignment that satisfies
k + 1 soft constraint (and such an assignment does not ex-
ist). By construction, every z that is generated that way is
such that ¢, N ¢, is an implicant of F' that covers « (and
hence, an abductive explanation). The approximation z of a
minimal majoritary reason for & given F', which is obtained
when the time limit is met, can be significantly shorter than
the sufficient reason for « given F’ that has been derived.

In our experiments, we used three time limits: 10s, 60s,
and 600s. The results are reported in the box plots and the
scatter plots in Figures 2, 3, and 4. As illustrated by the box

plots, the sizes of the approximations z which are derived
gently decrease with time. The scatter plots indicate that sig-
nificant size savings can be achieved even for the smallest
time bound of 10s that has been considered.

Conclusion

In this paper, we have introduced, analyzed and evaluated
some new notions of abductive explanations suited to ran-
dom forest classifiers, namely majoritary reasons and min-
imal majoritary reasons. Our investigation reveals the exis-
tence of a trade-off between conciseness and runtime com-
plexity for abductive explanations. Unlike sufficient reasons,
majoritary reasons and minimal majoritary reasons may con-
tain irrelevant features. Nevertheless, despite this evidence,
majoritary reasons and minimal majoritary reasons appear as
valuable alternative to sufficient reasons. Indeed, majoritary
reasons can be computed in polynomial time while sufficient
reasons cannot (unless P = NP). In addition, in most of our
experiments, majoritary reasons slightly smaller than suffi-
cient reasons can be computed thanks to a simple greedy
algorithm with random permutations of literals. Minimal
majoritary reasons can be looked for when majoritary rea-
sons are too large, but this is at the cost of an extra compu-
tation time that can be important, and even prohibitive in
some cases. However, minimal majoritary reasons can be
approximated using an anytime PARTIAL MAXSAT algo-
rithm. Empirically, approximations can be derived within a
small amount of time and their sizes are significantly smaller
than the ones of sufficient reasons.
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Proofs

For every f,g € F,, we note f |= g when for every « €
{0,1}", f(x) = 1 implies that g(x) = 1.

Proof of Proposition 1

Proof. By definition, an instance x is a model of the nega-
tion of a given random forest F' = {Ti,...,T,,} if and
only if it is a model of at most 7 trees among those of T'.
Let us state (w.l.o.g.) that = is a model of 71, ...,T} and a
counter-model of Ty 41, ..., Ty, with k < 7. Equivalently,
we have that « is a counter-model of 77, . . ., T}, and a model
of Ty 4y, .., Ty, where each T} (i € {1,...,m}) is a de-
cision tree equivalent to the negation of T;. This precisely

means that  is a model of —=F = {T7,..., T }. Since each
T! (i € {1,...,m}) can be computed in time linear in |T}],
the result follows. O

Proof of Proposition 2

Proof. Let G =c¢1 A --- A ¢, be a CNF formula with p > 0
clauses. Each c¢; can be transformed into a decision tree T;
using the following linear-time recursive algorithm. For the
base cases, if ¢; is empty, then 7T; = 0 and if ¢; is a tau-
tology, then T; = 1. For the inductive case, suppose that
¢, = l; V¢, and let T/ the decision tree encoding c;. If
l; = x; (resp. l; = T;), then T} is the decision tree rooted at
x; with right (resp. left) child labeled by the leaf 1 (resp.
0) and with left (resp. right) child encoding ij . Now, let
F={T, - ,T,,Tp41, -+, Ty}, where Tj1,--- , T, are
decision trees rooted at 0, and ¢ = 2p — 1. For any input
instance « € {0,1}", we have G(x) = 1 iff T;(x) = 1 for
every i € [p]. Since for any positive integer p, the function

p—z
Pp(z) = 2 —1

satisfies ¢, (0) > /2 and ¢, (2) < /2 for z € [p], it follows

that G(x) = 1iff F(x) > /2.

The case for DNF formulas is dual: given G = ¢, V- - -Vt,,
compute in linear time a CNF formula equivalent to =G, then
turn it in linear time into an equivalent random forest using
the transformation above, and finally negate in linear time
the resulting random forest by taking advantage of Proposi-
tion 1.

Since every CNF formula G can be turned in linear time
into an equivalent random forest G’ (as we have just proved
it), the size of G’ is polynomial in the size of G for a fixed
polynomial (independent of (). Then, exploiting Proposi-
tion 1, one can negate G’ in linear time. The resulting ran-
dom forest G is equivalent to the negation of G and its size
is also polynomial in the size of G for a fixed polynomial.

