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Abstract

Formal explainability is an emerging field that aims
to provide mathematically guaranteed explanations
for the predictions made by machine learning mod-
els. Recent work in this area focuses on comput-
ing “probabilistic explanations” for the predictions
made by classifiers based on specific data instances.
The goal of this paper is to extend the concept
of probabilistic explanations to the regression set-
ting, treating the target regressor as a black box
function. The class of probabilistic explanations
consists of linear functions that meet a sparsity
constraint, alongside a hyperplane constraint de-
fined for the data instance being explained. While
minimizing the precision error of such explana-
tions is generally NPPP-hard, we demonstrate that
it can be approximated by substituting the preci-
sion measure with a fidelity measure. Optimal ex-
planations based on this fidelity objective can be ef-
fectively approached using Mixed Integer Program-
ming (MIP). Moreover, we show that for certain
distributions used to define the precision measure,
explanations with approximation guarantees can
be computed in polynomial time using a variant of
Iterative Hard Thresholding (IHT). Experiments
conducted on various datasets indicate that both
the MIP and IHT approaches outperform the state-
of-the-art LIME and MAPLE explainers.

1 INTRODUCTION

As machine learning models increasingly impact critical
decisions in areas such as criminal justice, medical diag-
nosis, and social scoring, the significance of ethics, fair-
ness, and safety in these models has become more apparent
than ever. In response to this need, Explainable Artificial
Intelligence (XAI) has developed a range of explanation

techniques that help users understand these models with-
out requiring in-depth knowledge of their inner workings
[Miller et al., 2022, Molnar, 2022]. Recently, the field of for-
mal explainability has emerged as a promising subdiscipline,
concentrating on providing explanations with mathematical
guarantees concerning quality, size, and semantics [Ignatiev,
2020, Marques-Silva and Ignatiev, 2022]. The aim of for-
mal explainability is to establish theoretical foundations for
explaining predictions made by machine learning models,
so as to calibrate trust and confidence in their capabilities.

A well-studied problem in formal explainability is to identify
a rule that explains why a given data instance x is classified
as f(x) by a classifier f . This rule can be described as a
subset S of features, such that any change in the values of
features outside S does not affect the outcome f(x). Since
the restriction of x to S, denoted by xS , contains enough
information to determine f(x), the feature subset S is often
referred to as a (weak) abductive explanation [Cooper and
Marques-Silva, 2023], also called sufficient reason [Dar-
wiche and Hirth, 2020]. However, despite the appealing
soundness of abductive explanations, their size often ex-
ceeds the cognitive limits of human users. As suggested by
Miller [1956], our ability to reason about multiple features
is typically limited to seven, plus or minus two elements.
This limitation has been reinforced by numerous cognitive
science experiments (see e.g. [Saaty and Özdemir, 2003]),
and empirical research in XAI indicates that explanations
should be concise [Lage et al., 2019].

Therefore, achieving a balance between precision and con-
ciseness is crucial when generating explanations for pre-
dictive models. The concept of probabilistic explanations
[Wäldchen et al., 2021, Izza et al., 2023] embodies this
balance. In this context, the precision error of a feature set
S is the probability that f separates a random instance z
from x, when the restrictions of z and x to S are indis-
tinguishable. The precision error is evaluated according to
a predefined distribution, such as the uniform distribution
over all data instances, or some neighborhood distribution
centered at x. Based on this measure, the computation of
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probabilistic explanations can be framed as a constrained
stochastic optimization problem. For example, if we aim to
find an explanation with the lowest precision error under a
user-supplied size limit k, the task is to

minimize Pz[f(z) ̸= f(x) | zS = xS ]

subject to |S| ≤ k
(P1)

To the best of our knowledge, probabilistic explanations
have mostly been studied within the context of classification.
However, considering the variety of available regression
models, a logical question arises: how can probabilistic
explanations be extended to the regression setting?

This paper addresses the above question without making
assumptions about the structure of the regression model f .
For instance, f could be represented by a tree ensemble, a
support vector machine, or a deep neural network. In our
algorithms, f is treated as a black-box function.

When explaining the prediction f(x) made by f for a data
instance x, feature subsets alone are often insufficient to
describe the relationship between input features and con-
tinuous output values. Therefore, this study considers ex-
planations in the form of linear models w that satisfy the
hyperplane condition w · x = f(x). Such a constraint en-
sures that any explanation w is consistent with f at x. The
conciseness or sparsity of w is measured by the number of
its nonzero coefficients, denoted as ∥w∥0.

To quantify how “sufficient” a sparse linear model is in
determining a regression model with adequate precision, we
replace the conditional zero-one loss function in (P1) with
a conditional absolute loss function. Thus, the precision
error of an explanation w for the value f(x) of some data
instance x is defined by the conditional expected loss of
|f(z)−f(x)| given that w ·z = w ·x. Again, the precision
is evaluated according to some predefined distribution over
the instance space. With these notions in hand, the problem
examined in this paper is to

minimize Ez[|f(z)− f(x)| | w · z = w · x]
subject to w · x = f(x) and ∥w∥0 ≤ k

(P2)

In Section 4, we show that when f is represented by a
neural network, (P2) is hard for NPPP, a complexity class
that is beyond the capabilities of modern solvers. However,
this hardness result does not preclude the existence of algo-
rithms that offer additive approximation guarantees on the
conciseness and the precision of optimal explanations.

In Section 5, we show that the precision error of feasible
solutions in (P2) is upper-bounded by their fidelity error,
a measure often used in model-agnostic explainability [Li
et al., 2021]. By replacing the objective in (P2) with the em-

pirical fidelity error, the corresponding problem becomes:

minimize
1

m

m∑
i=1

(w·zi − f(zi))
2

subject to w · x = f(x) and ∥w∥0 ≤ k

(P3)

This formulation, which involves a non-conditional expected
loss function as the objective, is a variant of the well-studied
sparse regression problem [Natarajan, 1995]. While this
problem remains NP-hard, it can be approached using Mixed
Integer Programming (MIP) with a polynomial number of
queries to f . The corresponding explanations are k-sparse,
and with high probability, their precision error is at most√
γ∗ + o(1), where γ∗ is the optimal value of (P3).

