
Proofs514

Proof of Proposition 1515

Proof. Let T be the complete binary tree of depth k, formed by n = 2k − 1 internal nodes and 2k516

leaves. We assume a breadth-first ordering of internal nodes, such that the root is labeled by x1, the517

nodes of depth 1 are labeled by x2 and x3, and so on. Each internal node at depth k − 1 from the518

root of T has two children, one of it is a 0-leaf and the other one is a 1-leaf. For an arbitrary instance519

x ∈ {0, 1}n and any complete subtree T ′ of T of depth d, let s(x, T ′) denote the set of sufficient520

reasons of x given T ′, and let σ(x, d) = |s(x, T ′)| denote the number of those sufficient reasons.521

We show by induction on d that:522

σ(x, 1) = 1 (1)
σ(x, d+ 1) = σ(x, d)(σ(x, d) + 1) (2)

For the base case (1), any complete subtree T ′ of T of depth d = 1 has a single internal node, say xi,523

with two leaves labeled by 0 and 1, respectively. Therefore, the unique sufficient reason for x given524

T ′ is either xi or xi, and hence, σ(x, 1) = 1. Now, consider any complete subtree T ′ of T of depth525

d+ 1 rooted at a node xi. Let T ′l (xi) and T ′r(xi) denote the subtrees of depth d, respectively rooted526

at the left child of xi and the right child of xi. Suppose without loss of generality that the unique path527

leading to T ′(x) = 1 includes the left child of xi (i.e. T ′l (x) = 1). By construction,528

s(x, T ′) = {tl ∧ tr : tl ∈ s(x, T ′l ), tr ∈ s(x, T ′r)}
∪{li ∧ tl : tl ∈ s(x, T ′l )}

where li = xi if xi = 0 in x, and li = xi otherwise. Since by induction hypothesis s(x, T ′l ) =529

s(x, T ′r) = σ(x, d), it follows that σ(x, d + 1) = σ(x, d)2 + σ(x, d). Finally, since the doubly530

exponential sequence2 given by a(1) = 1 and a(d + 1) = a(d)2 + a(d) satisfies a(d) = bc2d−1c,531

where c ∼ 1.59791, it follows that σ(x, k) ≥ b(3/2)2k−1c. Using 2k−1 = (n + 1)/2, we get the532

desired result.533

Proof of Proposition 2534

Proof. One first need the following lemma that gives a recursive characterization of the set of535

sufficient reasons for an instance given a Boolean classifier:536

Lemma 1. For any Boolean function f ∈ Fn and any instance x ∈ {0, 1}n, the following inductive537

characterization of sr(x, f) holds:538

sr(x, 1) = {1}
sr(x, 0) = {}
sr(x, f) = sr(x, (f | `) ∧ (f | `)) ∪ {` ∧ t` : t` ∈ sr(x, f | `) s.t. t` 6|= f | `}

where Var(`) ⊆ Var(f) and tx |= `

539

and

sr(x, (f | `) ∧ (f | `)) = max ({t` ∧ t` : t` ∈ sr(x, f | `), t` ∈ sr(x, f | `)}, |=).

Proof. Let us recall first the following inductive characterization of pi(f), the set of prime implicants540

of f ∈ Fn, based on the Shannon decomposition of f over any of its variables x (see e.g., [2]):541

pi(1) = {1}
pi(0) = {}
pi(f) = pi((f | x) ∧ (f | x))

∪{x ∧ tx : tx ∈ pi(f | x) s.t. @t ∈ pi((f | x) ∧ (f | x)), tx |= t}
∪{x ∧ tx : tx ∈ pi(f | x) s.t. @t ∈ pi((f | x) ∧ (f | x)), tx |= t}
where x ∈ Var(f)

542

and
pi((f | x) ∧ (f | x)) = max ({tx ∧ tx : tx ∈ pi(f | x), tx ∈ pi(f | x)}, |=).

