Proofs

Proposition 1. Let (f,X) be a constrained decision-function and
@ € [X] be an instance s.t. f(x) = 1 (resp. f(x) = 0).

e The (weak) contrastive explanations for x given (f,X) are the
sets of literals occurring in the implicates of Ve - (X = f) (resp.
Ve - (2 = f)).

e The (subset-minimal) contrastive explanations for & given (f, %)
are the sets of literals occurring in the prime implicates of Va -
(S = f) (esp. Yz - (X = f)).

e The (minimum-size) contrastive explanations for & given (f, %)
are the sets of literals occurring in the minimum-size prime impli-
cates of Vx - (X = f) (resp. Vz - (¥ = f)).

Proof. The proof of Proposition 1 from [17] shows that the (weak,
resp. subset-minimal) abductive explanations for & given (f,X) are
the sets of literals occurring in the implicants (resp. prime implicants)
t of ¥ = f suchthatt C ¢; when f(x) = 1. As a direct conse-
quence, we also have that the (weak, resp. subset-minimal) abductive
explanations for x given (f, ) are the sets of literals occurring in the
implicants (resp. prime implicants) of ¥ = f such that ¢ C t,, when
f(x) = 0. Then, we take advantage of the notion of universal literal
quantification considered in [14] and use Proposition 11 from [13]
to get that the sets of literals occurring in the implicates (resp. prime
implicates) of V& - (¥ = f) are the (weak, resp. subset-minimal)
contrastive explanations for @ given (f,X) when f(x) = 1, and that
the sets of literals occurring in the implicates (resp. prime implicates)
of V& - (£ = f) are the (weak, resp. subset-minimal) contrastive
explanations for « given (f,X) when f(x) = 0. Finally, the pre-
vious result about subset-minimal contrastive explanations extend to
minimum-size contrastive explanations, given that the minimum-size
contrastive explanations for & given (f,X) are the subset-minimal
contrastive explanations for & given (f,X) that are of minimum
size. O

Proposition 2. Let ' € RF,, be a random forest and « € {0,1}" be
an instance. The number of minimum-size contrastive explanations
for & given (F, 1) can be exponential in the number n of attributes.

Proof. Letk = | 5 ]. Consider the DNF formula f = \/fz_o1 (x2i41 A
Z2i+2) and the instance @ € {0,1}" such that x; = 1 for each
i € [n]. We have V - f = f. The subset-minimal contrastive ex-
planations for @ given (f, 1) are the sets of literals occurring in the
prime implicates of V& - f, thus the sets of literals occurring in the
prime implicates of f. They all have the same size (k), hence they
are all minimal-size contrastive explanations for a given (f, 1). Con-
sider now a random forest F' from RF,, equivalent to f (see Proposi-
tion 2 from [4] for the generation of F' in polynomial time from f).
The fact that f has 2* prime implicates completes the proof. O

Proposition 3. Let (f,X) be a constrained decision-function and
x € [X] be an instance such that f(x) = 1 (resp. f(x) = 0). = has
a (weak) contrastive explanation given (f, X)) if and only if —=f A X2
(resp. f A X) is satisfiable.

Proof. Suppose that x € [¥]is such that f(z) = 1. If fAY is unsat-
isfiable then there is no model @’ of ¥ that is a model of f, hence x
does not have any (weak) contrastive explanation given (f, 3). Sim-
ilarly, if @ € [X] is such that f(z) = 0 and f A X is unsatisfiable
then there is no model &’ of X that is a model of f, hence = does not
have any (weak) contrastive explanation given (f, 3). O

Proposition 4. Let (f,X) be a constrained decision-function and
x € [X] be an instance. Deciding whether @ has a (weak) contrastive
explanation given (f,X) is NP-complete. NP-hardness still holds
when f is represented by a random forest from RF,, and 3 = 1.