In Section 6, we present a variant of the Iterative Hard
Thresholding (IHT) algorithm [Blumensath and Davies,
2009, Garg and Khandekar, 2009] that computes approxi-
mate solutions to (P3) in polynomial time. For the uniform
distribution, these explanations are k-sparse, and with high
probability, their precision error is at most 7

√
γ∗ + o(1).

From an empirical standpoint, we compare in Section 7 the
MIP and IHT approaches with the popular LIME [Ribeiro
et al., 2016] and MAPLE [Plumb et al., 2018] explainers.
Through experiments on various datasets, we demonstrate
that both MIP and IHT approaches outperform these state-
of-the-art explainers in terms of fidelity while using a rea-
sonable amount of time for the MIP solver.

2 RELATED WORK

Probabilistic explanations have gained increasing attention
in the field of formal explainability due to their flexibility.
As outlined in (P1), we can set a sparsity level k and re-
quest a feature subset S of size at most k that minimizes
precision error [Koriche et al., 2024]. Alternatively, we can
fix a precision level ϵ and ask for a smallest feature subset
S with an error of at most 1 − ϵ [Izza et al., 2023]. How-
ever, this flexibility comes at a cost: Wäldchen et al. [2021]
demonstrated that deciding whether there exists a k-sparse
ϵ-precise explanation S for the prediction f(x) made by a
neural network f on a data instance x is a NPPP-hard prob-
lem. Additionally, they showed that minimizing the size of
an ϵ-precise explanation is NP-hard to approximate within a
factor of d1−δ for any δ > 0, where d is the dimension of x.

For these reasons, the tractability and approximability of
probabilistic explanations have been explored for simpler
classifiers, such as decision trees [Arenas et al., 2022, Bou-
nia and Koriche, 2023] and linear threshold functions [Suber-
caseaux et al., 2025]. In cases where f is a black-box classi-
fier, Blanc et al. [2021] demonstrated that if the instance x
being explained is drawn from a uniform distribution, then
with high probability, an ϵ-precise explanation S of size k′

can be derived from the path T (x) of a depth-k′ decision



tree T with fidelity error Pz[T (z) ̸= f(z)] ≤ ϵ. When k′

is polynomial in the “average certificate complexity” of f ,
the decision tree T can be implicitly learned in polynomial
time. While our approach for the regression setting shares
some similarities with their findings, we do not assume that
x is selected uniformly at random.

In a broader context, various model-agnostic methods have
been proposed to extrapolate a linear explanations from the
neighborhood of data instances [Ribeiro et al., 2016, Plumb
et al., 2018, Agarwal et al., 2021, Zhao et al., 2021]. A
common goal is to minimize the unconstrained objective

1

m

m∑
i=1

ϕx(zi)(w·zi − f(zi))
2 + ψ(w)

Here, {(zi, f(zi))}mi=1 is a set of labeled samples gener-
ated from some neighborhood distribution around x, ϕx(zi)
assesses the importance of zi, and ψ(w) penalizes the com-
plexity of w. For example, in the LIME method [Ribeiro
et al., 2016], ϕx(zi) is a normalized distance between zi
and x, while in the MAPLE method [Plumb et al., 2018],
ϕx(zi) measures the average number of times zi ends up in
the same leaf as x in a random forest trained from f . De-
spite their popularity, these heuristic methods do not always
provide theoretical guarantees regarding the consistency,
fidelity, or sparsity of extrapolated explanations. This con-
trasts with our MIP and IHT approaches, which aim to solve
(P3), incorporating consistency and sparsity as constraints,
and defining fidelity as the objective.

Notation. Plain letters represent functions and scalars,
while boldface letters represent vectors and matrices. The all-
ones vector is denoted as 1 and the all-zeros vector as 0. For
a positive integer d, we use [d] to denote the set {1, . . . , d}.
Additionally, we use 1S to denote the indicator vector in
{0, 1}d of a subset S ⊆ [d], and we use 1[E] to denote the
indicator function in {0, 1} of an event E ⊆ {0, 1}d. The
support set of a vector w ∈ Rd, denoted as support(w), is
the set of coordinates j ∈ [d] for which wj ̸= 0. The scalar
product of two vectors v and w is denoted as v · w, and
the coordinate-wise (or Hadamard) product is denoted as
v⊙w. For a scalar p ∈ [0,∞], the Lp norm of w is denoted
as ∥w∥p. The limit cases are ∥w∥0 = |(support(w))| and
∥w∥∞ = maxdj=1 |wj |. For a scalar r ≥ 0, the Lp ball of
radius r is defined as

Bp(r) = {w ∈ Rd : ∥w∥p ≤ r}

For a vector u ∈ Rd and a scalar r ∈ R, the hyperplane at
(u, r) is defined as

H(u, r) = {w ∈ Rd : u ·w = r}

Finally, the Euclidean projection of a vector w ∈ Rd onto a
set U ⊆ Rd is given by

ΠU (w) = argmin
u∈U

∥w − u∥2.
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Figure 1: A geometric illustration of 1-sparse linear expla-
nations w, where x = (1, 1) and f(x) = 1

2 . The hyper-
plane H(x, f(x)) is shown in blue, while the L0 ball B0(1)
is depicted in red. The intersection of these two elements
is represented by two red points. The convex hull of this
intersection forms the green segment, with the lozenge high-
lighting the L1 ball B1(1).

3 PROBLEM FORMULATION

In this study, we consider explanation tasks where data
instances are defined over a set of interpretable literals. For
instance, consider a bank customer wanting to understand
why her loan application received a score of − 1

4 , which is
below the acceptance threshold. Interpretable literals such as
[Income ≥ 70K$], [Debt-To-Income (DTI) ratio ≤ 35%],
and [Proof of Address = Yes] could be utilized. A clear and
concise explanation could be provided using an if-then rule
with weighted features, such as

1
2 [Income ≥ 70K$]− 3

4 [DTI ratio > 35%] → Score = − 1
4

More formally, let [d] denote the set of interpretable literals.
By treating these literals as binary features, the regression
models explored in this study are pseudo-Boolean functions
of the form f : {±1}d → [−1,+1].1 Here, any input to f
is a data instance x ∈ {±1}d, where xj indicates whether
the jth literal occurs positively or negatively in x.

