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Abstract. We present and evaluate empirically an XAI protocol
for ruling interactions between a tree-based ML model (the AI sys-
tem) and its user U , in the context of a prediction task. The pieces
of knowledge held by U concerning the prediction task are supposed
to be representable by a set of classification rules that is reliable and
consistent, but (typically) incomplete. The proposed protocol aims to
help U decide what to do with each prediction made by AI (accept
it, reject it). It also aims to improve the quality of further predic-
tions made by AI thanks to the expertise of U , and, reciprocally, to
complete the pieces of knowledge held by U by leveraging the pre-
dictions made by AI . Experiments show that the approach can prove
valuable in practice.

1 Introduction
The field of “eXplainable AI (XAI)” was born a couple of years ago
[15] as a response to the opacity of Machine Learning (ML) models.
The objective of XAI is to make ML models trustworthy enough.
This goes through the generation of explanations for the predictions
made, but is not limited to it; especially, the ability to correct wrong
predictions is also part of the picture. Since its very beginning, XAI
has given rise to a large amount of approaches (see e.g., [14, 22, 7, 1,
33, 32, 29, 13, 26, 23] for recent overviews).

In this paper, an XAI protocol for governing interactions between
a user U and an AI system is described. The AI system has the form
of an ML model used to make predictions about scenarios that U is
not able to handle alone, since he/she is supposed to have only limited
knowledge about the domain of the application under consideration.
Such scenarios are represented by instances x from a set X , and AI
thus corresponds to a mapping associating any x with a class, taken
from a finite set C. The protocol is implemented by an interface that
encapsulates AI and is used by U for interacting with AI .

In our setting, a couple of assumptions are made about U and AI .
On the one hand, U is supposed to hold reliable pieces of knowledge
about the application domain that is targeted by AI . That mentioned,
U is not requested to be an ML specialist. He/she is just supposed
to hold pieces of knowledge that can be leveraged to associate pre-
dictions with instances (maybe only few of them when U is more
a layperson than an expert), but it is not expected that U is able to
properly associate a prediction with every possible instance (other-
wise, U would probably not need the help of AI). In the classifica-
tion case, we say that U(x) is defined whenever U is able to classify
x, and that U(x) is undefined otherwise. When U(x) is undefined
for at least one x, U can thus be viewed as an "incomplete classifier".
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Whatever the case, we assume that U is confident with the pieces of
knowledge he/she holds, so that if U knows how to classify a given
instance but AI has a different opinion about the right class of x,
U is not ready to change his/her mind and considers that AI gets
wrong on x. Furthermore, U is supposed to classify instances in a
consistent way. This means that the reasons used by U to classify
instances (which can be modeled abstractly as classification rules)
do not conflict: there cannot be two rules with distinct conclusions
(the classes that are reached) and compatible conditions. Indeed, if
this were the case, then U would need to classify in several classes at
the same time instances matching such compatible conditions, which
does not make sense (in classification problems, classes are supposed
to be mutually exclusive). On the other hand, in order to be imple-
mented, our protocol requires some XAI abilities: the generation of
post-hoc, local, and faithful explanations and the correction of er-
roneous predictions must be feasible. Interestingly, this is the case
when AI is a tree-based ML model (a decision tree, a random forest,
or a boosted tree). Especially, the explanation and correction abili-
ties that are expected are offered by the open source PyXAI library
(https://github.com/crillab/pyxai).

The goal of our protocol is to assist U , helping him/her to de-
cide what to do with each prediction made by AI (accept it, reject
it), but more than that, to try and improve the quality of the further
predictions made by AI , by leveraging the expertise of U , and, re-
ciprocally, to complete the pieces of knowledge held by U by taking
advantage of the predictions made by AI . The contribution of the pa-
per consists of the definition of an XAI protocol, and an evaluation
of this protocol on binary classification problems. Users U are simu-
lated by generating incomplete (yet consistent) sets of classification
rules from random forests. The chosen AI systems take the form of
decision trees. We make them interact via our XAI protocol, and we
measure how the accuracy of AI as well as the coverage of the set of
rules used by U to classify instances evolve along with interactions.
Of course, we do not claim that the interaction of an AI system with a
real user should necessarily comply with the proposed protocol. Our
objective is only to figure out whether synergetic effects (in terms of
accuracy of AI and coverage of U ) could result from an interaction
guided by the protocol. Interestingly, the empirical results obtained
show that clear benefits can be got.

The rest of the paper is organized as follows. Formal preliminaries
are presented in Section 2 (we assume the reader acquainted with
basic notions of propositional logic). Then our protocol is pointed out
in Section 3. Experimental results are provided in Section 4. Finally,
Section 5 concludes the paper. The code used, additional empirical
results, and the datasets considered in the experiments are furnished



as a supplementary material, available online [3].

2 Preliminaries
Classification and explanations We suppose that the instances
x under consideration are described using attribute / value pairs.
A = {A1, . . . , Ak} is the set of attributes used. Each attribute of A
is either Boolean, categorical, or numerical, and it takes its values in a
domain Di. An instance x over A is a tuple from D1× . . .×Dk. Ev-
ery x = (v1, . . . , vk) is also viewed logically as the conjunctively-
interpreted set tx of characteristics {(Ai = vi) : i ∈ [k]}.

The attributes of A are not necessarily independent, and a domain
theory Σ (represented by a propositional circuit or a propositional
formula) that makes precise how the attributes (and their values) are
logically connected may be available [12].

In the single-label classification case, one considers a single set C
of labels, denoting classes. Then, a classifier f over A is a mapping
from X to C. It is a binary classifier when C = {0, 1}. For a binary
classifier f , an instance x ∈ X is positive when f(x) = 1 and it is
negative when f(x) = 0.