Proof.

e Membership to NP: The following nondeterministic algorithm
runs in time polynomial in the input size (x and a representation
of f): Guess ¢ C t and check (in deterministic polynomial time)
that x. = X and f(xz.) # f(x).

e NP-hardness: we prove that the restriction of the decision prob-
lem when f is a random forest F' from RF,, and > = 1 is NP-hard
by reduction from the satisfiability problem for CNF formulae. Let
a = c1/A...Acm be a CNF formula over X,,. Let « be any instance
from {0, 1}" such that {£ : £ € c1} C t,. We associate with « in
polynomial time the pair (z, F'), where F is a random forest from
RF,, equivalent to -« (see Proposition 2 from [4] for the genera-
tion of F'). We have F'(x) = 1 since a(x) = 0 by construction
of . Now, from Proposition 3, deciding whether  has a (weak)
contrastive explanation given (F, 1) amounts to deciding whether
—F is satisfiable, thus to deciding whether « is satisfiable. This
concludes the proof.

O

Proposition 5. Let (f,X) be a constrained decision-function and
@ € [X] be an instance. Let ¢ C 5. Deciding whether c is a (weak)
contrastive explanation for & given (f, 3) is in P.

Proof. By definition, ¢ is a (weak) contrastive explanation for
given (f,X) if and only if z. € [X] and f(x.) # f(x). Both tests
can be achieved in polynomial time since x. is an interpretation over
X, and f and X are built upon X,. O

Proposition 6. Let (f,X) be a constrained decision-function and
x € [X] be an instance. Let ¢ C t5. Deciding whether ¢ is
a (subset-minimal) contrastive explanation for x given (f,X) is
CcoNP-complete. CONP-hardness still holds when f is represented
by a random forest from RF,, and 3 = 1.

Proof.

e Membership to CONP: we first check that ¢ is a (weak) contrastive
explanation for & given (f,X). This is done in polynomial time
(see Proposition 5). Now, c is not a (subset-minimal) contrastive
explanation for & given (f, X) if and only if there exists a proper
subset ¢’ of c that is a (weak) contrastive explanation for = given
(f, ). Deciding whether such a ¢’ exists is in NP: it is enough to
guess ¢’ C cand to test in deterministic polynomial time that ¢’ is
a (weak) contrastive explanation for @ given (f, 3).

e coNP-hardness: we prove that the restriction of the decision prob-
lem when f is a random forest F' from RF,, and ¥ = 1 is coNP-
hard by reduction from the minimal model checking problem for
CNF formulae, which is CONP-complete [9]. The latter problem is
as follows:

- Input: aninstance & € {0, 1}" and a CNF formulac = A" | ¢;
over X,,.

— Question: Is t, a subset-minimal model of «, i.e., a model of
« such that the set of positive literals in ¢ is minimal w.r.t.
set-inclusion?



We first prove the following lemma:

Lemma 1. Let x € {0,1}" and @ = A", ¢;i a CNF formula
over X,. Let z be the instance of {0, 1}"+1 such that z; = 0 for
t€n+1].Letc=A{x; : i = 1,i € [n]}U{Tns1}. cisa
(weak) contrastive explanation for z given (& V Tnt1, 1) if and
only if ty is a model of a. Furthermore, z. coincides with x over
Xn.

Proof. We have that ¢, is a model of & V T, 1 since T, +1 € 2.
We also have ¢ C ¢, since c contains only negative literals. ¢
is a (weak) contrastive explanation for z given (& V Tny1, 1) if
and only if z. is a model of a A Zp41. Since ¢ = {T7 : =; =
1,4 € [n]} U {Zni1}, zc coincides with & over X,,. Since, by
construction, Tn11 € tz,, 2. is a model of a A x,,41 if and only
if z. is a model of « if and only if ¢4 is a model of a. O

Then the reduction from the minimal model checking problem
is as follows: to any input (x, «) of the minimal model check-
ing problem we associate in polynomial time the following triple
(F, z, c) where

