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Abstract. A contrastive explanation is a local explanation that is
looked for when the prediction achieved by an ML model on an input
instance x differs from what was foreseen. A contrastive explanation
indicates how to change x to another instance xc from which a pre-
diction that complies with the user’s expectations can be obtained.
In this paper, we present a constraint-based approach to the genera-
tion of contrastive explanations that are suited to regression functions
represented by boosted trees. We show how to compute the smallest
interval containing all the regression values that are attainable given
a set of characteristics of x that are protected (i.e., not amenable to
change). We also show how to generate minimal contrastive expla-
nations for x given a target interval, i.e., instances with regression
values within the specified interval and that are as close as possible
to x. Closeness is captured using user-dependent mappings reflecting
preferences about value change for the attributes (or combinations of
attributes) considered in the representation of x.

1 Introduction
Machine Learning (ML) models became pervasive in real-world ap-
plications because of their astonishing predictive power. However,
the most efficient ML models are opaque. This opacity constitutes a
significant obstacle for leveraging ML models in high-stake applica-
tions. eXplainable AI (XAI) has emerged for the past five years as a
new research field, with the goal of developing techniques for gain-
ing trust in ML models and the predictions obtained from them (see
for instance [12, 1, 17, 13, 18, 25, 2, 8, 22]).

In the following, we present an XAI framework for boosted trees.
When dealing with tabular data, boosted trees are among the state-
of-the art ML models in terms of predictive power [7]. However, the
generation of explanations in the case of boosted trees is challenging.
Indeed, boosted trees can hardly be seen as explainable by design
[19], or even computationally intelligible [3].

Our very objective is to show how to compute contrastive expla-
nations suited to regression functions represented by boosted trees.
A regression function is a mapping from a set X of instances to R.
The regression value f(x) of an instance x may represent any piece
of information that can be encoded as a real value. Most of the time,
the precise value f(x) taken by f on instance x is irrelevant for the
user, so that predicting f(x) ± ε (for a sufficiently small ε) instead
of f(x) would not make any difference. The extent to which getting

∗ Email: audemard@cril.fr.
∗∗ Email: lagniez@cril.fr.
∗∗∗ Corresponding Author. Email: marquis@cril.fr.

another prediction than f(x) would matter can be made precise by
specifying an interval Ix such that f(x) ∈ Ix. Any value within Ix
would be satisfying for the user as the regression value of x for f .

Example 1. Consider the following loan application scenario, to
be used as a running example throughout the paper. Suppose that x
represents a bank client, say Bob, applying for a loan in the objec-
tive of buying the boat of his dreams, that costs $110k. The bank
uses an ML model f to predict the amount of money that can be
safely granted its clients. Suppose that the corresponding regression
value f(x) = $100k represents the amount of money that the bank
is ready to grant Bob. If Bob has savings up to $20k that he is okay
to use for buying the boat, he will surely be happy with the bank offer
since he will have enough money to get the boat. Thus, in Bob’s case,
Ix = [90k,+∞) would do the job. However, it could be the case
that f(x) = $80k. In this situation, we do not have f(x) ∈ Ix, and
Bob would like to know what he could do to be granted a loan of at
least $90k.

The quest for contrastive explanations precisely aims to find an-
swers to such questions. Bob would like to know how to change his
description (given by the input instance x) to get a prediction be-
longing to a preset target interval Ix.

In general, Ix is such that f(x) 6∈ Ix since in the case when
f(x) ∈ Ix, the user does not need a contrastive explanation. Most
of the time, the expected change must be minimal in a certain sense,
and the corresponding notion of minimality is user-dependent. In-
formally, it reflects the minimal effort the user is ready to make (in
terms of the characteristics to be changed) in order to reach a regres-
sion value within an expected interval.

Several criteria can be used for evaluating explanations (and/or the
XAI methods used to produce them) [20, 26]. Correctness (aka faith-
fulness or soundness) indicates to which extent explanations cap-
ture the actual behaviour of the ML model under consideration. It
is paramount since the goal pursued is to account for the predictions
made by the model used, not those that could be obtained by a differ-
ent model. Generalizability is also valuable. It reflects the number of
instances covered by the explanation that is produced: the larger this
number the more general the explanation.

When dealing with tree-based models F , every instance x ∈ X
can be associated with a unique instance, noted xF , that is based on
the set of (usually non-independent) Boolean conditions B occurring
in F . xF can be obtained by rewriting the instance x considered
primarily, the description of which being based on attributes that are
not solely Boolean (numerical or categorical attributes are usually in-



volved at start). The rewrite process can be achieved efficiently (i.e.,
using a linear-time algorithm in the size of the input instance and
the size of F ), and it ensures that f(xF ) = f(x), where f is the
regression function represented by F .

Example 1 [cont’ed] Considering the loan application scenario
again, suppose that the three attributes used to describe instances
from X are the annual income A1 of the applicant (in $k), his/her
age A2, and his/her level of education A3. Then, depending on the
values of A1, A2, and A3 that are selected by the algorithm used
to learn the boosted tree, F may contain the following Boolean
conditions (A1 > 80), (A1 > 65), (A1 > 30), (A2 > 50),
(A2 > 30), (A3 = bachelor), (A3 = master), (A3 = Ph.D .)
(taken in this order and forming the set B). The instance x = (A1 =
70, A2 = 29, A3 = master) corresponding to Bob is associated
with the instance xF = (0, 1, 1, 0, 0, 0, 1, 0) over B since x satisfies
(A1 > 65), (A1 > 30), and (A3 = master) while it does not sat-
isfy any other conditions from B. Of course, xF depends on F , and
more precisely on the Boolean conditions (especially, the thresholds
used in them) that have been considered when F has been learned.
Thus, if the thresholds occurring in F about A2 were 30 and 25 (in-
stead of 50 and 30), the instance corresponding to Bob would have
been xF = (0, 1, 1, 0, 1, 0, 1, 0).

Whatever the thresholds retained, the Boolean conditions in B are
not independent one another, but are related by a domain theory Σ
that indicates how the conditions are logically connected. XF de-
notes the set of all Boolean instances xF over B that satisfy Σ.

Example 1 [cont’ed] For the loan application scenario, the domain
theory Σ associated with B is equivalent to

((A1 > 80)⇒ (A1 > 65))
∧ ((A1 > 65)⇒ (A1 > 30))
∧ ((A2 > 50)⇒ (A2 > 30))
∧ ((A3 = bachelor)⇒ ¬(A3 = master))
∧ ((A3 = bachelor)⇒ ¬(A3 = Ph.D .))
∧ ((A3 = master)⇒ ¬(A3 = Ph.D .)).

