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SAT
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The SAT problem

Definition (SAT Problem)
Problem of deciding if a propositional formula in Conjunctive
Normal Form (CNF) is satisfiable

Definition (Variable)

A variable only takes Boolean values: xi ∈ {false, true}

Definition (Literal)
A literal li is a variable or its negation: xi or ¬xi

Definition (Clause)
A clause Ci is a disjunction of literals: l1 ∨ l2 ∨ . . . ∨ ln
Clauses are often considered as sets of literals

Definition (Formula in CNF)
A formula is a conjunction of clauses: C1 ∧ C2 ∧ . . . ∧ Cm
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Definitions

Definition (Unit clause)
A unit clause is a clause that contains only one literal.

Definition (Empty clause)
An empty clause is a clause that contains no literal. It is
denoted by �.

Definition (Satisfaction of a clause)
A clause is satisfied if at least one of its literal is assigned true.
If every literal is false, the clause is falsified.
The empty clause is always falsified.

Definition
A formula is satisfied if each clause is satisfied. A formula is
falsified if at least one of its clauses is falsified.
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SAT Problem

The SAT problem consists in finding an assignment which
satisfies the formula (decision problem).
The SAT problem is NP-complete.
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Notations

Boolean values will be denoted as
{false,true},
{T,F}
or sometimes {0,1}

In the figures, green will be used to indicate a literal that is
assigned true, and red will be used for a falsified literal.
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Introduction to SAT: the SAT game

A funny illustration of the SAT problem:
http://www.cril.univ-artois.fr/˜roussel/
satgame/satgame.php
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Lessons learnt

Two main steps in the resolution process:
search:
guess an assignment (heuristic) repeatedly until every
constraint is satisfied or until a constraint is violated (in this
case, backtrack and try another new assignment in a
consistent way)
inference:
infer which assignments must be made in order to prevent
dead ends

Search is much easier when we do strong inferences.
Search even becomes linear if we are able to detect
inconsistencies in any case!
No silver bullet: complete inference is NP-complete!
Balance between search and inference is especially critical
in SAT (millions of variables/clauses)
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Unit Propagation (UP)

When all literals in a clause are false but one, this literal
must be assigned true (otherwise the clause is falsified).
Unit Propagation is the iterated application of this rule.
Linear complexity
Main inference rule in SAT solvers!
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UP Implementation: Counters

Occurrence lists allow to know which clauses contain a
given literal.
For each clause, a counter indicates the number of
unassigned literals present in the clause.
When a literal l is assigned true:

Each clause containing l is marked as satisfied and later
ignored.
For each clause containing ¬l , the counter of unassigned
literals is decremented. When it reaches 1, the only
unassigned literal remaining in the clause must be assigned
true.

On backtrack, counters must be restored and previously
satisfied clauses must be considered again.
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Comments On the Counters Implementation

Advantages:
A precise count of the clauses still unsatisfied can be kept,
as well as statistics on these clauses (number of clauses of
length n, number of occurrences of each literals,...).
This information is especially useful in heuristics.

Disadvantages:
After the assignment of variable, every clause containing
that variable must be updated.
The backtrack requires the same amount of work.
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UP Implementation: watched literals

To detect that all literals but one are false, it is sufficient to
make sure that at least two literals are not falsified in the
clause (invariant).
These two literals are called watched literals.
The watched literals can be either unassigned or true.
Whenever a watched literal becomes false, it must be
replaced by another literal of the clause with is not
watched, and either unassigned or true.
If the falsified watched literal cannot be replaced,
propagation occurs, deriving either an implied literal, or
identifying a falsified clause (conflict).
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Watched Literals Illustration (1/7)

Assignment
stack:

WL1 WL2

invariant: watched literals must not be false
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Watched Literals Illustration (2/7)

F

Assignment
stack:

WL1 WL2

invariant: watched literals must not be false

Constraint Reasoning Part 2: SAT, PB, WCSP 15



Watched Literals Illustration (3/7)

F F

Assignment
stack:

WL1 WL2

invariant: watched literals must not be false
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Watched Literals Illustration (4/7)

FF

Assignment
stack:

WL1 WL2

invariant: watched literals must not be false
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Watched Literals Illustration (5/7)

FFF

Assignment
stack:

WL1 WL2

invariant: watched literals must not be false
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Watched Literals Illustration (6/7)

F FFF

Assignment
stack:

WL1 WL2

invariant: watched literals must not be false
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Watched Literals Illustration (7/7)

T F FFF

Assignment
stack:

WL1 WL2

invariant: watched literals must not be false
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Benefits of Watched literals

Advantages:
When a literal is assigned, UP will only consider clauses
where this literal is watched. This is generally a small
percentage of the number of clauses containing this literal.
⇒ less work to do, possibility to increase the number of
clauses.
Very efficient on long clauses.
No work on backtrack!