A linear explanation for f(x) is a vector w ∈ Rd that
satisfies the equation w · x = f(x). As illustrated in the
previous example, such an explanation can be interpreted as
an if-then rule over weighted literals: the head corresponds
to f(x), and the body consists of pairs (j, wj) for which
xjwj ̸= 0. An explanation w is k-sparse if ∥w∥0 ≤ k.
As illustrated in Figure 1, the set of k-sparse explanations
for f(x) is formed by the intersection of two objects: the
hyperplane H(x, f(x)) and the L0 ball B0(k). While the
former is convex, the latter is not.

1Our theoretical results can easily be extended to co-domains
[−c,+c], provided that c is constant.



The quality of probabilistic explanations is assessed in re-
lation to a probability distribution D over {±1}d. For in-
stance, D could represent the uniform distribution U across
{±1}d or, more restrictively, a neighborhood distribution
surrounding the instance that is being explained. The preci-
sion error of a vector w ∈ Rd with respect to a model f , a
data instance x, and a distribution D is defined as follows:

Pf,x,D(w) = Ez∼D [|f(z)− f(x)| | w · z = w · x] (1)

In other words, the precision of w measures the discrepancy
between f(z) and f(x) for random instances z that are
aligned in the same direction as x in relation to w.

With these concepts in mind, the decision version of (P2)
is referred to as the SPARSE LINEAR EXPLANATION (SLE)
problem, and formulated as follows:

Instance: A regression model f : {±1}d → [−1,+1], a
data instance x ∈ {±1}d, a probability distribution D
over {±1}d, a sparsity level k ≥ 1, and a precision
parameter ϵ > 0.

Question: Does there exist a linear explanation w ∈ Rd

for f(x) such that ∥w∥0 ≤ k and Pf,x,D(w) ≤ ϵ?

4 PROBLEM COMPLEXITY

To establish the computational hardness of our problem,
we need a representation of f that allows us to evaluate its
description length. To this end, we consider the class N of
feedforward neural networks, which have weights and bi-
ases in [−1,+1] and activation functions in {σLIN, σRELU},
where σLIN(u) = u and σRELU(u) = max{0, u}. The de-
scription length of f is determined by the number of gates
in its representation. Additionally, we assume that the dis-
tribution D has a closed-form expression, allowing us to
evaluate the probability D(z) of any z in polynomial time
relative to the input dimension.

Theorem 1. For the representation class N , the SPARSE
LINEAR EXPLANATION problem is NPPP-hard.

Proof. Consider the decision version of (P1), referred to
as SPARSE SUBSET EXPLANATION (SSE). An instance of
this problem is a tuple ISSE = (f,x, k, ϵ) such that f :
{±1}d → {±1} is a Boolean function represented by a
Boolean circuit, x ∈ {±1}d is a data instance, and k and ϵ
are parameters in N and (0, 1], respectively. The goal is to
decide whether there exists a subset S ⊆ [d] of size at most
k, such that Qf,x(S) ≤ ϵ, where

Qf,x(S) = Pz∼U [f(z) ̸= f(x) | z ⊙ 1S = x⊙ 1S ]

Using δ = 1 − ϵ, any such subset S is called δ-relevant
subset in [Wäldchen et al., 2021, Izza et al., 2023].

From an instance ISSE = (f,x, k, ϵ), we build an instance
ISLE = (f ′,x′,D, k′, ϵ′) of our problem, defined as follows.

Let k′ = k+1, let ϵ′ = ϵ and let x′ = (x, 1). In addition, let
D be the distribution over {±1}d+1 defined as D(z, 1) =
U(z) and D(z,−1) = 0 for any z ∈ {±1}d. Finally, let
f ′ : {±1}d+1 → [−1,+1] be the function:

f ′(z,−1) = f ′(z, 1) = 1
2 |f(x)−f(z)|, for all z ∈ {±1}d

As shown in [Wäldchen et al., 2021], any Boolean circuit
can be efficiently transformed into an equivalent neural
network with integer weights and biases in {−1, 0,+1},
and activation functions in {σLIN, σRELU}. Consequently, a
representation in N for f ′ can be constructed in polynomial
time from the neural representation of f , by simply adding
the following units to its output:

1
2σLIN(σRELU(f(x)− f(z)), σRELU(f(z)− f(x)))

For a subset S, let w = (1S ⊙ x,−|S|) denote the corre-
sponding linear function. Since (1S ⊙ x) · x = |S|, we
know that w is a k-sparse explanation for f ′(x′). Further-
more, for any z ∈ {±1}d, we have w · (z, 1) = w · (x, 1)
if and only if (1S ⊙ x) · z = |S|, which is equivalent
to 1S ⊙ x = 1S ⊙ z. This, together with the fact that
|f ′(z, 1)−f ′(x, 1)| = 1

2 |f(z)−f(x)| = 1[f(z) ̸= f(x)]
implies that Pf ′,x′,D(w) = Qf,x(S). Therefore, S is a so-
lution to ISSE if and only if w is a solution to ISLE. Since
SSE is NPPP-hard [Wäldchen et al., 2021, Theorem 2.4], it
follows that SLE is NPPP-hard.

5 DEALING WITH PP-HARDNESS

Theorem 1 reveals that the problem of finding k-sparse lin-
ear explanations with a precision error of at most ϵ involves
two independent sources of complexity. The first source,
related to the NP-hardness of the problem, arises from the
challenge of exploring all candidate support sets S ⊆ [d]
of size at most k and determining whether there exists an
ϵ-precise linear explanation w with support S. The second
source of complexity comes from the inherent difficulty in
checking whether the precision error of w is indeed at most
ϵ, which is itself a PP-hard problem.