As shown in [5], considering rewritten instances xF is valuable to
derive explanations that are at least as general as explanations that
could be obtained from the instances x considered at start.1 Con-
trastive explanations given as instances from XF (and not as in-
stances from X) better reflect the behaviour of the tree ensemble that
is used to achieve the regression task. The improved generality of in-
stances from XF also reduces the risk to report contrastive instances
that are outliers. Finally, when all the attributes used are Boolean
ones, there is no need to indicate the values of the attributes that
must be changed to get a contrastive explanation for xF : it is enough
to indicate the attributes the values of which must be changed. As
a consequence, the contrastive explanations generated by C can be
represented by terms t, i.e., conjunctions of literals, over the Boolean
conditions in B.

Example 1 [cont’ed] For example, if the regression value f(xF ) of
f for xF = (0, 1, 1, 0, 0, 0, 1, 0) (associated with Bob) is less than
90k, Bob is not involved in the preparation of a Ph.D. and is not ready
to wait (i.e., to increase his age), and xF

c = (1, 1, 1, 0, 0, 0, 1, 0)
satisfies f(xF

c ) ≥ 90k, then the contrastive instance xF
c for xF

given f and IxF = [90k,+∞) can be represented by the term t =
(A1 > 80). Using words, to get a loan of at least $90k, it is enough

1 In the same direction (i.e., promoting the generality of explanations), see
also the recently introduced concept of inflated explanation, that is not spe-
cific to tree ensembles [15].

for Bob to increase his annual income to more than $80k. Notably,
this minimal contrastive explanation applies to Bob, but also to any
other applicant like Charlie (represented at start by x′ = (A1 =
70, A2 = 25, A3 = master) and having the same desiderata as Bob
concerning the way his characteristics may change. Indeed, we have
x′F = xF .

The contribution of this paper mainly consists of two constraint
encodings, I and C. Slightly abusing words, I and C are also referred
to as “algorithms”, even if the algorithm in both cases is the one of
the contraint solver used, with I or C as input. Given F and x, I can
be leveraged to generate target intervals It depending on the subset
t of the characteristics of xF the user would like to preserve (i.e.,
not to change). I can be used to help the user envision an interval
Ix that is as small as possible and containing all the regression val-
ues that are attainable given the characteristics (or combinations of
characteristics) the user is (more or less) ready to change and those
he/she is reluctant to modify. C can be leveraged to generate min-
imal contrastive explanations for x given F and Ix. For the sake
of generality, minimal contrastive explanations from XF are looked
for. A dissimilarity mapping is used by C to characterize the no-
tion of minimal change at work. This mapping is user-dependent.
This is fundamental since another client of the bank characterized by
the same instance x as Bob could be less prone than Bob to change
some of his/her characteristics. We show how sophisticated prefer-
ences about possible changes of the characteristics (or combinations
of characteristics) of x can be represented and taken into account by
C. Experiments have been made showing that C is efficient enough
for computing minimal contrastive explanations in many cases. The
code used and the datasets considered in the experiments are fur-
nished as a supplementary material, available online [6].

2 Preliminaries
We consider a set of instances X described using a finite set A =
{A1, . . . , An} of attributes (aka features) where each attribute Ai

(i ∈ [n]) takes its value in a domain Di. Each attribute Ai can be
numerical, categorical, or Boolean. Thus, A is the union of three
pairwise disjoint subsets AN , AC , AB containing respectively the
numerical, categorical, and Boolean attributes. An instance x ∈ X
is a vector (v1, . . . , vn) where each vi (i ∈ [n]) is an element of Di.
Each pair Ai = vi is called a characteristic of the instance x. x[Ai]
denotes the value vi of the coordinate corresponding to Ai in x.

A regression tree over A is a binary tree T , each of its internal
nodes being labeled with a Boolean condition on an attribute from
A, and leaves are labeled by real numbers. The conditions are of the
form Ai > vij with vij a number when Ai is a numerical attribute,
Ai = vij when Ai is a categorical attribute, and Ai (or equivalently
Ai = 1) when Ai is a Boolean attribute. The value T (x) ∈ R of T
for an input instance x ∈ X is given by the real number labelling
the leaf node reached from the root as follows: at each internal node,
go to the left when the condition labelling the node is not satisfied by
x, and go to the right otherwise.

A boosted regression tree over A is an ensemble of trees (alias a
forest) F = {T1, · · · , Tm}, where each Ti (i ∈ [m]) is a regression
tree over A, and such that the value F (x) ∈ R of F for an input
instance x ∈ X is given by F (x) = ⊕m

i=1Ti(x). In the following,
⊕ is the sum operator but other operators strictly monotonic in each
argument (e.g., the mean) could be considered instead.

The running domainRDi ofAi ∈ A in F is the subset ofDi con-
taining all the values vji that are encountered in the labels of the inter-
nal nodes of the trees ofF that are aboutAi. WhenAi is a categorical



attribute with running domain RDi = {v1i , . . . , v
d(i)
i }, Ai is asso-

ciated with the set of Boolean variables B(Ai) = {X1
i , . . . , X

d(i)
i }

where for each j ∈ [d(i)], Xj
i stands for the condition (Ai = vji ).

When Ai is a numerical attribute with running domain RDi =

{v1i , . . . , v
d(i)
i } where v1i > . . . > v

d(i)
i , Ai is associated with the

set of Boolean variables B(Ai) = {X1
i , . . . , X

d(i)
i } where for each

j ∈ [d(i)], Xj
i stands for the condition (Ai > vji ). When Ai is a

Boolean attribute Ai is associated with the set of Boolean variables
B(Ai) = {Xi}. B is defined by

⋃
Ai∈AB(Ai). B is supposed to be

totally ordered in an arbitrary (yet fixed) way, so that every element
Xj ∈ B has an index j varying from 1 to p, where p denotes the
cardinality of B. Every x ∈ X can be associated with an instance
xF = (v1, . . . , vp) from XF such that vj = 1 (j ∈ [p]) if and only
if the Boolean condition Xj is satisfied by x.
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Figure 1: A boosted regression tree based on three trees T1, T2, T3.

Example 1 [cont’ed] Let us consider the loan application sce-
nario presented in the introduction. We suppose that the boosted
regression tree F = {T1, T2, T3} depicted in Figure 1 has
been learned and that f is the corresponding regression function.
We have RD1 = {80, 65, 30}, RD2 = {50, 30}, RD3 =
{bachelor ,master ,Ph.D .}. The set B gathering the Boolean con-
ditions used in F contains 8 elements: X1

1 = (A1 > 80), X2
1 =

(A1 > 65), X3
1 = (A1 > 30), X1

2 = (A2 > 50), X2
2 =

(A2 > 30), X1
3 = (A3 = bachelor), X2

3 = (A3 = master),
X3

3 = (A3 = Ph.D .). The instance x = (A1 = 70, A2 =
29, A3 = master) corresponding to Bob is associated with the in-
stance xF = (0, 1, 1, 0, 0, 0, 1, 0) over the Boolean conditions oc-
curring in F . The regression value of x (or equivalently of xF ) is
equal to 90 + 20− 30 = 80.

