
Proofs

Proposition 1. Let (f,⌃) be a constrained decision-function and
x 2 [⌃] be an instance s.t. f(x) = 1 (resp. f(x) = 0).

• The (weak) contrastive explanations for x given (f,⌃) are the
sets of literals occurring in the implicates of 8x · (⌃ ) f) (resp.
8x · (⌃ ) f)).

• The (subset-minimal) contrastive explanations for x given (f,⌃)
are the sets of literals occurring in the prime implicates of 8x ·

(⌃ ) f) (resp. 8x · (⌃ ) f)).
• The (minimum-size) contrastive explanations for x given (f,⌃)

are the sets of literals occurring in the minimum-size prime impli-
cates of 8x · (⌃ ) f) (resp. 8x · (⌃ ) f)).

Proof. The proof of Proposition 1 from [17] shows that the (weak,
resp. subset-minimal) abductive explanations for x given (f,⌃) are
the sets of literals occurring in the implicants (resp. prime implicants)
t of ⌃ ) f such that t ✓ tx when f(x) = 1. As a direct conse-
quence, we also have that the (weak, resp. subset-minimal) abductive
explanations for x given (f,⌃) are the sets of literals occurring in the
implicants (resp. prime implicants) of ⌃ ) f such that t ✓ tx when
f(x) = 0. Then, we take advantage of the notion of universal literal
quantification considered in [14] and use Proposition 11 from [13]
to get that the sets of literals occurring in the implicates (resp. prime
implicates) of 8x · (⌃ ) f) are the (weak, resp. subset-minimal)
contrastive explanations for x given (f,⌃) when f(x) = 1, and that
the sets of literals occurring in the implicates (resp. prime implicates)
of 8x · (⌃ ) f) are the (weak, resp. subset-minimal) contrastive
explanations for x given (f,⌃) when f(x) = 0. Finally, the pre-
vious result about subset-minimal contrastive explanations extend to
minimum-size contrastive explanations, given that the minimum-size
contrastive explanations for x given (f,⌃) are the subset-minimal
contrastive explanations for x given (f,⌃) that are of minimum
size.

Proposition 2. Let F 2 RFn be a random forest and x 2 {0, 1}n be
an instance. The number of minimum-size contrastive explanations
for x given (F, 1) can be exponential in the number n of attributes.

Proof. Let k = b
n
2 c. Consider the DNF formula f =

Wk�1
i=0 (x2i+1 ^

x2i+2) and the instance x 2 {0, 1}n such that xi = 1 for each
i 2 [n]. We have 8x · f ⌘ f . The subset-minimal contrastive ex-
planations for x given (f, 1) are the sets of literals occurring in the
prime implicates of 8x · f , thus the sets of literals occurring in the
prime implicates of f . They all have the same size (k), hence they
are all minimal-size contrastive explanations for x given (f, 1). Con-
sider now a random forest F from RFn equivalent to f (see Proposi-
tion 2 from [4] for the generation of F in polynomial time from f ).
The fact that f has 2k prime implicates completes the proof.

Proposition 3. Let (f,⌃) be a constrained decision-function and
x 2 [⌃] be an instance such that f(x) = 1 (resp. f(x) = 0). x has
a (weak) contrastive explanation given (f,⌃) if and only if ¬f ^ ⌃
(resp. f ^ ⌃) is satisfiable.

Proof. Suppose that x 2 [⌃] is such that f(x) = 1. If f^⌃ is unsat-
isfiable then there is no model x0 of ⌃ that is a model of f , hence x
does not have any (weak) contrastive explanation given (f,⌃). Sim-
ilarly, if x 2 [⌃] is such that f(x) = 0 and f ^ ⌃ is unsatisfiable
then there is no model x0 of ⌃ that is a model of f , hence x does not
have any (weak) contrastive explanation given (f,⌃).

Proposition 4. Let (f,⌃) be a constrained decision-function and
x 2 [⌃] be an instance. Deciding whether x has a (weak) contrastive
explanation given (f,⌃) is NP-complete. NP-hardness still holds
when f is represented by a random forest from RFn and ⌃ = 1.

Proof.