F = {T(a\/ifn+1), e ,T(m\/erq),T, .. ,T}
N—_——

m—1

is a random forest over X, containing 2m — 1 trees. Each
T(¢; V Tny1) (¢ € [m]) is a decision tree over X, 41 equivalent
to the formula ¢; V T, 11 (this tree can be generated in time linear
in the size of ¢;). By construction, F' is equivalent to & V Ty 41,
so that F' is equivalent to o A 2,,+1. Finally, take 2z and c as given
in Lemma 1. From Lemma 1, since z. coincides with « over X,
and since every model of F must set Tn+1to 1 as z. does it, to is
a subset-minimal model of « if and only if c is a (subset-minimal)
contrastive explanation for z given (F, 1).

O

Proposition 7. Let (f,Y) be a constrained decision-function and
x € [X] be an instance. Let ¢ C 5. Deciding whether ¢ is a
minimum-size contrastive explanation for & given (f, %) is CONP-
complete. CONP-hardness still holds when f is represented by a ran-
dom forest from RF,, and X = 1.

Proof.

e Membership to CONP: we first check that ¢ is a (weak) contrastive
explanation for & given (f, X). This is done in polynomial time
(see Proposition 5). Now, c¢ is not a (minimum-size) contrastive
explanation for @ given (f, X) if and only if there exists a subset
' of t,, thatis a (weak) contrastive explanation for z given (f, X)
and is such that |¢/| < |c|. Deciding whether such a ¢’ exists is
in NP: it is enough to guess ¢’ C t5 and to test in deterministic
polynomial time that ¢’ is a (weak) contrastive explanation for @
given (f, %) and that |¢| < |¢|.

e CcoNP-hardness: we prove that the restriction of the decision prob-
lem when f is a random forest F' from RF,, and ¥ = 1 is cONP-
hard by reduction from the minimum-cardinality model checking
for CNF formulae, which is as follows:

— Input: aninstance & € {0, 1}" and a CNF formulac = A" | ¢;
over X,,.

— Question: Is £z a minimum-cardinality model of a, i.e., a model
of « such that the set of positive literals in ¢, is minimal w.r.t.
cardinality?

We first prove that the minimum-cardinality model checking
problem for CNF formulae is CONP-hard. The reduction is from
UNSAT: starting with a CNF formula 8 = A", ¢; over Xy,
let us associate in polynomial time the CNF formula a@ =
/\jiﬁl 7 (x; V oci) over Xpnq1 and the instance & €
{0,1}>™ %! that sets every x; (3 € [n]) to 0 and every =; (i €
[n+1,2n+ 1]) to 1. « contains (n+ 1) - m clauses and is of size
O(|B]?). If B is unsatisfiable, then « is equivalent to /\fﬁ:L Z;.
Hence ¢, is the sole minimum-cardinality model of « (it contains
n+ 1 variables set to 1). If 3 is satisfiable, then it has a model over
X, thus it also has a minimum-cardinality model over X,,, and
this model contains at most n variables set to 1. Then the exten-
sion over Xy, 41 of this minimum-cardinality model obtained by
setting every z; (i € [n+1,2n+1]) to 0 is a minimum-cardinality
model of 3. Since this model contains at most n variables set to 1,
tz is not a minimum-cardinality model of a. This concludes the
coNP-hardness proof for the problem of checking a minimum-
cardinality model for CNF formulae.

Then we reduce the minimum-cardinality model checking prob-
lem to the problem of deciding whether ¢ is a (minimum-size)
contrastive explanation for @ given (F, 1) where F' € RF, is a
random forest. To any input (x,Y) of the minimum-cardinality
model checking problem we associate in polynomial time the
triple (F, z,c) as given in the proof of Proposition 6. We use
Lemma 1 to conclude that {; a minimum-cardinality model of
3. if and only if ¢ is a (minimum-size) contrastive explanation for
x given (F, 1).