A term t over B is a conjunctively-interpreted set of literals over
B. > denotes the term associated with the empty set of literals. t
is canonical when it contains one literal per Boolean variable in B.
Such a term thus corresponds to a truth assignment over B. Every
instance xF ∈ XF can be associated with a canonical term txF

over B such that for everyX ∈ B,X (resp.X) belongs to txF if and
only if xF satisfies (resp. does not satisfy) the Boolean condition X .
A term t over B covers an instance xF ∈ XF whenever t ⊆ tx.
Given an attribute Ai ∈ A and an instance xF ∈ XF , xF [Ai]
denotes the vector of dimension d(i) (the cardinality of the running
domain RDi = {v1i , . . . , v

d(i)
i } of Ai) containing precisely all the

Boolean values associated with the attributes from B that represent
the conditions of the form (Ai > vji ) (when Ai is numerical) or
(Ai = vji ) (when Ai is categorical or Boolean), where vji ∈ RDi.

3 Computing contrastive explanations
Our two encodings I and C rely on a setM of Mixed-Integer Lin-
ear Programming (MILP) constraints that specifies how the values of
the Boolean attributes B occurring in the forest F representing the

regression function f are connected to the regression values. In the
following, we first present this setM of hard constraints. Then we
successively show how to take advantage of it to generate regression
intervals (this is algorithm I) and to compute contrastive explanations
for an input instance given F and a targeted regression interval (this
is algorithm C) .

Encoding a boosted regression tree using MILP constraints All
the hard contraints inM must be satisfied by any eligible solution.
They encode the boosted tree F under consideration and the domain
theory Σ that indicates how the conditions from B are logically con-
nected. The variables used inM are either 0/1 variables - represent-
ing, among others, the conditions Xj

i from B labelling the internal
nodes in the trees of F - or continuous variables - representing the
real values at the leaves and the regression values. Notably,M en-
codes F and Σ exactly, i.e.,M is not a surrogate model. As a conse-
quence, the results provided by our algorithms I and C are guaran-
teed to be faithful to F . This contrasts with approaches where proxys
are used instead of the ML model under consideration.

Each tree Ti of F = {T1, . . . , Tm} is represented by a set of terms
{ti1, . . . , tip(i)}, where each term gathers the literals representing the
conditions over B that are true in a root-to-leaf path of Ti. Each tij
(j ∈ [p(i)]) characterizes a unique path of Ti and wi

j is the real
number labelling the leaf of the jth path of Ti. With each tree Ti (i ∈
[m]) one associates a set of 0/1 variables Li = {Li

ti1
, . . . , Li

tipi
}.

Variable Li
tij

(j ∈ [p(i)]) is set to 1 when the conditions given by tij

are met. For each i ∈ [m] and each tij ∈ Ti, the following MILP
constraint is put intoM:∑

X∈tij

X +
∑
X∈tij

(1−X)− Li
tij
≤ |tij | − 1

When Ti is a decision tree, the terms in {ti1, . . . , tip(i)} are pair-
wise inconsistent. This implies that exactly one Li

tij
must be set to

1. This is ensured by adding to M for each tree Ti (i ∈ [m]) the
following MILP constraint:∑

tij∈Ti

Li
tij

= 1

One also needs to consider a set of continuous variables W =
{W1, . . . ,Wm} and constraints associating with each tree Ti (i ∈
[m]) the real number wi

j that corresponds to the value of Ti for the
selected root-to-leaf path. Each variable Wi (i ∈ [m]) can be easily
defined by the following MILP constraint:∑

j∈[pi]

wi
j × Li

tij
= Wi

The next step consists in defining another continuous variableFW
representing the value of the regression tree for any truth assignment
over B: ∑

Wi∈W

Wi = FW

We finally consider constraints representing the domain theory Σ
associated with the attributes Ai (and the values in their their run-
ning domains {v1i , . . . , v

d(i)
i }), that are used in F . A conjunction of

constraints is added toM for each attribute Ai used in F whenever
Ai is numerical or categorical. Thus, for every numerical attribute
Ai ∈ A such that the conditions Ai > v1i , ..., Ai > v

d(i)
i occur



in F where ∀j ∈ [d(i) − 1], we have vji > vj+1
i , the constraint

to be considered is
∧d(i)−1

j=1 Xj
i − Xj+1

i ≥ 0. For every categor-
ical attribute Ai ∈ A such that the (pairwise distinct) conditions
Ai = v1i , ..., Ai = v

d(i)
i occur in F , the constraint to be considered

is
∧d(i)

j=1

∧d(i)
k=j+1X

j
i + Xk

i ≤ 1 if the running domain RDi of Ai

is supposed to be open (i.e., we do not assume that RDi = Di), and
the constraint is

∑d(i)
j=1 x

j
i = 1 if the running domain RDi of Ai is

considered as closed (i.e., RDi is supposed to be equal to Di).

Generating regression intervals Given a boosted regression tree
F over A representing a regression function f and a term t over
B, let us define the smallest regression interval It containing all the
regression values f(x) that are attainable by the instances x covered
by t:

Definition 1. Let F be a boosted regression tree overA representing
a regression function f and t a term over B. The regression interval
It = [mt,Mt] induced by t is defined by mt = min({f(x) : x ∈
X, t covers x}) and Mt = max ({f(x) : x ∈X, t covers x}).

Example 1 [cont’ed] Considering our running example again, the
interval I> includes all the amounts of money the bank is ready to
grant a client who wants to buy a boat, independently of his/her char-
acteristics (i.e., when no characteristics of the client are required to
be kept : t = >). Knowing I> may prove enough for Bob to make an
informed decision: if I> ∩ [90k,+∞) = ∅, Bob knows that he will
never get enough money from the bank to reach his goal of buying
the boat. Given the regression function represented by the boosted
regression tree presented in Example 1, I> = [0, 130k]. The small-
est value m> = 0 is associated with any applicant having income
A1 ≤ $30k, an age A2 ≤ 30, and a level of education A3 less than
a bachelor. The largest value M> = 130k is associated with any ap-
plicant having income A1 > $80k, an age A2 between 31 and 50,
and holding a Ph.D.