When the classifier f is a tree-based ML model (a decision tree
[6, 25], a random forest [5] or a boosted tree [11]), f can also be
viewed as a Boolean function over the set of Boolean conditions used
in f . Stated otherwise, we can assume that f is a classifier over a set
of Boolean attributes, corresponding to the Boolean conditions used
in f . In that case, the Boolean attributes are usually non-independent.
Indeed, they can come from the same numerical or categorical at-
tributes used at start for learning the classifier (for example, we can
consider a Boolean attribute x1 = (age > 21) related to a numerical
attribute age but also a a Boolean attribute x2 = (age > 18) which
is connected to age and logically linked to x1 since x1 cannot be true
while x2 would be false. The corresponding characteristics are liter-
als (here, x1, x2 and the complementary literals x1, x2). The domain
theory indicating how the characteristics are connected could be the
formula Σ = x1 ∨ x2 in that case.

Given a classifier f over A and an instance x ∈ X , an abduc-
tive explanation t for x given f [17] is a conjunctively-interpreted
set t ⊆ tx of characteristics of x, such that every instance x′ ∈ X
covered by t (i.e., satisfying t ⊆ tx′ ) is such that f(x′) = f(x).
Every instance x has an abductive explanation given f , since t = tx
satisfies the conditions that are requested. Of course, such a trivial
explanation is useless in general, when they exist, abductive expla-
nations that do not coincide with tx are preferred. Often, subset-
minimal abductive explanations [19] (aka sufficient reasons [10]
or PI-explanations [30]) and minimum-sized abductive explanations
[4, 2] are targeted.

Classification rules We now present a couple of definitions per-
taining to classification rules. A classification rule r is a pair r =
t → c where t is a conjunction of characteristics over A and c is an
element of C. t is the condition of r, and c is the conclusion of r. A
classification rule r = t → c classifies an instance x over A as c if
and only if x satisfies t. In that case, we note r(x) = c.

Given a domain theory Σ and two classification rules r1 = t1 →
c1 and r2 = t2 → c2, we say that r1 specializes r2 (or, equivalently,
that r2 generalizes r1) if and only if c1 = c2 and t2 is a logical
consequence of t1 ∧ Σ. A rule r1 = t1 → c1 is in conflict with a set
R of classification rules given a domain theory Σ if and only if there
exists a rule r2 = t2 → c2 of R such that c1 ̸= c2 and t1 ∧ t2 ∧Σ is
consistent. A set R of classification rules is said to be:

• consistent if and only if for every pair r1, r2 of rules of R such

that r1 = t1 → c1 and r2 = t2 → c2, if c1 ̸= c2 then t1 ∧ t2 ∧Σ
is inconsistent.

• complete if and only if for every instance x over A, there exists at
least one rule r = t → c such that x satisfies t. Stated otherwise,
any instance x over A is classified by a rule of R.

• simplified if and only if for every pair r1, r2 of distinct rules of R,
r1 does not specialize r2 given Σ.

For an instance x, when all the rules of R that classify x have the
same conclusion, there is no ambiguity about the way R classifies x
provided that at least one rule r of R classifies x. In this case, we say
that R(x) is defined and we note R(x) = r(x). In the remaining
case, we say that R(x) is undefined, noted R(x) = ⊥. When R is
consistent, x is classified by R precisely when there exists a rule r of
R that classifies x. When R is consistent and complete, R classifies
every instance x over A. Stated otherwise, R is a classifier. When
R is consistent, complete, and simplified, every instance x over A is
classified by a unique rule r of R.

It is easy to show that the consistency of a set R of classifica-
tion rules can be decided in quadratic time in |R|+ |Σ| whenever Σ
is tractable for clausal entailment. Contrastingly, deciding the com-
pleteness of a set R of classification rules is a coNP-complete prob-
lem, even when Σ is an empty set of clauses. Every set of rules can
be simplified, i.e., turned into an equivalent set of rules, in quadratic
time in |R|+|Σ| whenever Σ is tractable for clausal entailment. Here,
two sets of rules R1 and R2 are said to be equivalent when the set
of instances x for which R1(x) is defined is the same as the set of
instances x for which R2(x) is defined and for each x in this set, we
have R1(x) = R2(x).

Let us illustrate the notions presented in this section, using a sim-
ple example. Let A = {a, b, c} be a set of Boolean attributes and
C = {1, 0}, i.e., we consider a binary classifier. For the sake of
simplicity, we suppose that Σ is valid (i.e., there is no domain the-
ory). The characteristics of a Boolean attribute xi of A are denoted
xi (when the attribute takes the value 1) and xi (when the attribute
takes the value 0). Let R be the following set of classification rules:

R = {(a ∧ b) → 1, b → 1, (b ∧ c) → 0, (a ∧ c) → 0}.

R is not consistent, not complete, and not simplified. Indeed, b → 1
is in conflict with (a ∧ c) → 0 since the former rule classifies x =
(1, 1, 1) as 1 while the latter rule classifies x as 0. Therefore, R is not
consistent. R is not complete because there is no rule in R classifying
the instance (0, 0, 0). Thus, R((0, 0, 0)) is undefined. Finally, R is
not simplified since the rule (a ∧ b) → 1 of R specializes the rule
b → 1 belonging to R as well.

3 An XAI protocol for tree-based models
Ideally, benefits should be gained from interactions between U and
AI , from both sides. The goal should not consist only in accept-
ing or rejecting the predictions made by AI about instances. Indeed,
from the point of view of AI , the interaction with U should lead to
a more accurate predictor: AI should be able to take advantage of
the expertise of U for making less classification mistakes. From the
perspective of U , the interaction with AI should lead U to hold more
complete knowledge about classification issues.