• Membership to NP: The following nondeterministic algorithm
runs in time polynomial in the input size (x and a representation
of f ): Guess c ✓ tx and check (in deterministic polynomial time)
that xc |= ⌃ and f(xc) 6= f(x).

• NP-hardness: we prove that the restriction of the decision prob-
lem when f is a random forest F from RFn and ⌃ = 1 is NP-hard
by reduction from the satisfiability problem for CNF formulae. Let
↵ = c1^. . .^cm be a CNF formula over Xn. Let x be any instance
from {0, 1}n such that {` : ` 2 c1} ✓ tx. We associate with ↵ in
polynomial time the pair hx, F i, where F is a random forest from
RFn equivalent to ¬↵ (see Proposition 2 from [4] for the genera-
tion of F ). We have F (x) = 1 since ↵(x) = 0 by construction
of x. Now, from Proposition 3, deciding whether x has a (weak)
contrastive explanation given (F, 1) amounts to deciding whether
¬F is satisfiable, thus to deciding whether ↵ is satisfiable. This
concludes the proof.

Proposition 5. Let (f,⌃) be a constrained decision-function and
x 2 [⌃] be an instance. Let c ✓ tx. Deciding whether c is a (weak)
contrastive explanation for x given (f,⌃) is in P.

Proof. By definition, c is a (weak) contrastive explanation for x
given (f,⌃) if and only if xc 2 [⌃] and f(xc) 6= f(x). Both tests
can be achieved in polynomial time since xc is an interpretation over
Xn and f and ⌃ are built upon Xn.

Proposition 6. Let (f,⌃) be a constrained decision-function and
x 2 [⌃] be an instance. Let c ✓ tx. Deciding whether c is
a (subset-minimal) contrastive explanation for x given (f,⌃) is
coNP-complete. coNP-hardness still holds when f is represented
by a random forest from RFn and ⌃ = 1.

Proof.

• Membership to coNP: we first check that c is a (weak) contrastive
explanation for x given (f,⌃). This is done in polynomial time
(see Proposition 5). Now, c is not a (subset-minimal) contrastive
explanation for x given (f,⌃) if and only if there exists a proper
subset c0 of c that is a (weak) contrastive explanation for x given
(f,⌃). Deciding whether such a c0 exists is in NP: it is enough to
guess c0 ⇢ c and to test in deterministic polynomial time that c0 is
a (weak) contrastive explanation for x given (f,⌃).

• coNP-hardness: we prove that the restriction of the decision prob-
lem when f is a random forest F from RFn and ⌃ = 1 is coNP-
hard by reduction from the minimal model checking problem for
CNF formulae, which is coNP-complete [9]. The latter problem is
as follows:

– Input: an instance x 2 {0, 1}n and a CNF formula ↵ =
Vm

i=1 ci
over Xn.

– Question: Is tx a subset-minimal model of ↵, i.e., a model of
↵ such that the set of positive literals in tx is minimal w.r.t.
set-inclusion?



We first prove the following lemma:

Lemma 1. Let x 2 {0, 1}n and ↵ =
Vm

i=1 ci a CNF formula

over Xn. Let z be the instance of {0, 1}n+1
such that zi = 0 for

i 2 [n + 1]. Let c = {xi : xi = 1, i 2 [n]} [ {xn+1}. c is a

(weak) contrastive explanation for z given (↵ _ xn+1, 1) if and

only if tx is a model of ↵. Furthermore, zc coincides with x over

Xn.

Proof. We have that tz is a model of ↵ _ xn+1 since xn+1 2 tz .
We also have c ✓ tz since c contains only negative literals. c
is a (weak) contrastive explanation for z given (↵ _ xn+1, 1) if
and only if zc is a model of ↵ ^ xn+1. Since c = {xi : xi =
1, i 2 [n]} [ {xn+1}, zc coincides with x over Xn. Since, by
construction, xn+1 2 tzc , zc is a model of ↵ ^ xn+1 if and only
if zc is a model of ↵ if and only if tx is a model of ↵.