Depending on the characteristics Bob cannot change (e.g., dimin-
ishing his age) and those he would not like to change (e.g., waiting
for too long, or changing his level of education), Bob can take ad-
vantage of successive invocations of I (with distinct t reflecting a
graduation in Bob’s preferences) to figure out what is possible and
make up his mind about a target interval Ix that would be convenient
for him. For instance, consider the term t = X3

2 ∧ X2
3 specifying

that Bob is not ready to wait (so, to get older), and that he is not
ready to change his level of education. We have It = [30k, 90k].
If in addition, Bob indicates that he does not plan to lower his in-
come, then the term to be considered is t′ = X2

1 ∧ X3
2 ∧ X2

3 and
It′ = [80k, 90k]. Finally, if Bob only indicates that he is not ready
to change his level of education, then the term to be considered is
t′′ = X2

3 and It′′ = [30k, 120k].

The algorithm I to be used for generating the regression interval
induced by a given term t is any MILP solver used twice on the
program obtained by adding to M the following hard constraints
encoding the term t used to make precise the characteristics of txF

that are required not to change:

∀X ∈ t,X = 1

∀X ∈ t,X = 0

mt is obtained by minimizing the objective function that reduces
to FW (or equivalently, maximizing the objective function −FW ),
while Mt is obtained by maximizing the objective function FW .

Notably, we can ensure that taking advantage of a MILP solver
to compute It given F and t is not using a sledgehammer to crack
a nut. To make it more formal, it is easy to show that there is no
polynomial-time algorithm for computing It given F and t unless P
= NP:

Proposition 1. Computing It given F and t is NP-hard.

Proof. We show that computing I> = [m>,M>] is already NP-
hard. First, it is easy to show that every CNF formula α =

∧m
i=1 δi

over variablesX1, . . . , Xn can be turned in linear time into a boosted
regression tree F = {T1, . . . , Tm} over X1, . . . , Xn. Indeed, each
clause δi (i ∈ [m]) (supposed wlog to be non-tautologous) can be
represented by an equivalent comb-shaped (decision) tree Ti, i.e., the
leaves of Ti are labelled by 1, except for the leaf ending the unique
path of Ti corresponding to ¬δi, which is labelled by 0. More for-
mally, Ti can be defined by induction on the length of δi. The base
case is when δi is the empty clause. In this case, Ti reduces to a
single leaf node labelled by 0. For the inductive case, suppose that
δi = ` ∨ δ′i where X is the variable of literal `. Then the root of Ti

is a decision node labelled by X , and there are two cases: if ` = X ,
the left child of Ti is a decision tree corresponding to T ′i and the
right child of Ti is a leaf node labelled by 1; if ` = ¬X , the left
child of Ti is a leaf node labelled by 1 and the right child of Ti is
a decision tree corresponding to T ′i . By construction, for every truth
assignment x over X1, . . . , Xn, F (x) is the number of clauses of
α that are satisfied by x. Hence, α is satisfiable if and only if there
exists an instance x over X1, . . . , Xn such that F (x) = m, which
is the case precisely when M> = m.

Generating contrastive explanations When the user represented
by x has made up his/her mind about the target regression interval
Ix = [min,Max ] he/she may expect (depending on what he/she is
ready to give up), he/she may look for contrastive explanations for x
given f and Ix, and specifically to minimal contrastive explanations
for x given f and Ix, i.e., those contrastive explanations requiring a
minimal change.

The concept of minimal change is user-dependent, and when deal-
ing with numerical attributes Ai, it can easily be the case that the
thresholds that matter for the user under consideration are not those
appearing about Ai in the boosted tree F representing f . A set
Ui ⊆ Di of u(i) values uu(i)

i , . . . , u1
i for Ai that may not belong

to RDi must thus be taken into account. Among them u
u(i)
i is the

smallest value that can be envisioned by the user for Ai (it can be
equal to 0, to−∞, or to any value lower than every element ofRDi).

Each value uj
i must be added to RDi when it does not belong to

it, and for each of them a new Boolean variable Xs(j)
i representing

(Ai > uj
i ) must be added to B and connected to the other Boolean

variables about Ai in the domain theory. s(j) is the index shift to be
applied to j in order to reflect that fact that the values in RDi ∪ Ui

are still ordered in a decreasing way.

Example 1 [cont’ed] Suppose that Bob is ready to wait for up to five
years, but no more, before being granted the loan. Thus, from the
boat acquisition perspective, Bob views his current age 29 and 34
as indifferent, but since he does not want to wait more than 5 years,
he would consider a change from 29 to 35 (or more) as strictly less
preferred than a change from 29 to any value between 29 and 34.
Since Bob is currently 29 years old, the value 29 + 5 = 34 must
be taken into account. The set U2 = {34, 0} is considered, u2

2 = 0
being the least possible value for an age (one could consider instead
the age of majority if required to take out a loan). These two values



are added to the running domain RD2 of A2, that is extended from
{50, 30} to {50, 34, 30, 0}. Two Boolean variables X2

2 representing
(A2 > 34) and X4

2 representing (A2 > 0) are considered. Once this
extension has been done, B consists of X1

2 representing (A2 > 50),
X2

2 representing (A2 > 34), X3
2 representing (A2 > 30), and X4

2

representing (A2 > 0). The corresponding domain theory Σ must
be updated accordingly, so as to reflect that (X1

2 ⇒ X2
2 ) ∧ (X2

2 ⇒
X3

2 ) ∧ (X3
2 ⇒ X4

2 ) holds.

Of course, XF must also be modified in order to take into account
the new Boolean variables that have been introduced into B.

When f is represented by a boosted tree F , the following defini-
tion can be considered:

Definition 2. Let F be a boosted tree over a set A of attributes. Let
Σ be the domain theory that connects all the Boolean conditions from
B, i.e., those used in F and the Boolean conditions (Ai > uj

i ) corre-
sponding to the additional values vji ∈ Ui that have been introduced
by the user for the numerical attribute Ai. Let x be an instance from
X . Let Ix be an interval of R.

• A contrastive explanation for x is an instance xF
c from XF such

that F (xF
c ) ∈ Ix.

• Given an strict ordering <x over XF , a minimal contrastive ex-
planation for xF is a contrastive explanation for x that is minimal
w.r.t. <x (i.e., it is as close as possible to x w.r.t. <x).