In the following, we suppose that U is represented by a set of
rules RU that is consistent and simplified, but not complete (oth-
erwise, there would be no need of AI!). The elements of RU can
be viewed as pieces of knowledge the user U is quite confident in.
The classifier AI (whatever it is) can always be associated with a



set RAI of classification rules that is consistent and complete. Es-
pecially, {t → AI(x) | t is an abductive explanation for x given
AI and x ∈ X} is such a set of classification rules. This set is
of size exponential in the number of attributes used to describe the
instances, but we do not need to compute it entirely (the only impor-
tant point to keep in mind is that any classifier corresponds to a set
of classification rules that is consistent and complete). Instead, some
classification rules of RAI are going to be derived on demand, i.e.,
whenever a prediction about an instance x is computed. The rules de-
rived concern x and are used to decide whether the prediction AI(x)
must be accepted or rejected. Finally, the classification rules of RU

are supposed to be more reliable than the classification rules of RAI .
On this basis, we now show how to design an XAI protocol ensur-

ing beneficial interactions between U and AI . Whenever an instance
x is considered, the approach consists in computing classification
rules that hold for AI and are about x. Those rules are derived from
explanations for the instances x for which predictions by AI are
requested. Faithfulness (aka correctness, soundness, or fidelity) en-
sures that the explanations that are generated accurately reflect the
decision process followed by the model. Then a policy is defined,
based on the conflicts of those rules with the classification rules of
U . Depending on the case, the policy indicates whether x should be
accepted or rejected, whether (and how) AI should be corrected, and
whether the classification rules of U should be completed.

Deciding what to do with the predictions and doing more A
first, albeit important observation is that classification rules can be
easily generated in linear time from faithful explanations. Thus, if t
is an abductive explanation for x given a classifier AI , then r = t →
AI(x) is a classification rule that can be deduced from AI: for every
instance x′ satisfying t, it is guaranteed that AI(x′) = AI(x).

Suppose that a rule r = t → c from RAI has been generated from
an abductive explanation for the instance x under consideration. This
rule r classifies x as c. Four distinct cases (1) to (4) are then worth
being considered (see Table 1).

Case (1). Suppose first that x is also classified by RU (so RU (x)
is defined), in such a way that RU (x) ̸= AI(x). In this case, there
exists at least one rule rU = t1 → c1 in RU such that t1 covers x
and c1 ̸= c. By definition, since t covers x, r is in conflict with rU ,
thus with RU . Accordingly, in case (1), the prediction AI(x) must
be rejected, and AI must be corrected by rU . Of course, it may be
the case that several rules rU of RU classifies x (in the same way,
i.e., as c1, otherwise RU (x) would not be defined). Then, AI must
be corrected by every such rU . Indeed, r is necessarily in conflict
with each of them.

For example, suppose that RU = {(a ∧ b) → 1, (b ∧ c) →
1, b → 0}. One can easily check that RU is consistent and sim-
plified, but not complete (e.g., (0, 1, 0) is not classified by RU ). Sup-
pose that AI is equivalent to the following set of classification rules:
{a → 1, b → 1, (a ∧ b) → 0}, which is consistent, complete, and
simplified. Consider the instance (1, 1, 1). It is classified by RU as a
positive instance, using the rule rU = (a∧b) → 1, but also using the
rule (b ∧ c) → 1. (1, 1, 1) is classified by AI as a negative instance
using the rule r = (a ∧ b) → 0. Hence, the prediction made by AI
must be rejected, and AI must be corrected by rU = (a ∧ b) → 1
and also by (b ∧ c) → 1. We can check that r = (a ∧ b) → 0 is in
conflict with rU = (a ∧ b) → 1, but also with (b ∧ c) → 1.

Case (2). Suppose now that the instance x is classified by RU (so
RU (x) is defined), in such a way that RU (x) = AI(x). In this case,
r does not conflict with the rules of RU that classify x since all those
rules necessarily have the same conclusion c. The prediction AI(x)

can be accepted since it complies with the prediction achieved by U
using more reliable pieces of knowledge about the prediction task.
However, suppose that r is in conflict with some rules rU of RU .
Then AI must be corrected by every such rU . This allows one to
anticipate additional discrepancies (i.e., case (1)) as to the predictions
achieved by RU and AI on other instances.

For example, suppose that RU = {(a∧ b) → 1, (b∧ c) → 1, b →
0}, as in the previous example. Assume this time that AI is equiv-
alent to the following set of classification rules: {c → 1, c → 0},
which is consistent, complete, and simplified. Consider again the in-
stance (1, 1, 1). It is classified by RU as a positive instance and by
AI as a positive instance. Thus, the prediction made can be accepted.
However, it turns out that the classification rule r = c → 1 used
by AI to classify (1, 1, 1) is in conflict with the classification rule
rU = b → 0 of RU . Thus, AI should be corrected by rU = b → 0.
Once this correction is made, the instance (1, 0, 1) is classified in the
same way (as a negative instance) by RU and AI , while the classifi-
cations of this instance (1, 0, 1) by RU and AI were different before
the correction. Indeed, before the correction, (1, 0, 1) was classified
as a negative instance by RU and as a positive instance by AI . Since
U is considered as more reliable than AI , (1, 0, 1) must be classi-
fied as a negative instance. Correcting AI by rU as soon as the in-
stance (1, 1, 1) is treated prevents AI from making a wrong predic-
tion that would be achieved if the instance (1, 0, 1) was considered
afterwards.