In this section, we focus on the second source of complexity.
The idea is to replace the precision error with the fidelity
error, which serves as a surrogate function:

Ff,x,D(w) = Ez∼D
[
(w·z − f(z))2

]
(2)

Lemma 1. Let f : {±1}d → [−1,+1] be a regression
model, let x ∈ {±1}d be a data instance, and let D be
a probability distribution over {±1}d. Then, the precision
error of any linear explanation w for f(x) satisfies

Pf,x,D(w) ≤
√

Ff,x,D(w)



Proof. By sublinearity of the absolute loss function,

Pf,x,D(w) ≤ Ez∼D [|f(z)−w·z| | w · z = w · x]
+ Ez∼D [|w·z −w·x| | w · z = w · x]
+ Ez∼D [|w·x− f(x)| | w · z = w · x]

Note that the second term in the above inequality vanishes.
Since w satisfies the hyperplane condition w·x = f(x), the
third term also disappears. Using the fact that the expectation
in the first term is independent of the condition w·z = w·x,
it follows from Jensen’s Inequality that

Pf,x,D(w) ≤ Ez∼D [|f(z)−w·z|] ≤
√

Ff,x,D(w)

Importantly, (2) involves an unconditional expectation,
which is approximable via sampling. In doing so, let
{(zi, f(zi))}mi=1 be a sample set where each zi is drawn
independently at random according to D, and its value f(zi)
is obtained through query access to f . The corresponding
empirical fidelity error is given by

F̂f,x,m(w) =
1

m

m∑
i=1

(w·zi − f(zi))
2 (3)

Based on this objective function, (P3) is a variant of the
well-studied problem known as (L0) sparse regression, also
referred to as best subset selection, which dates back at least
to [Beale et al., 1967, Hocking and Leslie, 1967]. While
the sparse regression problem is non-convex and NP-hard
Natarajan [1995], the inspiring work by Bertsimas et al.
[2016] has explored various Mixed Integer Programming
(MIP) formulations. Using modern branch-and-cut solvers,
the authors have empirically shown that probably optimal
solutions for high-dimensional instances can often be found
in a few hours. The next formulation is a variation of their
parameter-free approach utilizing Specially Ordered Sets
(SOS) [Bertsimas and Weismantel, 2005]:

minimize
1

m

m∑
i=1

(w·zi − f(zi))
2

subject to w · x = f(x)

1 · u ≤ k

∥(wj , 1− uj)∥0 ≤ 1, for all j ∈ [d]

uj ∈ {0, 1} for all j ∈ [d]

wj ∈ [−1,+1] for all j ∈ [d]

(MIP)

The last constraint is used to ensure that the set of k-sparse
explanations is bounded. The following result shows that
if the solver for (MIP) is supplied a number of samples m
that is quadratic in k and logarithmic in d, then with high
probability, the precision error of any returned solution is
upper-bounded by the root of its empirical fidelity.

Theorem 2. Let f : {±1}d → [−1,+1] be a regression
model, x ∈ {±1}d be a data instance, D be a probability
distribution over {±1}d, and k ≥ 1 be a sparsity level. Then,
for any k-sparse explanation w ∈ [−1,+1]d for f(x), any
δ ∈ (0, 1], and any ε ∈ (0, 1], if

m ≥ 1

ε4
(
32 ln(2d) + 8 ln( 2δ )

)
(k + 1)2

then with probability at least 1 − δ over the choice of an
i.i.d. sample set of size m,

Pf,x,D(w) ≤
√
F̂f,x,m(w) + ε

Proof. Let W be the hypothesis class consisting of all vec-
tors w ∈ [−1,+1]d such that w ·x = f(x) and ∥w∥0 ≤ k.
Using here the fact that ∥w∥1 ≤ ∥w∥0, we know that W is
included in B1(k). Additionally, let ℓf denote the loss func-
tion defined as ℓf (w, z) = |w · z− f(z)|. By construction,
ℓf (w, z) is 1-Lipschitz and upper-bounded by k + 1 for all
z ∈ {0, 1}d. Therefore, by application of Theorem 26.15 in
[Shalev-Shwartz and Ben-David, 2014] (see also Corollary
4 in [Kakade et al., 2008]), we have

Ff,x,D(w) ≤ F̂f,x,m(w)

+ 2(k + 1)

√
8 ln(2d) + 2 ln( 2δ )

m

By substituting the upper bound on m defined as above, and
applying Lemma 1, the result follows.

6 DEALING WITH NP-HARDNESS

In light of Theorem 2, we would like to find an optimal
solution to (MIP), striving for the best possible empirical
fidelity. However, since the sparse regression problem is
NP-hard, we need to make some additional assumptions for
achieving polynomial time efficiency, In this section, we
focus on the Restricted Isometry Property (RIP) [Candes
and Tao, 2005], a condition that is often recommended to
overcome this computational challenge.

A matrix Z ∈ Rm×d is said to satisfy the RIP of order k
with constant βk ∈ (0, 1) if, for all vectors w ∈ B0(k), the
following inequality holds:

(1− βk)∥w∥22 ≤ 1
m∥Zw∥22 ≤ (1 + βk)∥w∥22

This condition is equivalent to requiring that the Gram ma-
trix of Z, restricted to the columns in supp(w), is posi-
tive definite with its eigenvalues confined to the interval
[1−βk, 1+βk]. Let D be a probability distribution over Rd

such that for any w ∈ Rd and any ε ∈ (0, 1), the following
concentration inequality holds:

PZ∼Dm

[∣∣ 1
m∥Zw∥22 − ∥w∥22

∣∣ > ε
]
≤ 2e−Ω(m) (4)



Algorithm 1: Iterative Hard Thresholding (IHT)

Input: query (x, f(x)), sparsity level k, data (Z,y)

w0 = 0
for t = 1, 2, . . . do

vt = wt−1 − 1
mZ⊺(Zwt−1 − y)

wt = ΠH(x,f(x))∩B0(k)(vt)

As shown in [Baraniuk et al., 2008], if D satisfies such a
concentration inequality, then the RIP of order k ≤ d

2 with
constant βk holds with probability at least 1− 2e−Ω(m) for
matrices Z drawn over Dm, whenever m = Ω

(
k
β2
k
ln d

βk

)
.