The algorithm C to be used for generating a minimal contrastive
explanation for x given F and Ix is any MILP solver used on the
program obtained by adding first toM the following hard constraints
indicating the expected range of regression values:

min ≤ FW

FW ≤ Max

In order to be used to compute minimal contrastive explana-
tions, M must be completed to account for the user preferences
that characterize the underlying notion of minimality. In our work,
<x is represented by a dissimilarity mapping dis : XF ×XF →
R+∪{+∞} so that xF

c <x x′F holds if and only if dis(xF ,xF
c ) <

dis(xF ,x′F ). We suppose that the user preferences can be expressed
in an additive way by the weighted sum of "local" dissimilarity map-
pings bearing on parts of xF which are about attributes or, more
generally, about combinations of attributes. The value returned by
any "local" dissimilarity mapping is an element of R+ ∪ {+∞} in-
dicating the cost of the effort to be supported by the user to change
the value of the part of xF it is about, depending on the value it
reaches.

Before considering combinations of attributes, let us start with the
base case consisting of attributes alone. For each attribute Ai, the
user may express his/her own preferences over any change of the cur-
rent value of Ai in x. Some preferences can be compensated (in that
case, the dissimilarity score is a real number), others cannot be com-
pensated (then the dissimilarity score is +∞). Indeed, because some
value changes are not feasible (e.g., getting younger), it is important
to have a way to guarantee that some value updates are impossible
and the dissimilarity score +∞ is used to this end.

When Ai is a categorical attribute with an open running domain
RDi, one considers an additional variable Xd(i)+1

i encoding the
Boolean condition (Ai = v

d(i)+1
i ), where vd(i)+1

i = none stands
for any value of Ai that does not belong to RDi. One replaces the
constraint

∧d(i)
j=1

∧d(i)
k=j+1X

j
i + Xk

i ≤ 1 of M by the constraint

• •
Y

u(i)
i • •

Y 2
i Y 1

i

u
u(i)
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u(i)−1
i

u2
i u1

i

Figure 2: Splitting the domain of a numerical attribute Ai using in-
tervals defined from Ui

∑d(i)+1
j=1 Xj

i = 1. In some sense, this is a way to close the running

domain RDi. We define RD∗i as RDi ∪ {vd(i)+1
i } if RDi is open,

and as RDi otherwise. The user is then asked to state the costs w
v
j
i

(an element of R+∪{+∞}) of the transitions from the current value
x[Ai] of x on attribute Ai to the values vji in RD∗i . We assume that
w

v
j
i

= 0 when x[Ai] = vji (i.e., there is no change). Whenever

w
v
j
i

= +∞, the constraint Xj
i = 0 is added toM.

Example 1 [cont’ed] Let us focus on the categorical attribute A3

used to describe the level of education of the applicants in the
loan granting scenario. The running domain of this attribute is
{bachelor ,master ,Ph.D .}. It must be considered open since it can
be the case that the level of education of an applicant does not corre-
spond to any of those three degrees. Considering again the instance
x = (A1 = 70, A2 = 29, A3 = master) associated with Bob,
it would make sense to have a transition cost from A3 = master
to A3 = none or to A3 = bachelor set to +∞ (since one
cannot downgrade one’s level of education), a transition cost from
A3 = master to A3 = master set to 0 (since no change occurs),
and finally a transition cost w3

3 from A3 = master to A3 = Ph.D .
set to a positive number, let us say w3

3 = 7 (this value reflects the
effort Bob has to furnish to ensure such a transition). By the way,
one can observe that such a transition cost mapping is not required to
be symmetric in its arguments (e.g., for another applicant than Bob,
a transition cost from A3 = bachelor to A3 = master that is not
+∞ would be acceptable).

When Ai is a numerical attribute Ai, x[Ai] belongs to a specific
interval and the user-dependent cost of shifting the value of x on Ai

from this interval to another interval must be taken into account. This
cost has to be specified for each of the u(i) disjoint intervals induced
by the u(i) values in Ui reported by the user about Ai. Those values
can be ordered so that u1

i > . . . > u
u(i)
i , where uu(i)

i is the smallest
value envisioned by the user for Ai. For every j from 2 to u(i), we
introduce a 0/1 variable Y j

i defined by the constraint (X
s(j+1)
i ≥

Y j
i )∧(X

s(j)
i +Y j

i ≤ 1)∧(X
s(j+1)
i ≤ Xs(j)

i +Y j
i ) which is added

toM (see Figure 2). Thanks to this constraint, Y j
i takes the value 1

precisely when the current value of Ai moves to [uj+1
i , uj

i ). For the
sake of uniformity, we also introduce a 0/1 variable Y 1

i defined by
the constraint Y 1

i = X
s(1)
i which is added toM as well. The user is

then asked to indicate the cost w
u
j
i

(an element of R+ ∪ {+∞}) of
the transition from the current interval containing the value x[Ai] of
x on attributeAi to the other intervals generated using the thresholds
from Ui (each of them being characterized by its lower bound uj

i in
Ui). We assume that w

u
j
i

= 0 when j > 1 and x[Ai] ∈ [uj
i , u

j−1
i ),

or when j = 1 and x[Ai] ∈ [u1
i ,+∞) (i.e., when there is no interval

shift). Whenever w
u
j
i

= +∞, the constraint Y j
i = 0 is added toM.

This is a way to encode an actionability constraint. 2

2 Similarly, we could add to the hard constraints of M monotonicity con-
straints, that can be used, for instance, to represent the fact that Bob is not
ready to reduce his income; to make it, a new 0/1 variable representing



Example 1 [cont’ed] Taking u2
2 = 0, we get U2 = {34, 0},

leading to split the domain D2 of A2 (the age of the applicant)
into 2 disjoint intervals: [0, 34), [34,+∞) (here, the least value u2

2

is considered to be 0 but it could also be set to the age of ma-
jority if required to take out a loan). Two variables Y 2

2 and Y 1
2

are introduced, representing respectively the intervals [0, 34) and
[34,+∞), thus equivalent (respectively) to X4

2 ∧ X2
2 and X2

2 . Bob
is 29 years old, thus A2 = 29 satisfies X1

2 ∧ X2
2 ∧ X3

2 ∧ X4
2 , i.e.,

(A2 > 50) ∧ (A2 > 34) ∧ (A2 > 30) ∧ (A2 > 0): 29 belongs to
[0, 30). Thus, A2 = 29 satisfies also Y 2

2 ∧ Y 1
2 . If Bob waits for

3 years, so that his age becomes equal to A2 = 32, the condition
X1

2 ∧ X2
2 ∧ X3

2 ∧ X4
2 becomes true, but A2 = 32 still satisfies

Y 2
2 ∧Y 1

2 . There is no interval shift, so no cost to be considered. Con-
trariwise, if Bob waits for 6 years, so that his age becomes equal to
A2 = 35, the conditionX1

2 ∧X2
2 ∧X3

2 ∧X4
2 becomes true, Y 2

2 ∧Y 1
2

no longer is satisfied since A2 = 35 satisfies Y 2
2 ∧ Y 1

2 . A transition
cost wu1

i
associated with the interval shift (Y 1

2 becoming true) can
be taken into account. For instance, wu1

i
= 10.