Case (3). Suppose now that the instance x is not classified by RU

(i.e., RU (x) is undefined). In this situation, as in case (2), it may
happen nevertheless that r is in conflict with some rules rU of RU .
Suppose that this is the case. Then AI must be corrected by every
such rU . Again, this correction is useful to prevent the occurrence
of discrepancies (i.e., case (1)) as to the predictions achieved by RU

and AI on instances that eventually will be considered later.
For example, suppose that RU = {(a∧ b) → 1, (b∧ c) → 1, b →

0}, which is consistent, simplified, but not complete. Suppose that
AI is equivalent to the following set of classification rules: {c →
1, c → 0}, which is consistent, complete, and simplified. Consider
now the instance (0, 1, 0). This instance is not classified by RU and
it is classified by AI as a negative instance. However, it turns out that
the classification rule r = c → 0 used by AI to classify (0, 1, 0) is in
conflict with the classification rule rU = (a ∧ b) → 1 of RU . Thus,
AI should be corrected by rU = (a ∧ b) → 1. If this correction is
made, the instance (1, 1, 0) will be classified in the same way (as a
positive instance) by RU and AI , while the classifications of (1, 1, 0)
by RU and AI would differ otherwise.

About the decision to be made concerning the prediction AI(x)
when r is in conflict with some rules rU of RU , several policies can
be adopted. On the one hand, from the point of view of the brave
policy, the prediction AI(x) can be accepted since no rule of RU

indicates that the prediction should be rejected. On the other hand,
from the point of view of the cautious policy, the prediction AI(x)
should be rejected since the rule r of AI used to make the decision
is not fully correct. Indeed, it classifies some instances in a different
way than RU (thus, r has to be specialized). Other policies could be
defined easily by taking account of the number and the specificity of
the rules of RU r is in conflict with.

Case (4). The remaining case covers the situations where RU (x) =
AI(x) or RU (x) = ⊥, and there is no conflict between r and RU . In
such a case, it makes sense to accept the prediction made by AI since
there is no argument against it. No correction step is needed, r can
simply be added to RU and the resulting set can then be simplified



(it can be the case that r specializes / generalizes some rules of RU ).
For example, suppose that RU = {(a ∧ b) → 1, (a ∧ b) → 0},

which is consistent, simplified, but not complete ((0, 1, 0) is not clas-
sified by RU ). Suppose that AI is equivalent to the following set of
classification rules: {a → 1, a → 0}, which is consistent, com-
plete, and simplified. Let us first consider the instance (1, 1, 1). This
instance is classified by RU as a positive instance and by AI as a
positive instance. The classification rule r = a → 1 used by AI to
classify (1, 1, 1) is not in conflict with any classification rule of RU .
The rule rU = (a∧ b) → 1 of RU can be replaced by the more gen-
eral rule r = a → 1 of RAI , thus leading to a new set of rules for U ,
given by {a → 1, (a∧b) → 0}. This set is consistent and simplified.
Consider now the instance (0, 1, 0). This instance is not classified by
RU and it is classified by AI as a negative instance. The classifica-
tion rule r = a → 0 used by AI to classify (0, 1, 0) is not in conflict
with any classification rule of RU . The rule rU = (a∧b) → 0 of RU

can be replaced by the more general rule r = a → 0 of RAI , thus
leading to the set of rules {(a ∧ b) → 1, a → 0}, that is consistent
and simplified.

We can easily observe on this example that the ability to derive
abductive explanations that are as general as possible (especially,
subset-minimal ones) has an impact on the resulting set of rules for
U . Indeed, suppose that AI is now given by the set of classification
rules {(a ∧ b) → 1, (a ∧ b) → 1, a → 0} which is consistent, com-
plete, and simplified, and that the instance to be classified is (1, 1, 1).
Obviously enough, this set of rules is equivalent to {a → 1, a → 0},
since each of two rules (a ∧ b) → 1 and (a ∧ b) → 1 could be
replaced by the more general rule a → 1, reflecting the fact that the
corresponding abductive explanation (a∧ b) for (1, 1, 1) given AI is
not subset-minimal. Adding to RU the classification rule (a∧b) → 1
used by AI to classify (1, 1, 1) would let RU unchanged.

Table 1 synthesizes the conditions to be satisfied for each of the
four cases above, and indicates for each case the interaction that takes
place between U and AI whenever an instance x is considered. Re-
mind that r = t → AI(x) is the classification rule deduced from AI
that is used to classify x. Case (1) captures the scenarios for which
a disagreement between U and AI about the right class of x exists.
Case (2) is the case when U and AI agree about the class of x, but a
conflict between r and RU exists nevertheless. Case (3) corresponds
to the situation when RU does not classify x, but there is a conflict
between r and RU . Finally, case (4) gathers the situations for which
no conflict exists between r and RU . Figure 1 illustrates the various

Case Conditions Effects

(1) RU (x) ̸= ⊥ reject AI(x)
RU (x) ̸= AI(x) correct AI by every rU ∈ RU

(r is in conflict with RU ) in conflict with r

(2) RU (x) = AI(x) accept AI(x)
r is in conflict with RU correct AI by every rU ∈ RU

in conflict with r

(3) RU (x) = ⊥ accept or reject AI(x)
r is in conflict with RU correct AI by every rU ∈ RU

in conflict with r

(4) RU (x) = AI(x) or RU (x) = ⊥ accept AI(x)
r is not in conflict with RU add r to RU

simplify the resulting set

Table 1: Leveraging explanation and rectification facilities offered by
PyXAI to design an XAI protocol.

interactions that can take place between U and AI (and how those
interactions are triggered), when they are ruled by the XAI protocol
defined above. An interaction starts whenever the user furnishes an
instance x to the AI system and asks for a prediction AI(x). As a
key ingredient of this protocol, the rectification ability is paramount
to update AI when conflicts are detected.

AI

USER

RU

r is in conflict with RU

RU (x) ̸= AI(x)1

RU (x) = AI(x)2

RU (x) = ⊥3

r is not in conflict with RU

RU (x) = AI(x)
or RU (x) = ⊥4

Simplify RU

Add r to RU

Correct AI by every ru ∈ RU in conflict with r

Instance x

AI(x)

Classification
Rule

r = t → c

AcceptAI(x): Reject Policy-based

Figure 1: An XAI interface enabling many interactions between U
and AI to take place.