Finally, suppose, towards a contradiction, that a
polynomial-space translation from RF to CNF exists. If so,
one could compute a CNF formula G’ equivalent to G”
and having a size polynomial in the size of G” for a fixed
polynomial. Thus, the CNF formula G”’ would have a size
polynomial in the size of G for a fixed polynomial. This
CNF formula could be negated in linear time into a DNF for-
mula G”” by applying De Morgan’s laws. By construction,
G""" would be a DNF formula equivalent to GG, and its size

would be polynomial in the size of G for a fixed polynomial.
This conflicts with the fact that there is no polynomial-space
translation from CNF to DNF, see e.g., (Darwiche and Mar-
quis 2002). Using duality, we prove similarly that there is no
polynomial-space translation from RF to DNF.

O

Proof of Proposition 3
Proof.

* Membership to CONP: we show that the complementary
problem, i.e., the problem of deciding whether a term ¢
is not an implicant of a random forest F', is in NP. This
is direct given the characterization of the implicants of F’
provided by Proposition 4: it is enough to comput in time
polynomial in the size of F' the CNF formula H given in
Proposition 4, and to exploit the fact that ¢ is not an im-
plicant of F' if and only if ¢ A H is satisfiable. Finally, de-
ciding whether ¢ A H is satisfiable can be easily achieved
by a non-deterministic algorithm running in time polyno-
mial in the size of the input (just guess a truth assignment
over the variables occurring in ¢ A H and check in poly-
nomial time that this assignment is a model of ¢t A H).

» cONP-hardness: by reduction from VAL, the validity
problem for DNF formulae. Let G = d; V...V d, be a
DNF formula over X,,. We can associate with G in poly-
nomial time an equivalent random forest ¥ using Propo-
sition 2. Consider now the term ¢ = T. ¢ is an implicant
of F'if and only if G is valid.

O
Proof of Proposition 4

Proof. We have t [= F if and only if ¢ A —F is satisfiable.
From F', exploiting Proposition 1 one can generate in poly-
nomial time a random forest F/ = {-T1,...,—T,,} equiva-
lent to = F'. Each —7T; is the decision tree obtained by replac-
ing every 1l-leaf in T; by a O-leaf, and vice-versa. We thus
have ¢ [= F if and only if ¢ A F” is satisfiable. Then F”’ can
be associated in polynomial time with the following Boolean
quantified formula 3Y.H when Y = {y; : ¢ € [m]} U A is
a set of new variables and H is a CNF formula which is the
conjunction of the clauses of

{(y; Ve):i€[m],ceCNF(T))}

with a CNF encoding of the cardinality constraint

o m
Zyi > 5
i=1

using auxiliary variables in A. F’ is equivalent to 3Y.H,
therefore t A F is satisfiable if and only if ¢ A Y. H is satis-
fiable. Since the variables of Y do not occurin ¢, t A Y. H
is equivalent to 3Y.(t A H). Since JY.(¢t A H) is satisfiable
if and only if ¢ A H is satisfiable, we get that t A Y. H is
satisfiable if and only if ¢ A H is satisfiable. O

Proof of Proposition 5

Proof.



* Membership to X% if there exists a minimal reason ¢ for
x given f such that ¢ contains at most k features, then one
can guess t using a nondeterministic algorithm running in
polynomial time (the size of ¢ is bounded by the size of
x), then check in polynomial time that ¢ is a sufficient
reason for x given f using an NP-oracle (this comes di-
rectly from the fact that this problem belongs to DP), and
finally check in polynomial time that the size of ¢ is upper
bounded by k.