Consider now the more general case when the user has preferences
about expected shifts concerning combinations of attributes that can
be represented as Boolean functions Ci (i ∈ [p]) over variables from
B. Then with each Ci (i ∈ [p]) one can associate a 0/1 variable Zi

that takes the value 1 precisely for the assignments over B that makes
Ci true. Such en equivalence between Zi and Ci can be represented
as a conjonction of hard constraints (linear inequations or equations
over 0/1 variables) that can be generated in linear time in the size
of Ci using a standard encoding trick (that boils down to Tseitin
transformation [24]). Those hard constraints can then be added to
M. With every Ci (thus, with every Zi, i ∈ [p]) one can associate a
weight wZi from R+ ∪ {+∞} representing the user-dependent cost
of modifying xF in order to make Ci true. Whenever wZi = +∞,
the constraint Zi = 0 is added toM.

The last thing to be specified in the constraint-based model is its
objective function. The goal that is pursued is to minimize the dis-
similarity to the current instance xF , thus the objective function to
be minimized is∑

Ai∈AC∪AB

wAi · (
∑

v
j
i∈RD∗i |wv

j
i

6=+∞

w
v
j
i
·Xj

i )+

∑
Ai∈AN

wAi ·(
∑

v
j
i∈RDi|w

v
j
i

6=+∞

w
v
j
i
·Y j

i )+
∑

Zi∈[p]|wZi
6=+∞

wZi ·Zi.

Notably, since no restrictions about the Boolean variables occur-
ring in Ci are made in the definition, one can take advantage of
such combinations to represent "local" preferences bearing only on
a unique attribute from A, as presented in the previous paragraphs.
Of course, much more complex preferences can be stated using com-
binations which could not be represented using a weighted sum of
"local" dissimilarity mappings that would be fully decomposed, i.e.,
each bearing on a single attribute.

Example 1 [cont’ed] It can be the case that, in order to get the loan
granted, Bob is ready to wait for more than five years (for a cost of
10), and to pass a Ph.D. (for a cost of 7), but if the two conditions
are actually needed, an extra cost of 20 has to be added. To ensure
it, a 0/1 variable Z with cost wZ = 20 such that Z is equivalent to
Y 1
2 ∧X3

3 can be introduced.

A1 > 70 must be added to M and set to 1; the domain theory must be
updated accordingly to account for the threshold 70.

From an optimal solution of M one can extract in linear time a
minimal contrastive instance from XF . This instance indicates how
to minimally change the current instance in order to get a regression
value belonging to the preset interval.

Example 1 [cont’ed] Let us wrap up Bob’s case. Suppose that the
three attributes A1, A2, A3 as considered equally important by Bob
(represented by the instance x = (A1 = 70, A2 = 29, A3 =
master)) so that wA1 = wA2 = wA3 . Suppose that the values
for which a shift matters for Bob regarding attributes A1 and A2 are
those already in RD1 and RD2 respectively, and also shifting the
value of any attribute has the same (strictly positive, but not infinite)
cost. For making things simpler, suppose finally that no combination
of attributes has been specified by Bob. Then x has three minimal
contrastive explanations given F and Ix = [90k,+∞) that can be
computed using C:

• (1, 1, 1, 0, 0, 0, 1, 0), with regression value 100 + 20− 30 = 90:
Bob changes only his income to more than $80k,

• (0, 1, 1, 0, 1, 0, 1, 0), with regression value 90 + 20 + 0 = 110:
Bob changes only his age (he waits for one year),

• (0, 1, 1, 0, 0, 0, 0, 1), with regression value 90 + 30 − 30 = 90:
Bob changes only his level of education to get a Ph.D.

From the computational side, as we did it for I, we can ensure
that considering a MILP solver for driving C in order to compute a
minimal contrastive explanation is not a bad idea. Indeed, since XF

is finite, whatever the user preferences that are considered, a mini-
mal contrastive explanation for an instance x given a boosted tree F
and a target interval Ix exists if and only if a contrastive explanation
for x given F and Ix exists. Furthermore, deciding whether a con-
trastive explanation for x given F and Ix exists is computationally
demanding:

Proposition 2. Deciding whether a contrastive explanation for x
given F and Ix exists is an NP-hard problem.

Proof. Consider any CNF formula α =
∧m

i=1 δi over variables
X1, . . . , Xn and, as in the proof of Proposition 1, turn α in lin-
ear time into a boosted regression tree F = {T1, . . . , Tm} over
X1, . . . , Xn. Set x to any truth assignment over X1, . . . , Xn and
Ix to [m,m]. α is satisfiable if and only if there exists an instance
xc over X1, . . . , Xn such that F (xc) = m, which is equivalent to
state that a contrastive explanation for x given F and Ix exists.

4 Empirical evaluation

The two algorithms I and C have been evaluated on several datasets.
For space reasons, we present only results about C.

Experimental setup The empirical protocol we considered was as
follows. We focused on 8 datasets for regression, which are bench-
marks found on standard repositories (kaggle, UCI, openML). These
datasets are described in Table 1.

For each dataset, the algorithm XGBoost [9] was used to learn
boosted regression trees. Numerical attributes were binarized on-the-
fly by the boosted tree learning algorithm. Categorical attributes were
one-hot encoded. All the hyper-parameters of XGBoost were set to
their default values (100 trees per forest, with a depth at most 6).
Thus, no specific tuning was performed. Indeed, our purpose was to
evaluate the performance of C whatever the quality of the boosted
regression trees we started with.



We performed a 10-fold cross validation: for each dataset, 10
boosted regression trees F were learned from a training set contain-
ing 80% of the dataset, and the accuracy of each boosted tree F was
measured as its mean R2 score [16] over the remaining 20% of the
dataset (the test set). The mean number #B of distinct Boolean con-
ditions used in F and the mean R2 score per dataset are reported
in Table 1 as well. The mean R2 score obtained is quite good for
most datasets, except for winequality-red and winequality-white, but
we considered the corresponding boosted trees for those two datasets
nevertheless (our goal is to be able to derive explanations for boosted
trees as they have been learned, and not as one would like them to
be). Finally, for each F , 10 instances were picked uniformly at ran-
dom in the test set, leading to 100 instances per dataset.