Correcting tree-based classifiers using rectification Rectifica-
tion is a principled approach to the update of classifiers AI [8], that
can be used to implement a correction operation of AI by rules of
RU , each time the XAI protocol presented in the previous section
asks for it.

By construction, in the single-label classification case, the rectifi-
cation of a classifier AI by a classification rule rU leads to a classifier
that classifies every instance as AI did it, except for those instances
that are classified by rU , which are classified by the rectified classi-
fier as rU requests it [9].

Furthermore, when AI is a tree-based model (e.g., a decision tree
[6, 25], a random forest [5], a boosted tree [11]), the resulting, recti-
fied classifier can be computed in time polynomial in the size of the
input (AI and rU ) [9]. Especially, when dealing with binary classifi-
cation problems, the rectification of a decision tree T by a classifica-
tion rule rU = t → 1 (resp. rU = t → 0) is equivalent to T ∨t (resp.
T ∧ ¬t). Rectifying a random forest boils down to rectifying every
tree in the forest, and rectifying a boosted tree by a classification rule
rU , albeit a bit more tricky, can be done as well in polynomial time
(see [9] for details).

We have also shown that when the classification rules used to rec-
tify a classifier AI come from a set of rules that is consistent, the
rectification of AI by a conjunction of such rules is equivalent to the
iterated rectification of AI by each of the rules of the conjunction
(and the sequence of rules used is irrelevant). Thus, in our policy,
each time AI must be corrected by a (conjunctively-interpreted) set
of rules {r1U , . . . , rkU} from RU , a way to achieve it is first to rectify
AI by r1U , then to rectify the resulting classifier by r2U , and so on.

We now illustrate the correction process by rectification by step-
ping back to the examples considered in the previous subsection, fo-
cusing on cases (1) to (3) since in case (4), no correction is required.
For each case (1) to (3), a set of classification rules equivalent to AI



once rectified is provided.

• In the example for Case (1), once AI has been rectified by rU ,
AI becomes equivalent to the set of classification rules {⊤ →
1,⊥ → 0}, where every instance is classified as positive. If the
resulting corrected AI system is further used to classify (0, 0, 0),
which is classified as a negative instance by RU using the rule
b → 0, AI needs to be corrected once more, leading to a system
equivalent to the set of classification rules {b → 1, b → 0}.

• In the example for Case (2), once AI has been rectified by rU , AI
becomes equivalent to the set of classification rules {(b ∧ c) →
1, b → 0, c → 0}.

• In the example for Case (3), once AI has been rectified by rU , AI
becomes equivalent to the set of classification rules {(a ∧ b) →
1, c → 1, (a ∧ c) → 0, (b ∧ c) → 0}.

4 Experiments

Having an end user U available to make experiments is demanding,
especially when he/she is supposed to be acquainted with the ap-
plication domain. Furthermore, making an evaluation robust enough
would require to consider several application scenarios, thus to take
advantage of several users (one per domain targeted), making the task
even harder in practice. This is why we decided to simulate end users
by artificial agents.

A key aspect of the protocol for governing XAI interactions that is
presented in the paper is that it is based on trustful ingredients. On the
one hand, the classification rules that are extracted from faithful ab-
ductive explanations are ensured to be correct, such rules indicate for
sure how AI classifies instances. This contrasts with several popular
approaches to XAI (including LIME [27], Anchors [28], and SHAP
[21]) for which one can find "counterexamples" for the explanations
that are generated, i.e., pairs of instances sharing an explanation but
leading to distinct predictions [18, 16]. On the other hand, the recti-
fication approach ensures that the corrections that are requested are
effective.

The rationale for each step in the protocol is made precise in the
previous section, and it is independent of the nature of U (artificial
or human). The protocol guarantees, by design, that provided that all
the classification rules in RU are correct, the accuracy of AI will
never decrease whenever a rectification-based correction takes place
(cases (1) to (3)). Reciprocally, the protocol guarantees, by design,
that whenever the rule r used by AI is correct, the accuracy of U
will never decrease when U adopts this rule (case (4)). Finally, the
coverage of U cannot decrease.

Of course, the guarantees that are listed are offered subject to con-
ditions (i.e., the classification rules that are exchanged must be cor-
rect), and those conditions cannot be entirely evaluated in general
since an oracle (i.e., a 100% correct predictor) is not available. Thus,
the very purpose of our experiments is to determine how much, in
practice, the accuracy of AI and the coverage of U evolve when in-
teractions between AI and U , ruled by the XAI protocol presented
in the previous section, occur.

Empirical protocol Let us now make precise the empirical proto-
col that has been followed in the experiments made, and the values
of the various hyperparameters that have been considered.

In our experiments, we focused on a binary classification prob-
lem: C = {1, 0}. U was represented by a set RU of classifi-
cation rules, that is consistent and simplified. We considered 18

datasets,1 reported in Table 2, which are standard datasets avail-
able online from UCR (www.timeseriesclassification.com), OpenML
(www.openml.org), or UCI (archive.ics.uci.edu/ml/). Those datasets
with a suffix name of the form "∗vs∗∗" concern primarily classifica-
tion problems that are not binary, so they have been turned into binary
classification problems by focusing on instances from two classes
only (noted "*" and "**").

In Table 2, the first column "Dataset" gives the name of the dataset,
the second column #F gives the number of features once the cate-
gorical attributes have been one-hot encoded, the third column #I
indicates the number of instances in the dataset, and the last column
"Repository" makes precise the source the dataset comes from. Some
of these datasets are based on many features and some of them con-
tain many instances.