O

Proposition 8. Let (f,X) be a constrained decision-function and
x € [¥] be an instance such that f(x) = 1.* Let (Csoft, Chara) be
an instance of the PARTIAL MAXSAT problem such that Csofy = to
and Chara = CNF(X A f) where ONF(Z A f) is a CNF encod-
ing of ¥ A f. Let z* be an optimal solution of (Csoft,, Chara ). Then,
¢ =tz \ tz+ is a minimum-size contrastive explanation for  given
(f,X) and we have t5, = t+ N Lx,,.

Proof. Let z* be any optimal solution of (Csoft, Chard ). On the one
hand, z* is a model of Chara. Since CNF (XA f) is query-equivalent
to & A f, tz« N Lx, is a model of ¥ A f. Now, since z* is an
optimal solution of (Csott, Chard), 2" satisfies a maximal number
of soft clauses from Csof;. Since those soft clauses are precisely the
literals occurring in ¢4, the set of literals ¢ = t5 \ ¢»+ is a subset
of literals of ¢; of minimum-size such that t,, = ¢, N Lx,, is a
model of & A f. Stated otherwise, ¢ is a minimum-size contrastive
explanation for x given (f, X). O

Proposition 9. Let F' € RF,, such that F(z) = 1, x € {0,1}", and
t C tg. Deciding whether t is a minimum-size abductive explanation
Jor @ given F is I15-complete.

Proof.

e Membership to IT5: we show that the problem belongs to IT5 in the
general case when the classifier f is a Boolean function f € F,.
To get the result, we prove that the complementary problem be-
longs to Eg . Then, in order to decide whether ¢ is not a (minimum-
size) abductive explanation for & given f, it is enough to first test
whether ¢ is a (weak) abductive explanation for « given f using
one call to an NP oracle; if ¢ is not such an explanation, then it

4 If a¢ is such that f(a) = 0, then consider f instead of f.



is not a (minimum-size) abductive explanation for & given f; in
the remaining case, it is enough to guess t' C t, to check that
[t'| < |t|, and finally to check (using one call to an NP oracle)
that ¢’ is a (weak) abductive explanation for = given f.
IT5-hardness: let us associate in polynomial time with (& €
{0,1}", F = {T1,...,Tm} € RFy, k < n) such that F(x) =1
the triple (', F’,t) where &' € {0,1}"T**! coincides with
@ on its first n coordinates and is such that z; = 1 for each
je€Mm+1,n+k+1,F ={T{,...,T),} € RFp411 issuch
that T} (i € [m)]) is a decision tree equivalent to T; /\;Li:ill z;.
Clearly, each decision tree T} (i € [m]) can be generated in time
O(k - |Ti]) given that the term /\;‘;’:Ll x; can be represented
by a decision tree containing k decision nodes and that a decision
tree representing the disjunction of two decision trees can be com-
puted in time in the product of the sizes of the two trees (see [29].
Since k < n, |F'| is polynomial in |z| - | F|. By construction, F’
is equivalent to F' V /\;L;’fill x; so that F'(z") = 1. Finally, let
t= /\?:f _':_'11 xj. By construction, t is an implicant of F” such that
t C t,s. t contains k 4 1 characteristics. ¢ is a prime implicant of
F' unless F is valid (in which case F” is valid as well). More pre-
cisely, if F is valid, then T is the unique prime implicant of F’,
else the prime implicants of I are the prime implicants of I, plus
t. So if F' has a (minimum-size) abductive explanation for « given
F containing at most k characteristics, then this explanation is also
a (minimum-size) abductive explanation for =’ given I, showing
that ¢ is not a (minimum-size) abductive explanation for x’ given
F’. In the remaining case, every (minimum-size) abductive expla-
nation for & given F’ contains at least k + 1 characteristics (hence
F' is not valid). This shows that ¢ is a (minimum-size) abductive
explanation for &’ given F”, and this completes the proof.

O