Then the reduction from the minimal model checking problem
is as follows: to any input hx,↵i of the minimal model check-
ing problem we associate in polynomial time the following triple
hF,z, ci where

F = {T (c1 _ xn+1), . . . , T (cm _ xn+1),>, . . . ,>| {z }
m�1

}

is a random forest over Xn+1 containing 2m � 1 trees. Each
T (ci _ xn+1) (i 2 [m]) is a decision tree over Xn+1 equivalent
to the formula ci _ xn+1 (this tree can be generated in time linear
in the size of ci). By construction, F is equivalent to ↵ _ xn+1,
so that F is equivalent to ↵^ xn+1. Finally, take z and c as given
in Lemma 1. From Lemma 1, since zc coincides with x over Xn

and since every model of F must set xn+1 to 1 as zc does it, tx is
a subset-minimal model of ↵ if and only if c is a (subset-minimal)
contrastive explanation for z given (F, 1).

Proposition 7. Let (f,⌃) be a constrained decision-function and
x 2 [⌃] be an instance. Let c ✓ tx. Deciding whether c is a
minimum-size contrastive explanation for x given (f,⌃) is coNP-
complete. coNP-hardness still holds when f is represented by a ran-
dom forest from RFn and ⌃ = 1.

Proof.

• Membership to coNP: we first check that c is a (weak) contrastive
explanation for x given (f,⌃). This is done in polynomial time
(see Proposition 5). Now, c is not a (minimum-size) contrastive
explanation for x given (f,⌃) if and only if there exists a subset
c0 of tx that is a (weak) contrastive explanation for x given (f,⌃)
and is such that |c0| < |c|. Deciding whether such a c0 exists is
in NP: it is enough to guess c0 ⇢ tx and to test in deterministic
polynomial time that c0 is a (weak) contrastive explanation for x
given (f,⌃) and that |c0| < |c|.

• coNP-hardness: we prove that the restriction of the decision prob-
lem when f is a random forest F from RFn and ⌃ = 1 is coNP-
hard by reduction from the minimum-cardinality model checking
for CNF formulae, which is as follows:

– Input: an instance x 2 {0, 1}n and a CNF formula ↵ =
Vm

i=1 ci
over Xn.

– Question: Is tx a minimum-cardinality model of ↵, i.e., a model
of ↵ such that the set of positive literals in tx is minimal w.r.t.
cardinality?

We first prove that the minimum-cardinality model checking
problem for CNF formulae is coNP-hard. The reduction is from
UNSAT: starting with a CNF formula � =

Vm
i=1 ci over Xn,

let us associate in polynomial time the CNF formula ↵ =V2n+1
j=i+1

Vm
i=1(xj _ ci) over X2n+1 and the instance x 2

{0, 1}2n+1 that sets every xi (i 2 [n]) to 0 and every xi (i 2

[n+1, 2n+1]) to 1. ↵ contains (n+1) ·m clauses and is of size
O(|�|2). If � is unsatisfiable, then ↵ is equivalent to

V2n+1
i=n+1 xi.

Hence tx is the sole minimum-cardinality model of ↵ (it contains
n+1 variables set to 1). If � is satisfiable, then it has a model over
Xn, thus it also has a minimum-cardinality model over Xn, and
this model contains at most n variables set to 1. Then the exten-
sion over X2n+1 of this minimum-cardinality model obtained by
setting every xi (i 2 [n+1, 2n+1]) to 0 is a minimum-cardinality
model of �. Since this model contains at most n variables set to 1,
tx is not a minimum-cardinality model of ↵. This concludes the
coNP-hardness proof for the problem of checking a minimum-
cardinality model for CNF formulae.
Then we reduce the minimum-cardinality model checking prob-
lem to the problem of deciding whether c is a (minimum-size)
contrastive explanation for x given (F, 1) where F 2 RFn is a
random forest. To any input hx,⌃i of the minimum-cardinality
model checking problem we associate in polynomial time the
triple hF, z, ci as given in the proof of Proposition 6. We use
Lemma 1 to conclude that tx a minimum-cardinality model of
⌃ if and only if c is a (minimum-size) contrastive explanation for
x given (F, 1).