Dataset #F #I #B Repository
arrowhead0vs1 249 146 93 UCR
arrowhead0vs2 249 146 86 UCR
arrowhead1vs2 249 130 104 UCR
australian 38 690 51 openML
balance1vs2 4 576 10 UCI
biodegradation 41 1055 69 openML
breastTumor 37 286 38 openML
cleveland 22 303 25 openML
compas 11 6172 13 openML
contraceptive0vs1 21 962 25 UCI
contraceptive0vs2 21 1140 30 UCI
contraceptive1vs2 21 844 31 UCI
divorce 54 170 36 UCI
nerve0vs1 1500 84 126 UCR
nerve0vs2 1500 107 140 UCR
nerve1vs2 1500 135 99 UCR
spambase 57 4601 95 UCI
wine 234 111 98 UCR

Table 2: Description of the datasets used in the experiments.

Given a dataset, we partitioned its elements into four pairwise dis-
joint subsets: a training set (gathering 30% of the instances from the
dataset), a set of instances used to generate RU (this set gathered
1
4
· 70% = 7

40
of the instances from the dataset), a set of instances

used for triggering the interactions between AI and the user U (this
set gathered 1

4
· 70% = 7

40
of the instances from the dataset and

was upper bounded to 100 instances), and a test set used to evalu-
ate empirically the accuracy of AI and RU (this test set gathered
1
2
· 70% = 7

20
of the instances from the dataset).

RU was generated as follows. First, a random forest F =
{T1,· · · ,Tp} was learned from the training set, using the algorithm
furnished in the Scikit-learn library [24]. In our experiments, p was
set to 100 and the maximum size of the sample used to decide to
stop splitting a node of any tree Ti (i ∈ [p]) of F was set to half the
number of instances in the training set. The fourth column (#B) in
Table 2 indicates the number of distinct Boolean conditions used in
F . We considered a classification threshold θ ∈ [ 1

2
, 1) (in our experi-

ments θ = 70%). Then we picked up at random alternately a positive
instance and a negative instance in the set of instances used to gen-
erate RU , and for each instance x selected, we considered that the
instance x was classified by F as a positive (resp. negative) instance
given the threshold θ if the proportion of the trees of F classifying
x as positive (resp. negative) exceeded θ. x was considered as not
classified by F given the threshold θ in the remaining case. The next
step was to compute a majoritary reason for x given F , that takes θ
into account. To this end, we needed to slightly generalize Definition

1 We removed from the datasets considered at start those leading to a initial
coverage of RU equal to 100% (adult, balance0vs1, balance0vs2, bank,
german).



3 from [2], as follows:

• If R(x) = 1, then t is a majoritary reason for x given F and θ
if and only if t is a subset of tx, the proportion of the trees of F
t is an implicant of which exceeds θ, and no proper subset of t
satisfies the latter condition.

• If R(x) = 0, then t is a majoritary reason for x given F and θ if
and only if t is a subset of tx, the proportion of the negations of
the trees2 of F t is an implicant of which exceeds θ, and no proper
subset of t satisfies the latter condition.

Such majoritary reasons are abductive explanations. In the general
case, they are not subset-minimal explanations. However, each im-
plicant test in the above definition can be achieved in time linear in
the size of the input (t and Ti), so that a majoritary explanation for x
given F and θ can be computed efficiently in practice using a greedy
algorithm that starts with tx (see [2] for details). In order to generate
rules that cover sufficiently many instances (i.e., rules with a condi-
tion part that is not too specific), we looked for majoritary reasons
that are sufficiently small. This has been achieved by running several
times the greedy algorithm, using at each run a different elimination
ordering for the features of tx, and keeping at the end a smallest ma-
joritary reason obtained over the runs. In our experiments, we con-
sidered 50 runs of the greedy algorithm on each instance x from the
set of instances used to generate RU , such that x was classified by F
given the threshold θ.

A classification rule rU = t → 1 (resp. t → 0) has finally been
generated from t whenever F classifies x as a positive (resp. nega-
tive) instance given θ. This rule rU was added to RU when it did not
specialize a rule already in RU , and the rules of RU that specialize
rU were removed from RU in order to ensure that the set RU was
simplified. The consistency of RU is ensured because the explana-
tions that have been produced in the process are faithful (majoritary
explanations are abductive explanations for x given F and θ).

The rationale for the choices made is a follows. On the one hand,
using a value for θ greater than the usual decision threshold (50%)
considered for random forests was a way to generate a set of clas-
sification rules RU with quite a good accuracy on the instances that
are classified. On the other hand, using a reduced subset of instances
for generating RU was a way to limit the set of instances classified
by RU (thus, getting an incomplete set of classification rules, as ex-
pected).

The generation of AI was much more simple. AI simply is a sin-
gle decision tree picked up uniformly at random from F , provided
that its accuracy exceeds 50%. Doing so, as expected, the accuracy
of AI before any interaction took place turned out to be lower than
the initial accuracy of RU , thus AI was at start a classifier less accu-
rate than RU , but a complete classifier (unlike RU in general).

A domain theory Σ, having the form of a Krom formula and con-
necting the Boolean conditions used in RU (thus, also those used in
AI) has been considered whenever necessary. For example, if a nu-
merical attribute age ∈ A was used to describe instances and the
Boolean conditions x1 = (age > 21) and x2 = (age > 18) oc-
curred respectively in RU and AI , Σ contained the clause x1 ∨ x2.

The next step was to pick up at random instances in the set of in-
stances triggering the interactions, and to take advantage of the XAI
protocol presented in Section 3 to decide what to do with those in-
stances (i.e., accept or reject the predictions made by AI), to modify

2 A decision tree equivalent to the negation of any Ti ∈ F can be obtained
in linear time in the size of Ti by replacing every 0-leaf of Ti by a 1-leaf
and every 1-leaf of Ti by a 0-leaf. See [2] for more details.