¢ >P-hardness: in (Liberatore 2005) (Theorem 2), it is
shown that the problem of deciding whether a CNF for-
mula IT = A_, ¢; has an irredundant equivalent subset
of size at most & is Zg—complete, and that the problem is
Y:2-hard even in the case when II is unsatisfiable. When-
ever II is unsatisfiable, an irredundant equivalent subset
of II precisely is a MUS of II (every clause being con-
sidered as a soft clause). Accordingly, there exists an ir-
redundant equivalent subset £ of an unsatisfiable CNF
formula IT such E is of size at most £ if and only if there
existsaMUS I = {y; : ¢; € E} of S = {y; : ¢; € II}
given H = {y,;V¢; : ¢; € I} such that I is of size at most
k. Because of this equivalence, the problem of deciding
whether S has a MUS of size at most & given H has the
same complexity as the problem of deciding whether II
has an irredundant equivalent subset of size at most k,
so it is X8-hard. Finally, we reduce this latter problem to
the one of deciding whether a term is a minimal reason
for an instance given a random forest. The reduction is as
follows. With (H, S) where S is satisfiable and H U S is
unsatisfiable (as obtained from the previous reduction),
one associates in polynomial time the pair (x, F') where
x is any interpretation that extends S and F' is a random
forest from RF,, ,,, equivalent to —H (since H is a CNF
formula, a DNF formula equivalent to —H can be com-
puted in linear time from H and turned in linear time
into an equivalent random forest F' as shown by Proposi-
tion 2). Since H U S is unsatisfiable, we have S = —-H
showing that x = F. Now, I is a MUS of S given H if
and only if I U H is unsatisfiable and for every [ € I,
(I'\ {l}) U H is satisfiable. Taking ¢ = I, this is equiv-
alent to state that ¢ A —F is unsatisfiable and for every
let, (t\{I}) A—F is satisfiable. Equivalently, t = F'
and for every [ € ¢, (t\{l}) [~ F, or stated otherwise ¢ is
a prime implicant of F. Since ¢t = I and I C S, we also
have S = t, hence « |= t. Thus ¢ is a sufficient reason
for x given F. Since |I| = [t|, a MUS I of S given H
such that || < k exists if and only if a sufficient reason
t for @ given F' such that |t| < k exists. This completes
the proof.

O
Proof of Proposition 6

Proof. Again, we focus only on the case when F(x) = 1
(if F(z) = 0, it is enough to consider the random forest - F
instead of ).

If F' contains at most 2 trees, then F' is equivalent to the
conjunction of its elements. In this case, testing whether a

term ¢ implied by x is an implicant of F boils down to test-
ing that ¢ is an implicant of every tree in F, so that the suf-
ficient reasons for « given F' are precisely the majoritary
reasons for x given F'.

As to the case m > 3, whatever n > 1, let T" be a decision
tree equivalent to the parity function ®}_,;x;. Consider the
random forest I containing | %3 | copies of T', | 3 | copies of
the decision tree =7, and a decision tree reduced to a 1-leaf.
By construction, F'is valid. Indeed, among the subsets of F’
containing a strict majority of decision trees, one can find the

m

one containing all the | %5 | copies of 7" plus the 1-leaf (their

conjunction is thus equivalent to 7") and the one containing
m

all the | % | copies of —T" plus the 1-leaf (their conjunction
is thus equivalent to —7"). Their disjunction is thus valid. As
a consequence, whatever @, we have F(x) = 1. Indeed,
we have either T'(x) = 1 or =T (x) = 1 (and obviously,
1(x) = 1). Thus, ¢, is an implicant of a (strict) majority of
decision trees of F'. Now, consider any literal [ of t,. The
term ¢, \ {l} is not an implicant of T" nor an implicant of
—T since the implicants of the parity function ®;._, ; (or of
its negation) depend on every variable z; (i € {1,...,n}).
Therefore, ¢, is the unique majoritary reason for x given F'
and it contains n characteristics. But since I’ is valid, T is

the unique sufficient reason for « given F'. O
Proof of Proposition 7
Proof.

* Membership to NP: if there exists a minimal majoritary
reason t for & given F' such that ¢ contains at most k
features, then one can guess t using a nondeterministic
algorithm running in polynomial time (the size of ¢ is
bounded by the size of x), then check in polynomial time
whether ¢ is a sufficient reason for « given T for a major-
ity of trees T' € F', and finally check in polynomial time
that the size of ¢ is upper bounded by k.

* NP-hardness: in the following, we focus only on the case
when F(x) = 1 (if F(x) = 0, it is enough to consider
the random forest —F" instead of I'; this is harmless given
that —=F' can be computed in time linear in the size of
F, see Proposition 1). We assume that m = 1, i.e., I
consists of a single decision tree T' € DT,,.

We call MINIMAL SUFFICIENT REASON the problem
that asks, given T' € DT,,, ¢ € {0,1}" with T'(z) = 1
and k£ € N, whether there is an implicant ¢ of T" of size at
most k that covers x.