2See https://oeis.org/A007018.
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For the base cases sr(x, 1) = {1} and sr(x, 0) = {}, the result is obvious. For the general case,543

taking x ∈ Var(`), we have:544

sr(x, f) = {t ∈ pi(f) : tx |= t}
= {t ∈ pi((f | x) ∧ (f | x)) : tx |= t}
∪{t ∈ {x ∧ tx : tx ∈ pi(f | x) s.t. @t′ ∈ pi((f | x) ∧ (f | x)), tx |= t′}, and tx |= t}
∪{t ∈ {x ∧ tx : tx ∈ pi(f | x) s.t. @t′ ∈ pi((f | x) ∧ (f | x)), tx |= t′}, and tx |= t}
= sr(x, (f | x) ∧ (f | x))
∪{t ∈ {x ∧ tx : tx ∈ pi(f | x) s.t. @t′ ∈ pi((f | x) ∧ (f | x)), tx |= t′}, and tx |= t}
∪{t ∈ {x ∧ tx : tx ∈ pi(f | x) s.t. @t′ ∈ pi((f | x) ∧ (f | x)), tx |= t′}, and tx |= t}

545

Now, since x is an instance, whatever `, it cannot be the case that tx |= ` and tx |= `. Suppose that546

` = x (the case ` = x is similar). In this situation, no element of {x ∧ tx : tx ∈ pi(f | x) s.t. @t ∈547

pi((f | x) ∧ (f | x)), tx |= t}, and tx |= t} can belong to sr(x, f). As a consequence, we get that:548

sr(x, f) = sr(x, (f | x) ∧ (f | x))
∪{t ∈ {` ∧ t` : t` ∈ pi(f | `) s.t. @t′ ∈ pi((f | `) ∧ (f | `)), t` |= t′}, and tx |= t}
where Var(`) ⊆ Var(f) and tx |= `

549

If t = ` ∧ t` is such that tx |= t holds, then we have tx |= t`. Hence, we have:550

sr(x, f) = sr(x, (f | x) ∧ (f | x))
∪{` ∧ t` : t` ∈ sr(x, f | `) s.t. @t′ ∈ pi((f | `) ∧ (f | `)), t` |= t′}
where Var(`) ⊆ Var(f) and tx |= `

551

Consider now the condition ∃t′ ∈ pi((f | `) ∧ (f | `)), t` |= t′ and suppose that it is satisfied. Since552

pi((f | `) ∧ (f | `)) = max ({t′
`
∧ t′` : t′` ∈ pi(f | `), t′` ∈ pi(f | `)}, |=), there exist t′

`
∈ pi(f | `)553

and t′` ∈ pi(f | `) such that t′ = t′
`
∧ t′`. Thus, we have t` |= t′

`
∧ t′`, and in particular t` |= t′` holds.554

But since t` and t′` are prime implicants of f | `, this implies that t` ≡ t′` holds. Furthermore, from555

t` |= t′
`
∧ t′` we get that t` |= t′

`
. In addition, a prime implicant t′

`
of f | ` such that t` |= t′

`
exists if556

and only if t` |= f | `. Altogether, the condition ∃t′ ∈ pi((f | `) ∧ (f | `)), t` |= t′ is equivalent to557

t` |= f | `. Thus, we get that:558

sr(x, f) = sr(x, (f | `) ∧ (f | `))
∪{` ∧ t` : t` ∈ sr(x, f | `) s.t. t` 6|= f | `}
where Var(`) ⊆ Var(f) and tx |= `

559

Finally, if t ∈ max ({tx ∧ tx : tx ∈ pi(f | x), tx ∈ pi(f | x)}, |=), then by construction t is560

such that there exist tx ∈ pi(f | x) and tx ∈ pi(f | x) satisfying t = tx ∧ tx. If tx |= t holds,561

then tx |= tx and tx |= tx hold. Hence tx ∈ sr(x, f | x) and tx ∈ sr(x, f | x). Consequently,562

t ∈ max ({tx ∧ tx | tx ∈ sr(x, f | x), tx ∈ sr(x, f | x)}, |=).563

From the inductive characterization of sr(x, f) given by the previous proposition, we can easily564

derive a bottom-up algorithm allowing to derive sr(x, f) when f is represented by a decision tree.565

Consider now a decision tree T of depth k ≥ 1 having the following form:566
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0 1

0 1

. . .