AI and/or RU accordingly, and to assess the performances of AI
and RU to determine how they evolve.

The performance of AI was evaluated by measuring empirically
its accuracy on the test set. The performance of RU was assessed
from two perspectives: its accuracy (measured as well on the test set
– of course, only the instances x of the test set for which RU (x) was
defined have been considered in this evaluation) and its coverage (the
proportion of instances x for which RU (x) was defined). To calcu-
late the coverage of RU we took advantage of the model counter D4
[20]: the number of models of Σ (the domain theory indicating how
the Boolean conditions occurring in R are logically connected) is the
total number of instances, the number of models of Σ∧

∨
t→1∈RU

t is
the number of instances classified y RU as positive, and the number
of models of Σ ∧

∨
t→0∈RU

t is the number of instances classified y
RU as negative. Thus, the coverage of RU is given by:

#(Σ ∧
∨

t→1∈RU
t) + #(Σ ∧

∨
t→0∈RU

t)

#(Σ)
.

Since D4 accepts only CNF formulae as input, Tseitin’s technique
[31] is used to turn the DNF formulae

∨
t→1∈RU

t and
∨

t→0∈RU
t

into the CNF format. This linear-time transformation is known not to
change the number of models of the input. Experiments have been
conducted on a computer equipped with Intel(R) XEON E5-2637
CPU @ 3.5 GHz and 128 Gib of memory.

Empirical results Interestingly, for every dataset used in the ex-
periments, the computation times needed to achieve the interactions
between AI and U were small enough. The time required per inter-
action step never exceeded 6.86 seconds. In average (over the trig-
gering instances), it never exceeded 2 seconds and was greater than
0.1 second for 3 datasets only, out of 18 (namely arrowhead0vs1,
arrowhead0vs2, and nerve0vs2). When rectifications were needed,
most of the computation time was used to rectify AI .

Table 3 reports some statistics about the full interaction trace. Col-
umn #R indicates the number of rectifications of AI that have been
performed. Column #G indicates the number of (strict) generaliza-
tions of rules from RU that have been detected (remind that such
generalizations may happen in Case (4)). Column "Case" indicates
for each case from (1) to (4) the numbers of triggering instances
falling into to the case. Finally, column "I#RU " gives the Initial
number of rules in RU ("+" indicates the number of rules concluding
1, while "-" indicates the number of rules concluding 0), and simi-
larly for column "F#RU " about the Final number of rules in RU .

Dataset #R #G Case I#R_U F#R_U

(1) (2) (3) (4) + - + -

arrowhead0vs1 207 0 0 11 14 0 8 9 8 9
arrowhead0vs2 112 7 0 4 10 11 12 4 9 4
arrowhead1vs2 88 0 0 7 15 0 5 10 5 10
australian 453 0 1 67 27 5 8 13 8 13
balance1vs2 128 0 0 47 25 28 5 4 5 4
biodegradation 144 10 0 22 14 64 3 9 3 5
breastTumor 48 38 0 0 12 38 0 6 0 5
cleveland 122 0 0 32 15 6 4 5 4 5
compas 0 100 0 0 0 100 2 1 1 1
contraceptive0vs1 18 24 3 0 3 94 6 0 6 0
contraceptive0vs2 118 12 0 8 73 19 5 4 5 4
contraceptive1vs2 0 0 0 0 0 100 0 6 0 6
divorce 64 0 0 22 5 2 3 4 3 4
nerve0vs1 2 13 0 0 1 13 0 3 0 3
nerve0vs2 24 12 0 0 6 12 0 6 0 5
nerve1vs2 14 0 0 0 14 9 1 1 1 1
spambase 236 0 0 79 20 1 48 84 48 84
wine 41 0 0 12 7 0 6 6 6 6

Table 3: Statistics about the interaction trace.

Table 4 shows how the accuracy of AI , the accuracy of RU , and



the coverage of RU evolved after a full sequence of interactions trig-
gered by at most 100 instances. In Table 4, the first column "IAc-
cAI" gives the Initial Accuracy of AI , the second column "FAccAI"
gives the Final Accuracy of AI . Similarly, column "IAccU" gives the
Initial Accuracy of RU , column "FAccU" gives the Final Accuracy
of RU , column "ICU" gives the Initial Coverage of RU , and column
"FCU" gives the Final Coverage of RU .

Dataset IAccAI FAccAI IAccU FAccU ICU FCU
arrowhead0vs1 0.731 0.750 0.929 0.929 1.550e-08 1.550e-08
arrowhead0vs2 0.596 0.923 1.000 0.953 9.308e-09 0.500
arrowhead1vs2 0.609 0.630 0.800 0.800 1.286e-07 1.286e-07
australian 0.702 0.723 0.909 0.909 0.122 0.122
balance1vs2 0.711 0.836 0.863 0.863 0.694 0.694
biodegradation 0.746 0.778 0.801 0.799 0.257 0.531
breastTumor 0.580 0.570 0.529 0.581 0.318 0.826
cleveland 0.651 0.783 0.892 0.892 0.328 0.328
compas 0.660 0.660 0.675 0.660 0.640 1.000
contraceptive0vs1 0.552 0.674 0.676 0.676 0.991 0.991
contraceptive0vs2 0.609 0.627 0.754 0.832 0.159 0.304
contraceptive1vs2 0.608 0.608 0.649 0.649 0.992 0.992
divorce 0.917 0.933 0.982 0.982 0.003 0.003
nerve0vs1 0.533 0.533 None 0.684 2.425e-16 0.500
nerve0vs2 0.632 0.632 None 0.719 2.852e-15 0.250
nerve1vs2 0.667 0.667 None None 1.261e-13 1.261e-13
spambase 0.852 0.852 0.925 0.925 0.015 0.015
wine 0.487 0.487 0.500 0.500 2.302e-08 2.302e-08

Table 4: Evolution of the accuracy of AI , the accuracy of RU , and
the coverage of RU . “None” means that no instance from the test set
matched the condition part of a rule from RU .