In the context of this study, we are interested in discrete dis-
tributions over {±1}d satisfying (4). Under this assumption,
our algorithm for computing k-sparse explanations of high
fidelity is a variant of the Iterative Hard Thresholding (IHT)
method [Blumensath and Davies, 2009, Garg and Khan-
dekar, 2009, Jain et al., 2014]. Instead of projecting onto
the ball B0(k), it projects onto the intersection of this ball
and the hyperplane H(x, f(x)), ensuring that the solution
serves as an explanation for f(x).

As detailed in Algorithm 1, our version of IHT takes the
following inputs: a data instance x ∈ {±1}d and its pre-
dicted value f(x) ∈ [−1,+1], along with a sparsity level
k ≥ 1. Additionally, the algorithm requires a sample set
{(zi, f(zi))}mi=1, which is compactly represented as a pair
(Z,y), where Z ∈ {±1}m×d is the matrix of samples zi,
and y ∈ [−1,+1]m is the vector of the corresponding la-
bels f(zi). The algorithm performs gradient descent (with
a step size of 1), followed by a projection onto the set of k-
sparse explanations. The following result ensures that each
iteration of the algorithm operates in low polynomial time.

Lemma 2. For a model f , an instance x, a sparsity level k,
and a vector w, the projection of w onto H(x, f(x))∩B0(k)
can be computed in O(d log2(d) + k2) time.

Proof. As outlined in Algorithm 2, the idea is to split
w into two components: one that depends on the hyper-
plane constraint and another that does not. Specifically, let
w = wH +wB , where wH is the projection of w onto the
support set S of x, and wB is the projection of w onto the
complement of S. Since all indices in wB are free variables
in the equation w · x = y, we can directly project wB onto
B0(k). The solution w∗

B can be obtained in O(d log2(d))
time using the Hard Thresholding (HT) operator, which sets
all but the largest (in magnitude) elements of wB to zero.

Now, let uH = wH ⊙ x and let y = f(x). In addition, let
W and U denote the intersections of the ball B0(k) with
the hyperplanes H(x, y) and H(1S , y), respectively. Since
uH · 1S = y if and only if wH · x = y, it follows that
u′ ∈ U if and only if w′ = (u ⊙ x) ∈ W . This, together

Algorithm 2: Projection onto k-Sparse Explanations

Input: query (x, y), sparsity level k, vector w

wH = w ⊙ 1|supp(x) and wB = w ⊙ 1|[d]\supp(x)
w∗

B = HT(wB , k)
w∗

H = GSHP(wH ⊙ x, k, y)⊙ x
return w∗

H +w∗
B

with the fact that ∥u′ − uH∥2 = ∥w′ −wH∥2, implies that
ΠW(wH) = (ΠU (uH)) ⊙ x. Let vH be the projection of
uH onto U . By setting w∗

H = (vH ⊙ x), the projection of
w onto W is therefore w∗ = w∗

H +w∗
B .

Finally, since H(1S , λ) is a diagonal hyperplane, the run-
time complexity for deriving w∗

H follows from the fact that
vH can be obtained in O(d log2(d) + k2) time using the
Greedy Selector and Hyperplane Projector (GSHP) opera-
tion [Kyrillidis et al., 2013].

With this lemma in hand, the main result of this section can
be formally stated in the following theorem.

Theorem 3. Let f : {±1}d → [−1,+1] be a regression
model, x ∈ {±1}d be a data instance, k ∈ [1, d6 ] be a spar-
sity level, and D be a probability distribution over {±1}d
satisfying the concentration inequality (4). Suppose that
the IHT algorithm is run on a sample set {(zi, f(zi))}mi=1

drawn from D and labeled by f such that m = Ω
(

k
α2 ln

d
α

)
with α < 1/(32

√
3). Then, for any k-sparse explanation w

for f(x), after

t ≥ log2

⌈
∥w∥2

F̂f,x,m(w)

⌉

iterations, the returned vector wt is a k-sparse explanation
for f(x) satisfying, with probability at least 1− 2e−Ω(m),√

F̂f,x,m(wt) ≤ 7

√
F̂f,x,m(w)

Proof. Let Z ∈ {±1}m×d be the matrix of samples
(z1, . . . ,zm) and let y ∈ [−1,+1]m be the vector of corre-
sponding values (f(z1), . . . , f(zm)). By applying Lemma
5.1 from [Baraniuk et al., 2008] and using the bound on m,
we know that with a probability of at least 1 − 2e−Ω(m),
the matrix Z satisfies the RIP of order 3k with a constant
β3k <

1
32 . By integrating this result with Theorem 5 from

[Blumensath and Davies, 2009], we can conclude that at
iteration t, defined as above, the solution wt computed by
IHT satisfies, with probability at least 1− 2e−Ω(m),

∥wt −w∥2 ≤ 6∥e∥2, where e = 1
mZw − y

Leveraging this result, and applying the triangle inequality



along with the fact that 1
m∥Zu∥2 ≤ ∥u∥2, we obtain√

F̂f,x,m(wt) =
1
m∥Zwt +Zw −Zw − y∥2

≤ 1
m∥Z(wt −w)∥2 + 1

m∥Zw − y∥2
≤ ∥wt −w∥2 + ∥e∥2

≤ 7

√
F̂f,x,m(w)

As shown in [Achlioptas, 2001], the uniform distribution U
over {±1}d satisfies the concentration inequality (4). Thus,
by combining Theorems 2 and 3, we know that using a poly-
nomial number of samples drawn uniformly at random, the
IHT algorithm is guaranteed to find, with high probability,
a k-sparse explanation wt that achieves

Pf,x,D(wt) ≤ 7

√
F̂f,x,m(w∗) + o(1),

where w∗ is the optimal solution to (MIP). Additionally, by
integrating Lemma 2 and the fact that ∥w∗∥∞ ≤ 1, we can
conclude that the solution wt can be computed in polyno-
mial time with respect to d, k, and log2⌈1/F̂f,x,m(w∗)⌉.

At first glance, this result may seem surprising because, as
indicated in Theorem 1, finding k-sparse linear explanations
with minimal precision is NPPP-hard. However, it is impor-
tant to keep in mind that the fidelity measure does not always
provide a tight upper bound on the precision measure. In
fact, since F̂f,x,m(w∗) here assesses the capability of w∗

to fit the regression model f over the uniform distribution,
it can be quite large.

