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Proofs

Proof of Proposition 1

Proof.

e Membership: Suppose that f(x) = 1. « has a k-
anchored abductive explanation ¢ given f and ¥ if and
only if one can guess a term ¢ over X and check in (de-
terministic) polynomial time in the size of the input that
(1) t C tg, (2) there exist at least k instances x’ € Rg
such that ¢ C t,, (3) there is no instance &’ € R such
that t C t,/, and finally (4) check that ¢ is an implicant
of ¥ = f. In order to achieve the latter test, one call to
an NP oracle is required in the general case. Indeed, ¢
is not an implicant of ¥ = f if and only if there exists
' € X suchthat¢ C t, and f(z’) = 0. Once a n-uple
x’ has been guessed, one just need to test in (determin-
istic) polynomial time that =’ satisfies X, that ¢ C ¢4
and finally that f(2’) = 0. The case when f(x) = 0 is
similar (in the guess & check algorithm above, replace
RE by R, and vice-versa, and replace f by —f).

e Hardness: By reduction from the problem of deciding
whether an instance £ € X has an abductive explana-
tion of size < s for a binary classifier f (s is a non-
negative integer < n). This problem has been shown to
be 38-hard even in the restricted case when f is a ran-
dom forest over a set X = {x1,...,z,} of logically
independent variables (i.e., ¥ = T), see Proposition
5 from [Audemard et al., 2022]. Thus, let us assume
that ¥ = T. Suppose also that f(x) = 1. With f
and x let us associate in polynomial time R, = & and
RE ={x' € X : dy(z,z') = 1} the set of n instances
x’ being at Hamming distance 1 from x. The point if
that x € X has an abductive explanation given f and
3, that is of size < s with s < nifand only if x € X
has a k-anchored abductive explanation given f and X,
with £ = n — s. Indeed, * € X has a n — s-anchored
abductive explanation given f and X iff there exists a
term ¢ that is an implicant of ¥ = f (or, equivalently,
an implicant of f since > = T) covering at least n — s
instances ' from RY, iff there exists a term ¢ that is an
implicant of f and a subset of the intersection of ¢ for
at least n — s instances «’ from RJCC. Since the elements
of RZC are all at Hamming distance 1 from x, the inter-

section of t, for at least n — s instances =’ from Rg
contains at most s literals. Furthermore, every implicant
of f that contains at most s literals covers at least n — s
instances ' from Ré. Altogether, x € X hasan — s-
anchored abductive explanation given f and X iff there
exists a term ¢ that is an implicant of f and that contains
at most s literals, which completes the proof.

O

The complexity of deciding whether an instance « has a
k-anchored abductive explanation given f and X can be low-
ered by considering additional assumptions about the lan-
guage used to represent f and the domain theory ¥ under
consideration. A propositional formula (or a Boolean circuit)

Y is said to be tractable for clausal entailment, i.e., there ex-
ists a polynomial-time algorithm that takes as inputs > and
any clause ¢ over X and returns 1 when c is a logical con-
sequence of X, and returns O otherwise. Now, let £ be a
propositional language of representations ¢ of binary clas-
sifiers over X. L is said to satisfy the constrained implicant
query if and only if there exists a polynomial-time algorithm
that takes as inputs a term ¢ over X, a propositional formula
(or a Boolean circuit) ¥ over X that is tractable for clausal
entailment, a representation ¢ in £ and a Boolean value b,
and that returns returns 1 if ¢ is an implicant of ¥ = ¢® and
0 otherwise, where ©® = ¢ when b = 1 and ® = = when
b=0.

It turns out that the language £ of decision trees over X
satisfies the constrained implicant query. This comes from
the fact that when f is given as a decision tree, one can
turn f and —f in linear time into equivalent CNF formulae:
=N ¢ and ~f = AL, ¢}, where each ¢; (i € [p]) and
each ¢} (i € [g]) is a clause over X. Indeed, it is well-known
that any decision tree f can be encoded in linear time into an
equivalent disjunction of terms, where each term used coin-
cides with a 1-path of f (i.e., a path from the root to a leaf
labeled with 1), but also as a conjunction of clauses, where
each clause used is the negation of a term describing a O-path
of f. Furthermore, every decision tree f can be negated in
linear time (replacing every 1-leaf of f by a O-leaf and every
O-leaf of f by a 1-leaf leads to a decision tree equivalent to
= f). Then ¢ is an implicant of ¥ = f (resp. X = —f) if and
only if each of the p (resp. ¢) clauses —tV¢; (resp. —tVc))is a
logical consequence of Y, which can be tested in polynomial
time when ¥ is tractable. Interestingly, the domain theory is-
sued from the Boolean encoding of numerical attributes, as
used in tree-based ML models, are tractable for clausal en-
tailment (they consist of conjunctions of binary clauses).

This leads to the following proposition:

Proposition 2. Given a domain theory about X (represented
by a propositional formula or a Boolean circuit ), a binary
classifier f over X (represented by a propositional formula
or a Boolean circuit from a propositional language L satisfy-
ing the constrained implicant query), an instance x € X, a
set R C X of reference instances and an integer k > 0,
the problem of deciding whether an instance * € X has
a k-anchored abductive explanation given f and % is NP-
complete.

Proof of Proposition 2

Proof.

* Membership: Consider again the guess & check algo-
rithm given in the proof of Proposition 1. The three
check steps (1), (2), and (3) can be achieved in (deter-
ministic) polynomial time, and this is also the case of
step (4) when the language £ into which f is represented
offers a polynomial-time constrained implicant test.

* Hardness: When L satisfies the constrained implicant
query, NP-hardness is the case even if ¥ = T and f is
represented by a decision tree. The result comes from
the same reduction as pointed out in the proof of Propo-
sition 1, but assuming now that f is a decision tree over
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X. Indeed, deciding whether an instance € X has an
abductive explanation of size < s for a decision tree f
over X is NP-complete (see Proposition 6 from [Barcel6
et al., 2020]).
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