Table 3 shows that the most frequent cases encountered in the ex-
periments deeply varies with the dataset at hand. Case (1) was the
less frequent, which can be explained by the fact that the initial accu-
racy of AI was not low (anyway, it would not make sense to consider
an AI with an accuracy not greater that 50%). The number #R of
rectifications achieved (which may happen in cases (1) to (3)) greatly
varied with the dataset. For 2 datasets out of 18, no rectification has
been performed, but for many others the number of rectifications
has been high (especially, greater than the number of triggering in-
stances). Similarly, the number #G of (strict) generalizations made
was significant for some datasets and null for other datasets.

Table 4 shows that the addition of rules made at case (4) may sig-
nificantly increase the coverage of RU . Even if, by design, the cov-
erage of RU may never diminish through the interactions with AI ,
the improvement in terms of the number of instances covered can be
tremendous, as for the nerve0vs1 dataset. Initially, the coverage of
RU was very small for this dataset. Once all the instances used to
trigger the interactions have been processed, the coverage of RU was
equal to 1

2
, showing that half of the instances can be classified by RU

at the end of the interactions.
Beyond the potential benefits in terms of coverage for RU , Ta-

ble 4 shows also that the rectifications made through the interactions
between AI and U may lead to a valuable increase of the accu-
racy of AI . Overall, in our experiments, the accuracy of AI grew
up for 10 datasets out of 18, did not change for 7 datasets, and di-
minished for a single dataset (breastTumor). A high number of rec-
tifications may explain why the accuracy of AI has significantly in-
creased for some datasets (see e.g., columns "IAccAI" and "FAc-
cAI" for arrowhead0vs2 in Table 4), but it does not imply it (see e.g.,
columns "IAccAI" and "FAccAI" for australian in Table 4, where the
increase in terms of accuracy was mild despite the high number of
rectifications). Indeed, it can be the case that some rules of RU used
to rectify AI are actually incorrect.

Finally, comparing the values in columns "IAccU" and "FAccU"
of Table 4, we can observe that the accuracy of RU has not evolved
for the majority of the datasets, that it has increased for a few

datasets (breastTumor and contraceptive0vs2), and decreased for oth-
ers (arrowhead0vs2, biodegradation, and compas). When it happens,
the decrease of the accuracy of RU should not be misinterpreted: it
does not mean that the performance of RU was degraded through the
interactions with AI . Indeed, given the protocol used, the decrease
simply results from the fact that the coverage of RU has increased
and that the accuracy of AI was initially lower than the accuracy of
RU . Especially, the instances classified at start by RU remain clas-
sified in the same way by RU at the end of the interaction process
since RU never is corrected (remind that one of the initial assump-
tions made was to consider that U is more reliable than AI on the in-
stances that U is able to classify). The instances not classified by RU

at start and classified by RU when all the triggering instances have
been considered are classified by RU as demanded by AI . Since the
accuracy of AI is lower than the one of RU , the risk of a classifica-
tion error made by RU for the instances for which U listens to AI
increases each time such an instance is considered, and this explains
why the overall accuracy of RU may decrease.

To wrap up with the empirical results, it turns out that taking ad-
vantage of the proposed XAI protocol has led to increase the ac-
curacy of AI for 10 datasets out of 18. For 3 datasets among the 10
(namely, arrowhead0vs2, biodegradation, and contraceptive0vs2), the
coverage of RU has also increased. For 3 of the 8 remaining datasets
(namely, compas, nerve0vs1, and nerve0vs2), the accuracy of AI
has remained unchanged but the coverage of RU has increased. For
breastTumor, the accuracy of AI has decreased but the coverage of
RU has increased. Finally, for 4 datasets among those considered in
our experiments (namely, contraceptive1vs2, nerve1vs2, spambase,
and wine), the interactions made did not lead to increase either the
accuracy of AI or the coverage of RU .

5 Conclusion
In this paper, we have presented an XAI protocol that can be lever-
aged for ruling interactions between a user U and a predictor AI
used by U . In our setting, the pieces of knowledge about the predic-
tion task that are owned by U is supposed to be representable by a set
of classification rules, that is assumed reliable and consistent, but (in
general) incomplete. AI is supposed to be any tree-based predictor
(a decision tree, a random forest, or a boosted tree). The interac-
tions made between U and AI are intended not only help U decide
what to do with each prediction achieved by AI (accept it, reject it),
but could also be exploited to improve the quality of the predictions
made by AI by correcting those that are wrong according to U , and
to augment the coverage of U , i.e., the proportion of instances U is
able to handle. We took advantage of the explanation and correction
abilities furnished by the PyXAI library (github.com/crillab/pyxai)
to implement and evaluate the proposed protocol. Experiments have
been conducted, showing the benefits that can be achieved in practice
by taking advantage of this protocol.

As a next step, it would be interesting to evaluate the proposed
XAI protocol in practice, with an AI system represented by a ran-
dom forest or a boosted tree, and a human user U instead of an artifi-
cial agent. In this perspective, it would be useful to extend the expla-
nation and rectification settings to deal with uncertain classification
rules and with classifiers based on scorers and decision thresholds.
That way, a rectification of AI could be triggered only when the
classification rule used by U to classify x is more certain than the
prediction about x that is achieved by AI . Taking the uncertainty
of the predictions achieved by AI into account would also lead to
the definitions of other policies to address case (4), depending on the
accuracy / coverage trade-off that is expected for U .
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