7 EXPERIMENTS

In order to validate the effectiveness of our methods, we
have considered various explanation tasks for regression
models. The code was written using the Python language.
Our experiments have been conducted on a Quad-core Intel
XEON X5550 with 32GB of memory.

7.1 EXPERIMENTAL SETUP

We conducted experiments using 18 tabular datasets,
sourced from the standard repository, OpenML.2 All
datasets focus on regression tasks and include both numeri-
cal and categorical attributes. To convert these raw attributes
into interpretable binary features, we applied a standard K-
bins discretization method, creating 4 bins for each attribute.
For our experimental purposes, the 18 datasets were divided
into two groups: 12 medium-dimensional benchmarks with

2Some statistics on the datasets used in our experiments can
be found in Table 3 of Appendix B.

an average of 415 binary features, and 6 low-dimensional
benchmarks with an average of 20 binary features.

For each benchmark, an explanation task is defined by a
tuple (f,x, σ, k), where f is a black-box regressor imple-
mented using a neural network. In our experiments, we
utilized the Scikit-Learn implementation of the multi-
layer perceptron regressor with default parameters. As usual,
we trained f on the training set of the benchmark and evalu-
ated its accuracy on the test set. Each data instance x that
we aimed to explain was randomly selected from the test set
using a uniform distribution. Since the performance of state-
of-the-art model-agnostic explainers is evaluated according
to neighborhood distributions around x, we employed the
following parameterized distribution:

Dx,σ(z) =
1

Zσ
e−σ∥x−z∥1 where Zσ =

d∑
j=0

(
d

j

)
e−σj

Here, σ ≥ 0 serves as a spread parameter. Note that Dx,0

corresponds to the uniform distribution. We also considered
k ∈ {1, . . . , 10} to explore different levels of sparsity.

The performance of explainers for each explanation task was
measured using the root mean squared error (F̂f,x,m(w))

1
2

of the generated explanation w. This metric was calculated
using m = 1000 labeled samples (zi, f(zi)), where each
zi was generated according to the distribution Dx,σ. For
low-dimensional benchmarks, we also calculated the pre-
cision error Pf,x,D(w) of the generated explanation w by
enumerating all data instances z ∈ {±1}d. Both metrics
were averaged over 20 random instances x.

To implement the MIP approach specified in the formulation
(MIP), we used the Gurobi solver (version 11.0), running
on a single thread with a timeout of 60 seconds. Our MIP
and IHT approaches were compared with three methods.
The first, referred to as CVX, is the convex relaxation of
(MIP), obtained by replacing the constraint ∥w∥0 ≤ k with
∥w∥1 ≤ k. The last two methods are the state-of-the-art
LIME [Ribeiro et al., 2016] and MAPLE [Plumb et al.,
2018], both implemented with default parameters.

7.2 EXPERIMENTAL RESULTS

An overview of our experimental results on 18 benchmarks,
specifically for σ = 1 and k = 7, is presented in Table 1.
The first six rows report results for the low-dimensional
benchmarks, while the last twelve rows cover the medium-
dimensional benchmarks. The first two columns of the table
include the name of each dataset along with its correspond-
ing OpenML identifier. The last five columns display the
average root mean squared errors for the explanations gen-
erated by different competitors. Entries highlighted in blue
indicate that the sparsity of all inferred explanations is at
most k, while entries highlighted in black indicate that the
sparsity of the explanations significantly exceeds k.



Benchmark
√

F̂f,x,m(w)

Name ID CVX IHT LIME MAPLE MIP

Airfoil Self Noise 44957 0.040 (±0.01) 0.055 (±0.02) 0.321 (±0.04) 0.218 (±0.02) 0.049 (±0.01)
Auto MPG 42372 0.031 (±0.00) 0.069 (±0.02) 0.338 (±0.07) 0.122 (±0.05) 0.039 (±0.01)
Bike Sharing 44142 0.040 (±0.00) 0.080 (±0.01) 0.183 (±0.05) 0.121 (±0.03) 0.048 (±0.01)
Liver Disorders 8 0.059 (±0.02) 0.091 (±0.02) 0.209 (±0.04) 0.147 (±0.08) 0.068 (±0.02)
Machine CPU 230 0.039 (±0.01) 0.128 (±0.02) 0.312 (±0.08) 0.190 (±0.06) 0.055 (±0.01)
Medical Charges 44146 0.040 (±0.00) 0.049 (±0.01) 0.408 (±0.01) 0.204 (±0.01) 0.049 (±0.00)

Ailerons 44137 0.050 (±0.01) 0.201 (±0.02) 0.647 (±0.05) 0.113 (±0.02) 0.085 (±0.02)
Auto Imports 9 0.067 (±0.01) 0.232 (±0.03) 0.528 (±0.06) 0.148 (±0.04) 0.107 (±0.01)
DNA Methylation 46139 0.121 (±0.02) 0.192 (±0.04) 0.582 (±0.08) 0.168 (±0.04) 0.191 (±0.01)
Geographical OM 44965 0.148 (±0.02) 0.259 (±0.04) 0.662 (±0.07) 0.174 (±0.01) 0.202 (±0.02)
Moneyball 41021 0.039 (±0.00) 0.192 (±0.02) 0.483 (±0.05) 0.120 (±0.03) 0.071 (±0.01)
NCI 60 Thioguanine 46132 0.062 (±0.01) 0.235 (±0.07) 0.534 (±0.10) 0.108 (±0.02) 0.132 (±0.06)
Online News 42724 0.010 (±0.00) 0.051 (±0.00) 0.069 (±0.01) 0.046 (±0.01) 0.028 (±0.01)
Pollution 542 0.045 (±0.01) 0.171 (±0.05) 0.478 (±0.06) 0.133 (±0.06) 0.082 (±0.02)
RTE Consumption 46337 0.033 (±0.00) 0.102 (±0.01) 0.273 (±0.10) 0.114 (±0.04) 0.057 (±0.01)
Student Performance 42352 0.074 (±0.01) 0.143 (±0.02) 0.454 (±0.03) 0.169 (±0.04) 0.105 (±0.01)
Wave Energy 44975 0.017 (±0.00) 0.080 (±0.03) 0.301 (±0.03) 0.128 (±0.02) 0.091 (±0.01)
Wisconsin 191 0.075 (±0.01) 0.135 (±0.02) 0.275 (±0.08) 0.201 (±0.05) 0.111 (±0.02)

Table 1: Experimental results on 6 low-dimensional benchmarks (upper rows) and 12 medium-dimensional benchmarks
(lower rows), using σ = 1, and k = 7. Entries highlighted in blue indicate that all generated explanations were k-sparse.