0 1 0 1
567

T has 2k − 1 decision nodes and 2k leaves. Suppose that the variables associated with the decision568

nodes are in one-to-one correspondence with the decision nodes (i.e., they are all distinct). The569

number of variables occurring in T is thus n = 2k − 1, therefore T has 2n+ 1 nodes. Consider now570

the instance x ∈ {0, 1}n such that xi = 1 for every i ∈ [n]. We are going to prove by induction on571

the depth k of such a tree T that x has 2k−1 minimal reasons given T , each of them containing k572

literals. The proof takes advantage of the recursive characterization of the set of all sufficient reasons573

for an instance given a decision tree, as made precise by Lemma 1.574

• Base case k = 1. We have n = 1. T consists of a decision node labelled by the single575

variable of Xn, say x, a left child that is a 0-leaf and a right child that is a 1-leaf. T is576

equivalent to x and x is implied by tx. Hence, x is the unique sufficient reason for x given T ,577

so it is also the unique minimal reason for x given T . As expected, the number of minimal578

reasons for x given T is equal to 2k−1. The size of the unique minimal reason is k = 1.579

• Inductive step k > 1. Let x be the variable of Xn labelling the root node of T . By580

construction, the left child Tl of T is equivalent to a single variable, say xl, that is the unique581

minimal reason for x given Tl. The right child Tr of T has the same form as T , but with582

depth k − 1. By induction hypothesis, we know that x has 2k−2 minimal reasons given Tr,583

each of them containing k − 1 literals. As shown by Lemma 1, provided that the variables584

labelling the decision nodes are pairwise distinct, the minimal reasons for x given T are585

obtained by extending every minimal reason for x given Tr with xl and by extending every586

minimal reason for x given Tr with x. Accordingly, x has 2 × (2k−2) = 2k−1 minimal587

reasons given T and each of them contains k − 1 + 1 = k literals.588

Finally, since n = 2k − 1, we have k = n+1
2 and the number of minimal reasons for x given T is589

equal to 2k−1 = 2
√
n−1.590

Proof of Proposition 3591

Proof. The algorithms to compute Necs(x, T ), Rels(x, T ), and Irrs(x, T ) are as follows: first592

compute CNF(T ) and then remove from this set of clauses every literal that does not belong to tx.593

This can be done in O(n|T |) time. By construction, the resulting CNF formula f is monotone: every594

literal in it occurs with the same polarity as the one it has in tx. Furthermore, the size of f cannot595

exceed the size of CNF(T ), thus the size of T .596

Since f is a monotone CNF formula, its prime implicates can be computed by removing from f every597

clause that is a strict superset of another clause of f .This can be achieved in quadratic time in the size598

of f , thus in the size of T . Let g be the resulting formula in prime implicates form and equivalent to599

f . g is equivalent to the complete reason for x given T . Since it is in prime implicates form, g is600
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Lit-dependent on every literal occurring in it (i.e., g is Lit-simplified, see Proposition 8 in [23] for601

details), hence so is the complete reason for x given T .602

This means that for every literal ` occurring in g, there exists a sufficient reason for x given T that603

contains `, so that Rels(x, T ) is the set of literals occurring in g and Irrs(x, T ) is the complement604

of Rels(x, T ) in the set of all literals over Xn. Finally, since by definition the literals of Necs(x, T )605

must belong to every sufficient reason for x given T , they are given by the unit clauses that belong to606

g.607

Proof of Proposition 4608

Proof. We call MINIMAL REASON the problem that asks, given T ∈ DTn, x ∈ {0, 1}n with609

T (x) = 1 and k ∈ N, whether there is an implicant t of T of size at most k that covers x.610

Our objective is to prove that MINIMAL REASON is NP-hard. To this end, let us first recall that611

a vertex cover of an undirected graph G = (X,E) is a subset V ⊆ X of vertices such that612

{y, z} ∩ V 6= ∅ for every edge e = {y, z} in E. In the MIN VERTEX COVER problem, we are given613

a graph G together with an integer k ∈ N, and the task is to find a vertex cover V of G of size at most614

k. MIN VERTEX COVER is a well-known NP-hard problem [20], and we now show that it can be615

reduced in polynomial time to MINIMAL REASON.616

Suppose that we are given a graph G = (X,E) and assume, without loss of generality, that G does617

not include isolated vertices. For any y ∈ X , let Ey = {e ∈ E : y ∈ e} denote the set of edges in618

G that are adjacent to y, and let Ny = {z ∈ X : {y, z} ∈ E} denote the set of neighbors of y in619

G. By G \ y, we denote the deletion of y from G, obtained by removing y and its adjacent edges,620

i.e., G \ y = (X \ {y}, E \ Ey). We associate with G a decision tree T (G) over Xn = X using the621

following recursive algorithm. If G is the empty graph (i.e. E = ∅), then return the decision tree622

rooted at a 1-leaf. Otherwise, pick a node y ∈ X and generate a decision tree T (G) such that:623