In order to evaluate C, we needed to define target regression inter-
vals. To make experiments that are representative of the intended use
of the algorithm, intervals that are more or less distant to the regres-
sion value F (x) of the instance x to be explained and that are more
or less large had to be considered. To generate such target intervals,
for each forest F , we computed first the minimal min and maximal
Max regression values obtained by applying F to each of the 10 in-
stances x associated with F . The interval given by min and Max
was then partitioned into 100 intervals, each of them of size

size =
Max −min

100
.

Then, for each x, the targeted regression value for x was set to

F (x) + (shift × size),

where shift varied in {−50,−20,−10,−5, 5, 10, 20, 50}, reflect-
ing the fact that the regression value of x can be expected to increase
or to decrease to a more or less significant extent. Each target in-
terval was centered on this value and its two bounds were obtained
by substracting from it (respectively, adding to it) a value equal to
radius

2
× size , where radius varied in {1, 2, 3}. This led to target

intervals having length equal to size , 2× size , and 3× size . Values
of the two bounds were rounded to 2 decimals, and when rounding
produced equal bounds, the resulting interval was not taken into ac-
count.

We also needed to represent user preferences. To this aim, we de-
fined a "local" dissimilarity mapping per attribute Ai ∈ A (no com-
binations of attributes have been considered for the sake of simplic-
ity) and we supposed all the attributes to be equally important (thus,
the weight wAi of each attribute Ai has been set to the same value

Dataset #A #N #C #B #I #B R2

abalone 9 8 1 0 4177 38 0.99
airfoil-self-noise 5 5 0 0 1503 372 0.92

creditcard 29 0 0 29 284807 5546 0.96
bike-sharing-day 15 13 0 2 731 1648 0.99

bike-sharing-hour 13 11 0 2 17379 1396 0.99
steel-industry-data 9 6 3 0 731 3087 0.99

winequality-red 11 11 0 0 1599 1557 0.42
winequality-white 11 11 0 0 4898 1786 0.46

Table 1: Description of the datasets used, and performance of the
boosted trees that have been learned. #A is the number of attributes
per instance in the considered dataset. #N, #C, and #B are respec-
tively the number of numerical, categorical and Boolean attributes.
#I is the number of instances in the dataset. #B is the mean number
of distinct Boolean conditions and R2 is the mean R2 score over the
10 boosted trees learned for each dataset.

1). For each attribute, the current value of Ai in x was protected
with probability 1

5
(leading to a hard constraint in the model in that

case, since this value is required not to change when the attribute
is protected). When Ai was not protected, the cost of changing its
current value was set to 1 for categorical attributes and for Boolean
attributes. For numerical attributes Ai, the cost of a change was set
to 0 (respectively, 1, 5) when the target value of Ai laid within an
interval of no more than 10% (respectively, between 10% and 25%,
between 25% and 50%) from its current value; if the target value of
Ai exceeded its current value by more than 50% or was lower than
its current value by more than 50%, the change was not allowed (a
hard constraint was added to ensure it).

All experiments were conducted on a cluster equipped with quad-
core bi-processors Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz
and 128 GiB of memory, running CentOS 8 with Linux version
4.18.0-301.1.el8.x86_64 kernel. Hyperthreading was disabled, and
no cache sharing between cores was permitted. A timeout of 100s
per instance was considered. The MILP models were solved using
Gurobi Optimizer version 11.0.1 build v11.0.1rc0.

Experimental results Table 2 presents the empirical results. The
leftmost column gives the name of the dataset. The next columns cor-
respond to the different values of shift considered in the experiments.
For each dataset, there are three lines in the table, corresponding to
the different values of radius (1 for the first line, 2 for the second
line, and 3 for the third line). The content of each cell indicates av-
erage computation times (in seconds) over 100 instances, and the
corresponding standard deviations.

The computation times that have been found are rather small,
showing C practical enough. Especially, only few timeouts occurred
(to be more precise, 3 for bike-sharing-hour, 8 for steel-industry-data,
and 36 for winequality-red), showing that for most of the problems
considered in our experiments (8 × 100 × 8 × 3 = 19200 prob-
lems), a minimal contrastive explanation has been computed in less
than 100s.

The experiments that have been conducted also revealed that the
shift retained may have a strong impact on the computation times in
some cases (consider for instance winequality-red with shift = −50
and shift = 50), but this does not happen for every dataset. The
length of the target interval, as reflected by radius , appeared as hav-
ing a limited impact in the experiments made (often, considering
larger intervals made the problem easier, but this was not systematic).
Of course, the number #I of instances in the dataset has no impact
on the computation times since in our approach, contrastive explana-
tions are not searched into the dataset, but in the solution space of the
constraints representing the ML model that is used (and this solution
space is not represented explicitly).

Finally, from our experiments, it is hard to draw any conclusion
about possible correlations between the prediction performance and
the time needed to derive contrastive explanations. For instance, the
R2 score for winequality-white is low compared to the one obtained
for steel-industry-data but no timeout occurred for winequality-
white, while 8 timeouts have been reached for steel-industry-data.

5 Other related work
While there has been an abundant literature on XAI for the past five
years, there is only few work that tackles the very same goal as the
one pursued in this paper, i.e., deriving provably correct contrastive
explanations for tree-based models used for regression. Indeed, in
many approaches to XAI for tree ensembles (e.g., [23]), the expla-
nations that are generated are based on feature importance, and are



Dataset -50 -20 -10 -5 5 10 20 50

abalone 0.03 (0.01) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02)
abalone 0.03 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.02) 0.04 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01)
abalone 0.03 (0.01) 0.03 (0.01) 0.04 (0.02) 0.04 (0.01) 0.04 (0.01) 0.04 (0.02) 0.03 (0.01) 0.04 (0.01)

airfoil-self-noise 6.36 (3.22) 6.7 (3.48) 6.63 (3.43) 7.08 (3.92) 6.51 (3.88) 6.58 (3.54) 6.84 (3.96) 6.54 (3.67)
airfoil-self-noise 5.8 (2.46) 5.9 (2.95) 6.42 (3.3) 6.08 (3.36) 6.85 (3.43) 6.34 (3.42) 5.99 (2.98) 5.87 (2.9)
airfoil-self-noise 5.83 (3.22) 5.76 (2.8) 6.17 (3.07) 5.81 (3.07) 5.88 (2.97) 6.05 (3.16) 6.32 (3.34) 5.71 (2.22)

creditcard 16.18 (7.26) 14.72 (7.05) 14.82 (7.17) 15.48 (6.23) 14.15 (5.77) 13.7 (5.76) 13.22 (6.01) 12.96 (4.68)
creditcard 15.99 (9.52) 13.61 (6.53) 14.92 (9.22) 14.65 (6.61) 13.79 (5.65) 13.07 (5.59) 13.01 (6.09) 11.65 (4.24)
creditcard 14.9 (7.48) 13.52 (7.02) 12.5 (5.2) 13.5 (8.17) 12.82 (5.57) 12.89 (5.52) 13.41 (7.01) 12.19 (4.65)