From these results, we can confidently conclude that both
the IHT and MIP approaches outperform LIME across all
benchmarks. As CVX operates within the convex hull of k-
sparse explanations (with ∥w∥∞ ≤ 1), it serves as a lower
bound for the fidelity of solutions to (MIP). However, be-
cause CVX tends to produce dense solutions, it cannot be
effectively considered as an explainer. Additionally, we can
observe that for all medium-dimensional benchmarks, the
explanations generated by MAPLE are dense. Furthermore,
on low-dimensional benchmarks, MAPLE consistently per-
forms worse than both IHT and MIP.

Table 2 presents the average precision errors of IHT, LIME,
and MIP across six low-dimensional benchmarks. By com-
paring these results with the average root mean square errors
shown in Table 1, we can see that empirical fidelity serves
as a good indicator of an explainer’s performance regarding
precision errors. Notably, both IHT and MIP outperform
LIME in terms of precision.

In Figure 2, we present the performance of IHT, LIME,
and MIP across varying levels of sparsity k, ranging from
1 to 10, on three benchmarks: DNA Methylation (which
affects cancer drug response), Student Performance, and
Wave Energy. The bar plots reveal that the performance of
both IHT and MIP remains stable or even improves as k
increases, while LIME exhibits significantly less stability.

Additionally, in Figure 3, we report the performance of the
three explainers as the spread σ increases from 0.1 to 1.0,

Benchmark Pf,x,D(w)

Name IHT LIME MIP

Airfoil S. N. 0.045 (±0.03) 0.092 (±0.07) 0.042 (±0.01)
Auto MPG 0.028 (±0.02) 0.063 (±0.02) 0.019 (±0.01)
Bike Sharing 0.067 (±0.03) 0.101 (±0.08) 0.041 (±0.01)
Liver Disorders 0.024 (±0.03) 0.071 (±0.05) 0.010 (±0.02)
Machine CPU 0.088 (±0.02) 0.124 (±0.09) 0.035 (±0.01)
Medical Charges 0.012 (±0.01) 0.228 (±0.04) 0.012 (±0.01)

Table 2: Average precisions of IHT, LIME, and MIP across
the 6 low-dimensional benchmarks.

using the same benchmarks. In contrast to LIME, both IHT
and MIP show robustness to variations in the distribution.

The runtimes of the explainers are outlined in Appendix B.
In summary, the CVX and LIME methods are the fastest,
each taking only a few milliseconds per benchmark. The
IHT and MAPPLE methods have comparable speeds, gen-
erally requiring a few seconds per benchmark. For the MIP
approach, the Gurobi solver can find an optimal solu-
tion within a few seconds for low-dimensional benchmarks.
However, it constantly reaches the one-minute timeout for
medium-dimensional benchmarks. In these cases, we have
found that Gurobi can identify near-optimal solutions in
just a few seconds, but verifying their optimality through
lower bounds may take several minutes.
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Figure 2: Comparison of root mean squared errors (y-axis) with increasing sparsity level (x-axis).
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Figure 3: Comparison of root mean squared errors (y-axis) with increasing spread (x-axis).

8 CONCLUSIONS

In this paper, we have demonstrated that deriving sparse and
precise explanations for regression models is NPPP-hard. To
tackle this computational challenge, we established that the
precision of these explanations is upper-bounded by their
fidelity. We can address this surrogate objective using Mixed
Integer Programming, and under certain assumptions about
the underlying distribution, we can achieve polynomial time
efficiency through Iterative Hard Thresholding. Our com-
parative experiments on real-world regression tasks support
these theoretical findings.

Though this study focused on minimizing the precision
Pf,x,D(w) of linear explanations while maintaining a de-
sired level of sparsity ∥w∥0 ≤ k, a promising direction for
future research is to explore the reverse problem: minimiz-
ing the sparsity of linear explanations ∥w∥0 while ensuring
that the desired precision Pf,x,D(w) ≤ ϵ is maintained.
This latter problem is also challenging, as verifying such a
probabilistic constraint is PP-hard.
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A ADDITIONAL THEORETICAL BACKGROUND

Our main results in Sections 5 and 6 are based on Theorem 26.15 in [Shalev-Shwartz and Ben-David, 2014] and Theorem 5
in [Blumensath and Davies, 2009], which are presented below.

Given a space of data instances X ⊆ Rd, a space of labels Y ⊆ R, and a hypothesis class of linear functions H ⊆ Rd, let
ℓ : H×X × Y → R be a loss function of the form

ℓ(w, x, y) = ϕ(w · x, y) (5)

where ϕ : R× Y → R is ρ-Lipschitz in its first argument. In other words, for every y ∈ Y , the scalar function a 7→ ϕ(a, y)
is ρ-Lipschitz. As a notable example, the absolute loss function given by ℓ(w, x, y) = |w · x− f(x)| can be written as in
Equation 5 using ϕ(a, y) = |a− y|, which is 1-Lipschitz for all y ∈ R.

Theorem 4 ([Shalev-Shwartz and Ben-David, 2014]). Let D be a distribution over X × Y such that ∥x∥∞ ≤ r with
probability 1. Additionally, let H = B0(b) and let ℓ : H×X × Y → R be a loss function of the form given in Equation 5,
such that ϕ is ρ-Lipschitz in it first argument, and such that maxa∈[−br,+br] |ϕ(a, y)| ≤ c. Then, for any δ ∈ (0, 1), with
probability of at least 1− δ over the choice of an i.i.d. sample set Z = {(xi, yi)}mi=1,

∀w ∈ H, E(x,y)∼D[ℓ(w,x, y)] ≤
1

m

m∑
i=1

ℓ(w,xi, yi) + 2ρbr

√
2 log2(2d)

m
+ c

√
2 ln(2/δ)

m
.