(1) the root is labeled by y;624

(2) the left child is the decision tree encoding the monomial
∧
Ny;625

(3) the right child is the decision tree T (G′) returned by calling the algorithm on G′ = G \ y.626

By construction, T (G) is a complete backtrack search tree of the formula CNF(E) =
∧
{(y ∨ z) :627

{y, z} ∈ E}, which implies that T (G) and CNF(E) are logically equivalent. Furthermore, T (G) is a628

comb-shaped tree since recursion only on the rightmost branch. In particular, the algorithm runs in629

O(n|E|) time, since step (1) takes O(1) time, step (2) takes O(n) time, and step (3) is called at most630

|E| times.631

Now, with an instance P1 = (G, k) of MIN VERTEX COVER, we associate the instance P2 =632

(T (G),x, k) of MINIMAL REASON, where x = (1, · · · , 1). Based on the above algorithm, P2 can633

be constructed in time polynomial in the size of P1.634

Let V be a solution of P1. Since V is a vertex cover of G, the term tV =
∧
V is an implicant of the635

formula CNF(E). Since tV ⊆ tx and |tV | ≤ k, it follows from the fact that CNF(E) and T (G) are636

logically equivalent that tV is a solution of P2.637

Conversely, let t be a solution of P2. Since t is an implicant of T (G), it follows that t is an implicant638

of CNF(E). This together with the fact that t ⊆ tx implies that the subset of vertices V ⊆ Xn,639

satisfying
∧
V = t, is a vertex cover of G. Since |V | ≤ k, it is therefore a solution of P1.640

641

Proof of Proposition 5642

Proof. Let x∗ be any solution of (Csoft, Chard). Observe that the set of all hard clauses c∩ tx (where643

c is a clause of CNF(T )) corresponds to a monotone CNF formula. Therefore, in order to satisfy such644

a clause c ∩ tx, x∗ must set a literal ` of tx to 1. Thus, x∗ satisfies all the hard clauses of Chard if645

and only if the term consisting of the literals that are shared by tx =
∧n

i=1 `i and tx∗ is an implicant646

of T and is implied by x.647
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The soft clauses of Csoft are used to select among the assignments that satisfy all the hard clauses,648

the ones that correspond to minimal sufficient reasons. Soft clauses are given by literals `i, which649

are precisely the complementary literals to those occurring in tx. Having a soft clause `i violated by650

x∗ means that the literal ` of tx is necessary to get an implicant of T given the assignment of the651

other variables in x∗. Whenever a soft clause `i is violated by x∗ a penalty of 1 incurs. This ensures652

that the term consisting of the literals that are shared by tx =
∧n

i=1 `i and tx∗ is a minimal sufficient653

reason for x given T .654

Proof of Proposition 6655

Proof. By definition, the sufficient reasons t for x given f are the prime implicants of f that covers656

x. Thus, they are precisely the prime implicants of the (conjunctively-interpreted) set of clauses657

{c ∩ tx : c ∈ CNF(f)} where CNF(f) is any CNF formula equivalent to f . Furthermore, the complete658

reason for x given f (equivalent to the disjunction of all the sufficient reasons for x given f [8]) is659

a monotone Boolean function because every sufficient reason covers x which assigns in a unique660

way every variable from Xn. The prime implicates of such a monotone function are precisely the661

minimal hitting sets of the prime implicants of the function. Because of the minimal hitting set662

duality between sufficient reasons and contrastive explanations for x given f [16], the contrastive663

explanations for x given f are thus the sets of literals corresponding to the prime implicates of664

{c∩tx : c ∈ CNF(f)}. Now, since the (conjunctively-interpreted) set of clauses {c∩tx : c ∈ CNF(f)}665

is equivalent to the complete reason for x given f , it is a monotone function, and as a consequence,666

its prime implicates are its minimal elements w.r.t. ⊆. This comes from the correctness of any667

resolution-based algorithm for generating prime implicates (see e.g., [26]). Finally, when f is a668

decision tree T , {c ∩ tx : c ∈ CNF(T )} can be computed in time polynomial in n + |T | because669

CNF(T ) can be computed in time linear in |T |. Using an extra quadratic time in the size of this670

set {c ∩ tx : c ∈ CNF(T )}, its minimal elements w.r.t. ⊆ can be selected. The resulting set is by671

construction the set of all the contrastive explanations for x given T , and this set has been computed672

in time polynomial in n+ |T |.673
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