Our objective is to prove that MINIMAL SUFFICIENT
REASON is NP-hard. To this end, let us first recall that
a vertex cover of an undirected graph G = (X, E) is a
subset V' C X of vertices such that {y,z} NV # & for
every edge e = {y, z} in E. In the MIN VERTEX COVER
problem, we are given a graph G together with an inte-
ger k € N, and the task is to find a vertex cover V of G
of size at most k. MIN VERTEX COVER is a well-known
NP-hard problem (Karp 1972), and we now show that it
can be reduced in polynomial time to MINIMAL SUFFI-
CIENT REASON.

Suppose that we are given a graph G = (X, E) and as-
sume, without loss of generality, that G does not include



isolated vertices. For any y € X, let &, = {e e E:
y € e} denote the set of edges in G that are adjacent to
y,and let N, = {z € X : {y,z} € E} denote the set
of neighbors of y in G. By G \ y, we denote the deletion
of y from G, obtained by removing y and its adjacent
edges, ie.,, G\y = (X \ {y}, E \ E,). We associate
with G a decision tree T'(G) over X,, = X using the fol-
lowing recursive algorithm. If G is the empty graph (i.e.
E = @), then return the decision tree rooted at a 1-leaf.
Otherwise, pick a node y € X and generate a decision
tree 7'(G) such that:

(1) the root is labeled by y;

(2) the left child is the decision tree encoding the mono-
mial A\ Ny;

(3) the right child is the decision tree T'(G") returned by
calling the algorithm on G’ = G \ y.

By construction, T'(G) is a complete backtrack search
tree of the formula CNF(E) = A{(y V 2) : {y,2} € E},
which implies that T'(G) and CNF(E) are logically equiv-
alent. Furthermore, T'(G) is a comb-shaped tree since re-
cursion only on the rightmost branch. In particular, the al-
gorithm runs in O(n|E)|) time, since step (1) takes O(1)
time, step (2) takes O(n) time, and step (3) is called at
most | E| times.

Now, with an instance P; = (G, k) of MIN VERTEX
COVER, we associate the instance P, = (T(G),x, k)
of MINIMAL SUFFICIENT REASON, where =
(1,---,1). Based on the above algorithm, P, can be con-
structed in time polynomial in the size of P;.

Let V be a solution of P;. Since V is a vertex cover of
G, the term ¢ty = AV is an implicant of the formula
CNF(E). Since ty C t, and [ty | < k, it follows from the
fact that CNF(E) and T'(G) are logically equivalent that
ty is a solution of Ps.

Conversely, let ¢ be a solution of Ps. Since ¢ is an impli-
cant of T'(G), it follows that ¢ is an implicant of CNF(E).
This together with the fact that ¢ C ¢, implies that the
subset of vertices V' C X, satisfying AV = t, is a ver-
tex cover of G. Since |V| < k, it is therefore a solution
of P1 .

O
Proof of Proposition 8

Proof. Let us first recall that the forgetting V. f of a set of
variables V in a formula f denotes a formula that is a most
general consequence of f that is independent of V' (in the
sense that it is equivalent to a formula where no variable
from V occurs) (Lang, Liberatore, and Marquis 2003).

Let z* be any optimal solution of (Csoft, Chara). On the
one hand, z* is a model of C4.q. Let V' be the set of vari-
ables occurring in Charq but not in X,,. Since z* = Chard,
we have that 3V.z* = JV.Chaa (see (Lang, Liberatore,
and Marquis 2003)). Stated otherwise, the projection 3V.z*
of z* on X,, implies the projection of C,;q on X,,.

On the other hand, by construction, a consistent term ¢
over X, implies the projection of C,,q on X, if and only
if ¢ is an implicant of more than % decision trees of I'. Thus,

the term 3V.z* is an implicant of more than 5 decision trees
of F.

Finally, if z* is an optimal solution of (Cyoft, Chard ), then
z* satisfies a maximal number of soft clauses from Ciog;.
Since those soft clauses are precisely the negations of the lit-
erals occurring in ¢4, the term ¢~ N ¢, obtained from V. z*
by removing every literal that coincides with a soft clause is
still an implicant of more than 3 decision trees of F'. Indeed,
Chard 1s monotone on X, and the polarity of every variable
of X,, in Cparq is the same as its polarity in ¢,. Since z*
satisfies a maximal number of soft clauses, .« Nt contains
a minimal number of literals. As t,+ Nty C by, tox Nty is

a minimal majoritary reason for « given F'. O