Recall that a matrix X ∈ Xm satisfies the RIP of order s with constant βs ∈ (0, 1) if, for any vector w ∈ B0(s), the
following inequality holds:

(1− βs)∥w∥22 ≤ 1
m∥Xw∥22 ≤ (1 + βs)∥w∥22

Theorem 5 ([Blumensath and Davies, 2009]). Consider a noisy observation y = Xw + e where w ∈ B0(k). If X has the
RIP of order s = 3k with constant βs < 1/

√
32, then after at most

t =

⌈
log2

(
∥w∥2
∥e∥2

)⌉
iterations, the solution wt returned by the IHT algorithm estimates w with accuracy

∥wt −w∥2 ≤ 6∥e∥2.

B ADDITIONAL EXPERIMENTAL RESULTS

Table 3 presents statistics for the 18 benchmarks used in our experiments. The first two columns list the names of the
datasets along with their corresponding OPENML identifiers. The next four columns provide information on the number of
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categorical attributes, the number of numeric attributes, the count of binarized literals, and the total number of instances.
Finally, the last column displays the accuracy of the regression model f , measured as the mean squared error and obtained
through 10-fold cross-validation.

Benchmark Qualities Accuracy

Name ID #CAT #NUM #BIN #INST (MSE)

Airfoil Self Noise 44957 0 5 20 1503 0.104
Auto MPG 42372 0 5 20 392 0.054
Bike Sharing (Demand) 44142 0 6 24 17379 0.090
Liver Disorders 8 0 5 20 345 0.104
Machine CPU 230 0 6 24 209 0.029
Medical Charges 44146 0 3 12 163065 0.106

Ailerons 44137 0 33 132 13750 0.037
Auto Imports 9 11 14 120 205 0.027
DNA Methylation 46139 0 808 3232 475 0.028
Geographical OM 44965 0 116 464 1059 0.019
Moneyball 41021 9 5 96 1232 0.029
NCI 60 Thioguanine 46132 0 48 192 60 0.021
Online News (Popularity) 42724 0 59 208 39644 0.004
Pollution 542 0 15 60 60 0.025
RTE Consumption 46337 0 15 56 105168 0.036
Student Performance 42352 0 32 103 395 0.020
Wave Energy 44975 0 48 192 72000 0.024
Wisconsin 191 0 32 128 194 0.027

Table 3: Some statistics about the 18 benchmarks.

Table 4 provides the runtimes in seconds for all explainers. As indicated in the paper, the MIP approach, which uses the
Gurobi solver, is capable of finding an optimal solution within a few seconds for low-dimensional benchmarks. However,
it experiences a one-minute timeout when applied to medium-dimensional benchmarks.

Figures 4 and 5 show bar plots illustrating the increasing sparsity for all datasets, while Figures 6 and 7 present bar plots
depicting the increasing spread for all datasets. Lastly, the plots in Figure 8 illustrate the evolution of the solution maintained
by the Gurobi solver as the time budget increases. As highlighted in the paper, a near-optimal solution is typically found
within a few seconds, with most of the time budget allocated to certifying its optimality through lower bounds.



Benchmark Time (s)

Name ID CVX IHT LIME MAPLE MIP

Airfoil Self Noise 44957 0.005 0.238 0.015 0.177 1.178
Auto MPG 42372 0.005 0.241 0.020 0.185 1.125
Bike Sharing 44142 0.004 0.292 0.015 0.210 6.192
Liver Disorders 8 0.004 0.239 0.015 0.175 1.295
Machine CPU 230 0.004 0.303 0.020 0.212 2.920
Medical Charges 44146 0.004 0.145 0.011 0.125 0.601

Ailerons 44137 0.018 2.110 0.056 1.412 60.00
Auto Imports 9 0.015 1.494 0.043 0.985 60.00
DNA Methylation 46139 0.315 8.298 0.249 5.292 60.01
Geographical OM 44965 0.270 7.055 0.171 4.142 60.02
Moneyball 41021 0.009 0.817 0.038 0.637 60.01
NCI 60 Thioguanine 46132 0.028 2.790 0.084 1.853 60.01
Online News 42724 0.026 3.150 0.093 1.292 60.00
Pollution 542 0.009 0.993 0.030 0.623 60.00
RTE Consumption 46337 0.008 0.814 0.024 0.581 60.01
Student Performance 42352 0.020 1.817 0.044 1.208 60.00
Wave Energy 44975 0.028 2.395 0.066 1.905 60.00
Wisconsin 191 0.020 1.628 0.074 0.967 60.01

Table 4: Average runtimes for all explainers across the 18 benchmarks.
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Figure 4: Comparison of root mean squared errors (y-axis) with increasing sparsity level (x-axis): Low-dimensional
benchmarks.



1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ailerons

IHT

LIME

MIP

1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Auto MPG

IHT

LIME

MIP

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

DNA Methylation

IHT

LIME

MIP

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Geographical OM

IHT

LIME

MIP

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

Moneyball

IHT

LIME

MIP

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

NCI 60 Thioguanine

IHT

LIME

MIP

1 2 3 4 5 6 7 8 9 10
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Online News

IHT

LIME

MIP

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

Pollution

IHT

LIME

MIP

1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

RTE Consumption

IHT

LIME

MIP

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Student Performance

IHT

LIME

MIP

1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Wave Energy

IHT

LIME

MIP

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

Wisconsin

IHT

LIME

MIP

Figure 5: Comparison of root mean squared errors (y-axis) with increasing sparsity level (x-axis): Medium-dimensional
benchmarks.
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Figure 6: Comparison of root mean squared errors (y-axis) with increasing spread (x-axis): Low-dimensional benchmarks.
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Figure 7: Comparison of root mean squared errors (y-axis) with increasing spread (x-axis): Medium-dimensional benchmarks.
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Figure 8: Evolution of the explanations computed by Gurobi for 10 data instances x, using k = 7 and σ = 1.
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