Proposition 8. Let (f,⌃) be a constrained decision-function and
x 2 [⌃] be an instance such that f(x) = 1.4 Let (Csoft, Chard) be
an instance of the PARTIAL MAXSAT problem such that Csoft = tx
and Chard = CNF (⌃ ^ f) where CNF (⌃ ^ f) is a CNF encod-
ing of ⌃ ^ f . Let z⇤ be an optimal solution of (Csoft, Chard). Then,
c = tx \ tz⇤ is a minimum-size contrastive explanation for x given
(f,⌃) and we have txc = tz⇤ \ LXn .

Proof. Let z⇤ be any optimal solution of (Csoft, Chard). On the one
hand, z⇤ is a model of Chard. Since CNF (⌃^f) is query-equivalent
to ⌃ ^ f , tz⇤ \ LXn is a model of ⌃ ^ f . Now, since z⇤ is an
optimal solution of (Csoft, Chard), z⇤ satisfies a maximal number
of soft clauses from Csoft. Since those soft clauses are precisely the
literals occurring in tx, the set of literals c = tx \ tz⇤ is a subset
of literals of tx of minimum-size such that txc = tz⇤ \ LXn is a
model of ⌃ ^ f . Stated otherwise, c is a minimum-size contrastive
explanation for x given (f,⌃).

Proposition 9. Let F 2 RFn such that F (x) = 1, x 2 {0, 1}n, and

t ✓ tx. Deciding whether t is a minimum-size abductive explanation

for x given F is ⇧p
2-complete.

Proof.

• Membership to ⇧p
2: we show that the problem belongs to ⇧p

2 in the
general case when the classifier f is a Boolean function f 2 Fn.
To get the result, we prove that the complementary problem be-
longs to ⌃p

2 . Then, in order to decide whether t is not a (minimum-
size) abductive explanation for x given f , it is enough to first test
whether t is a (weak) abductive explanation for x given f using
one call to an NP oracle; if t is not such an explanation, then it

4 If x is such that f(x) = 0, then consider f instead of f .



is not a (minimum-size) abductive explanation for x given f ; in
the remaining case, it is enough to guess t0 ✓ tx, to check that
|t0| < |t|, and finally to check (using one call to an NP oracle)
that t0 is a (weak) abductive explanation for x given f .

• ⇧p
2-hardness: let us associate in polynomial time with hx 2

{0, 1}n, F = {T1, . . . , Tm} 2 RFn, k  ni such that F (x) = 1
the triple hx0, F 0, ti where x0

2 {0, 1}n+k+1 coincides with
x on its first n coordinates and is such that x0

j = 1 for each
j 2 [n+ 1, n+ k + 1], F 0 = {T 0

1, . . . , T
0
m} 2 RFn+k+1 is such

that T 0
i (i 2 [m]) is a decision tree equivalent to Ti _

Vn+k+1
j=n+1 xj .

Clearly, each decision tree T 0
i (i 2 [m]) can be generated in time

O(k · |Ti|) given that the term
Vn+k+1

j=n+1 xj can be represented
by a decision tree containing k decision nodes and that a decision
tree representing the disjunction of two decision trees can be com-
puted in time in the product of the sizes of the two trees (see [29].
Since k  n, |F 0

| is polynomial in |x| · |F |. By construction, F 0

is equivalent to F _
Vn+k+1

j=n+1 xj so that F 0(x0) = 1. Finally, let
t =

Vn+k+1
j=n+1 xj . By construction, t is an implicant of F 0 such that

t ✓ tx0 . t contains k + 1 characteristics. t is a prime implicant of
F 0 unless F is valid (in which case F 0 is valid as well). More pre-
cisely, if F is valid, then > is the unique prime implicant of F 0,
else the prime implicants of F 0 are the prime implicants of F , plus
t. So if F has a (minimum-size) abductive explanation for x given
F containing at most k characteristics, then this explanation is also
a (minimum-size) abductive explanation for x0 given F 0, showing
that t is not a (minimum-size) abductive explanation for x0 given
F 0. In the remaining case, every (minimum-size) abductive expla-
nation for x given F contains at least k+1 characteristics (hence
F is not valid). This shows that t is a (minimum-size) abductive
explanation for x0 given F 0, and this completes the proof.