bike-sharing-day 7.09 (5.27) 6.49 (3.73) 6.77 (3.43) 6.93 (3.33) 7.11 (3.67) 7.53 (3.72) 7.17 (3.14) 8.93 (4.52)
bike-sharing-day 7.41 (6.47) 6.26 (3.71) 6.84 (3.45) 6.47 (3.46) 6.57 (3.4) 7.32 (3.57) 7.11 (3.53) 9.44 (5.16)
bike-sharing-day 6.78 (5.31) 6.19 (3.65) 6.59 (3.2) 6.52 (3.53) 6.92 (3.81) 6.61 (3.35) 6.97 (3.32) 7.89 (4.33)

bike-sharing-hour 9.68 (11.96) 11.83 (14.7) 8.35 (9.33) 7.08 (5.03) 7.5 (6.54) 7.31 (5.42) 7.31 (5.73) 7.22 (5.07)
bike-sharing-hour 10.07 (13.3) 10.05 (11.81) 6.7 (5.01) 5.86 (4.13) 7.48 (6.45) 6.38 (4.86) 6.72 (4.64) 6.48 (4.16)
bike-sharing-hour 9.52 (12.39) 10.34 (12.24) 7.02 (6.37) 5.82 (5.09) 5.99 (4.06) 6.56 (4.81) 6.44 (4.62) 6.86 (4.54)

steel-industry-data 18.17 (12.26) 18.61 (12.48) 18.53 (10.25) 18.87 (13.07) 17.53 (9.66) 18.22 (10.01) 19.0 (12.12) 18.93 (10.04)
steel-industry-data 17.93 (11.05) 18.43 (10.72) 18.52 (11.88) 19.47 (13.77) 18.38 (10.35) 19.05 (10.89) 19.74 (13.52) 18.6 (10.21)
steel-industry-data 19.52 (13.12) 17.86 (9.97) 18.97 (13.69) 19.91 (15.81) 18.61 (10.11) 17.79 (9.52) 19.8 (14.17) 18.7 (10.2)

winequality-red 7.0 (3.75) 8.32 (5.26) 10.25 (8.73) 9.17 (7.3) 10.78 (7.81) 10.4 (7.9) 12.42 (14.62) 15.97 (17.75)
winequality-red 6.59 (3.45) 7.88 (5.24) 9.47 (7.68) 9.55 (8.48) 10.3 (7.94) 9.11 (5.85) 10.84 (10.09) 14.17 (13.9)
winequality-red 6.34 (3.31) 7.69 (5.63) 8.13 (5.25) 9.01 (9.86) 9.25 (6.89) 8.88 (7.4) 10.29 (9.18) 13.46 (13.18)

winequality-white 12.64 (6.02) 11.72 (6.09) 10.77 (5.36) 10.6 (5.05) 13.42 (8.92) 13.27 (6.33) 13.17 (6.36) 12.26 (5.12)
winequality-white 12.17 (5.54) 12.02 (5.59) 11.15 (5.33) 10.89 (5.51) 12.68 (8.88) 13.28 (6.54) 12.12 (5.29) 12.25 (5.3)
winequality-white 11.29 (5.28) 11.47 (5.3) 10.94 (5.65) 11.28 (5.96) 12.53 (8.48) 12.68 (6.57) 12.42 (6.17) 12.42 (7.85)

Table 2: Average computation times (in seconds) needed by C for deriving minimal contrastive explanations. Times are given in italics when
at least one timeout occurred. In this case, the statistics are computed over the instances for which C terminated in due time.

not ensured to be faithful. Most of the time, classification issues are
targeted, not regression ones, and/or the correct explanations that are
looked for are abductive ones, not contrastive ones [10, 21, 14, 4].
Finally, when contrastive explanations are generated, they are typi-
cally not based on the Boolean conditions used in the tree ensemble,
but come from the initial set of instances (the one containing the in-
stances to be explained), which limits their generality.

A notable exception is [11], that presents an approach to the
derivation of contrastive explanations for tree-based models, where
explanations are built up from the Boolean conditions occurring in
the model. As in our work, "local" dissimilarity mappings can be
defined and exploited to indicate the extent to which shifting the
values of the attributes in the input instance is acceptable by the
user. However, such mappings are limited to attributes (combina-
tions of attributes, considered in our work, are not supported in [11]).
Furthermore, user-specified thresholds for numerical attributes are
not handled (the thresholds considered for such attributes are pre-
cisely those occurring in the tree ensemble, and they can easily
be distinct from those that are actually relevant for the user). Fi-
nally, though [11] mentions an R package for random forests, the
code available on git (https://github.com/numb3r33/oae/blob/master/
README.md) supports only scikit-learn’s implementation of ran-
dom forests, while we took advantage of XGBoost algorithm for
boosted trees in our implementation. For all these reasons, we re-
frained from making an empirical comparison with [11].

6 Conclusion

We have presented a constraint-based approach to the generation of
contrastive explanations for instances x given boosted trees used to
represent regression functions. Two constraint encodings I and C

have been pointed out.
I allows to compute the smallest interval containing all the regres-

sion values that are attainable given a set of characteristics of x that
are protected (i.e., not amenable to change).

Using C one can derive minimal contrastive explanations for x
given a target interval, i.e., instances with regression values within
the specified interval and that are as close as possible to x. Action-
ability constraints can be easily dealt with. Closeness is captured via
a linear combination of user-dependent mappings reflecting prefer-
ences about value change for the attributes (or combinations of at-
tributes) considered in the representation of x.

Experiments have shown the approach as practical enough, in spite
of the computational intractability of the problems that are tackled
(each of them has been shown NP-hard). Thus, in the empirical eval-
uation of C, only few timeouts have been reached (around 2 per 1000
instances tested), despite the number of Boolean conditions #B used
in the boosted trees considered in the experiments, which was often
large (#B was greater than 1000 for 6 datasets out of 8).

This work calls for a number of perspectives. One of them con-
cerns the elicitation of the weights associated with changes to at-
tributes values, which is a challenging theory-oriented issue, espe-
cially when dealing with combinations of attributes.

From the practical side, the scalability of C remains to be inves-
tigated more extensively. Several dimensions that may impact the
performance of C will have to be taken into account in the forth-
coming experiments, especially the number of attributes used in the
dataset, the depth of the trees that have been learned, the presence of
combinations of attributes.

Another perspective for further research is to consider other repre-
sentations of regression functions and determine the extent to which
the proposed approach can be extended to such representations.
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