Disadvantages:
No gain for clauses of length 2.
No way to know exactly which clauses are satisfied and the
number of unassigned literals in a clause. Heuristics can’t
use this information anymore.
⇒ new family of heuristics based on clauses and literals
activities (VSIDS)
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Incompleteness of UP

Unit Propagation is not complete, which means that it does
not derive every literal which is semantically implied by the
formula.
Example: 

a ∨ b
a ∨ c
¬b ∨ ¬c

a is semantically implied by this formula
Either b or c must be false (third clause).
If b is false, then a must be true (first clause).
If c is false, then a must be true (second clause).
In both cases, a must be true.

Each clause contains 2 unassigned literals, UP
propagation does not infer anything.
Determining if a literal is implied is NP-complete. UP has
linear complexity. Therefore, incompleteness is not a
surprise.
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Failed literals

At any time, one can try to assert a literal l , perform unit
propagation and then unassign l .
If unit propagation ended with a falsified clause, then l is a
failed literal. Setting l to true generates an inconsistency.
Therefore, it is necessarily false.
If unit propagation doesn’t generate a conflict, relevant
statistics on the number of propagated literals can be
collected and used in the heuristics (look-ahead).
Example: 

a ∨ b
a ∨ c
¬b ∨ ¬c

Asserting ¬a will allow unit propagation to derive b and c
which falsifies clause ¬b ∨ ¬c. Therefore, we can infer that
a must be true and use it in the following propagations.
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Failed literals (2)

The failed literal rule derives more literals than UP, but it
uses additional information (the literal that is tried)
Only a limited number of literals can be tested at each
node of the search tree, otherwise the process is too time
consuming (balance between search and inference).
Singleton Arc Consistency (SAC) in CSP uses the same
principle as Failed Literals in SAT.
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Resolution Proof System

Two inference rules:

l ∨ A
¬l ∨ B

¬∃l ′ s.t. l ′ ∈ A ∧ ¬l ′ ∈ B
A ∨ B

(resolution)

l ∨ l ∨ C
l ∨ C

(merging)

The merging rule is often implicit in propositional logic
(because clauses are often considered as sets). But it is
explicit (and compulsory) in first order logic, and allows to
understand the incompleteness of unit propagation.
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Comments on Resolution

The resolution proof system is complete, which means that
when a formula is unsatisfiable, there always exists a
resolution proof that derives the empty clause � from its
clauses.
Unit propagation can be seen as the iteration of a weak
form of resolution where one of the two clauses must be a
unit clause.
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Characterization of UP Incompleteness

A literal which is implied by a formula, but cannot be
derived by resolution without using the merging rule,
cannot be derived by UP.
Example: 

a ∨ b
a ∨ c
¬b ∨ ¬c

a can be obtained by resolution but the merging rule is
required to derive it. Therefore, UP cannot derive it.

a ∨ b ¬b ∨ ¬c
a ∨ ¬c a ∨ c

a ∨ a
a

Constraint Reasoning Part 2: SAT, PB, WCSP 27



Learning

When UP falsifies a clause (conflict), it is possible to
generate an explanation of this conflict and learn a clause
that will prevent other occurrences of this conflict.
The explanation is generated by tracing back the UP steps
and performing resolution steps on the involved clauses.
To trace back UP, a reason must be kept for each
implication of a literal. The reason is the clause which
implied the literal. The reasons form an implication graph.
Learned clauses are also used to drive the search (more
on this later) and perform non chronological backtracking.
Learned clauses must be regularly forgotten, otherwise UP
will take more and more time.
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Decision level

Definition (Decision)
A literal that a solver asserts and which is not derived by an
inference process is a decision.

Definition (Decision level)
The decision level is the number of decision that were taken.

Definition (Decision level 0)
The literals that are asserted before any decision is taken are
said to be assigned at level 0.
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Decision level

Literals assigned at level 0 are either unit clauses from the
initial formula or unit clauses that were derived during
search.
The formula is unsatisfiable iff a conflict occurs at level 0 in
a CDCL solver.
A literal l asserted at decision level d will be denoted l@d
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Example of Learning

Assignment
stack:
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Example: New Decision x1 = true

F

Assignment
stack:
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Example: Unit Propagation

F

TF

Assignment
stack:
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Example: New Decision x3 = true

F

F

TF

Assignment
stack:
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Example: Unit Propagation

TF

F

TF

Assignment
stack:
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Example: New Decision x5 = true

F

F

TF

F

TF

Assignment
stack:
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Example: Unit Propagation

F

F

TF

TF

F

TF

Assignment
stack:
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Example: Unit Propagation

F

T

F

F

TF

TF

F

TF

Assignment
stack:
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Example: Unit Propagation

F

F

T

T

F

F

TF

TF

F

TF

Assignment
stack:
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Example: Conflict Discovery

F

F

T

T

F

F

TF

TF

F

TF

Assignment
stack:
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Example: Conflict Analysis

Assignment
stack:
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Example: Conflict Analysis

Assignment
stack:

Constraint Reasoning Part 2: SAT, PB, WCSP 42



Example: Conflict Analysis

Assignment
stack:

First UIP
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Learned Clause

Resolvent R2 contains only one literal at the current
decision level (¬x6@3). This was not the case for R1 or C6.
¬x6@3 is called a Unique Implication Point (UIP). The
assignment of this literal at the current decision level is the
cause of the conflict.
In the first UIP scheme (most frequently used), we stop
conflict analysis at the first UIP, that is, as soon as the
resolvent contains only one literal at the conflict level. The
decision literal is always a UIP.
The clause we learn is R2 : ¬x2@1 ∨ ¬x6@3. Learning this
clause now allows UP to infer ¬x6 from x2, which was
impossible before since x6 is a merge literal.
Learning can also be seen as an on demand knowledge
compilation that adds clauses to improve the completeness
of UP.
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Backtrack

We backtrack to the greatest decision level of literals in the
learned clause except the UIP.
In our example, the learned clause is R2 : ¬x2@1 ∨ ¬x6@3
and we backtrack to level 1.
In this example, level 2 is skipped because it is not relevant
for this conflict.
At level 1, the learned clause is a unit clause which
propagates ¬x6. It is an asserting clause.
The learned clause prevents the conflict from occurring
again.
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Example: Backtrack

F

T

T

TF

F

TF

Assignment
stack:

Constraint Reasoning Part 2: SAT, PB, WCSP 46



Example: Backtrack

T F

T

T

TF

F

TF

Assignment
stack:
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Conflict Analysis Algorithm

Start with the conflict clause
As long as there is more than one literal at the current
decision level in the clause,

Identify the literal l in the current clause that was assigned
last (closest to the top of the assignment stack) and resolve
the current clause with the reason of l upon literal l . The
resolvent becomes the new current clause.

Simplify the learned clause (optional)
Backtrack to the greatest decision level of a literal in the
learned clause (except the conflict level)
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Learned Clause Simplification

The learned clause can be simplified when a subset of the
literals in the clause imply the negation of another literal in
the clause. In this case, this literal can be erased by
resolution (the resolvent subsumes the learned clause).
This can be easily checked by using the results of UP and
the identified reasons.
Example:

Learned : l1 ∨ l2 ∨ l3 ∨ l4 ∨ l5 ∨ l6
UP ¬l1 ∨ l2 ∨ l3 ∨ x1 ∨ x2
UP ¬x1 ∨ l4
UP ¬x2 ∨ l2
Simplification : l2 ∨ l3 ∨ l4 ∨ l5 ∨ l6

Advantages: backtrack to a higher level and better pruning
of the search tree by the shortened clause.
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Conflict Driven, Clause Learning (CDCL) Solvers

1: function BASIC CDCL(F : formula)
2: while true do
3: while UP(F)=CONFLICT do
4: if ConflictAnalysis(F)=conflict at level 0 then
5: return UNSATISFIABLE
6: else
7: Add the learned clause and backtrack
8: end if
9: end while

10: if all variables assigned in F then
11: return SATISFIABLE
12: else
13: Decide(F) . select and assert a literal
14: end if
15: end while
16: end function
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Other components of a CDCL solver

Heuristics:
Increase the weight of variables appearing in a learned
clause and regularly decay the old weights to focus on
recent conflicts (VSIDS: Variable State Independent
Decaying Sum)
Restarts:
Periodically, backtrack to level 0 and restart the search to
avoid being stuck in a wrong initial assignment.
Phase Saving:
When a variable is chosen by the heuristics (decision),
assign it the same value as in the last assignment.
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Other components of a CDCL solver

Clause Deletion Strategy:
Periodically remove the learned clauses that are
considered to be less useful. Very important to keep good
performances for UP.
LBD (Literals Block Distance):

LBD = number of different decisions levels in a learned
clause.
Clauses with small LBD appear to be more important (tight
coupling between propagation sequences) and should be
preserved.
Allows a more agressive clause deletion strategy.
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Some Encodings of CSP Problems into SAT

Several encodings have been proposed to encode CSP
instances with constraints in extension into a SAT formula:

Direct encoding
Support encoding
Log encoding
Order encoding
...
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Direct encoding: Encoding Variables

Let X be a CSP variable and dom(X ) = {v1, v2, . . . , vn}
For each vi ∈ dom(X ), a Boolean variable bX ,vi is created
with the intended semantics bX ,vi = true⇔ X = vi .
“Variable X must be assigned a value” is translated as∨

vi∈dom(X)

bX ,vi (at-least-one clause)

In CSP, a variable can only take one value. This can be
enforced by the following exclusion clauses (at-most-one
clauses)

∀vi ∈ dom(X ), vj ∈ dom(X ), i 6= j ,¬bX ,vi ∨ ¬bX ,vj
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Exclusion clauses

The number of exclusion clauses required to enforce that a
variable take at most one value is quadratic in the size of
the clause.
Two solutions:

Just forget these exclusion clauses. In this case the SAT
formula is no more model-equivalent to the CSP problem,
but is is satisfiability-equivalent (i.e. satisfiable iff the CSP is
satisfiable).
use a straightforward encoding of the at-most-one
constraint which is linear, only uses binary clauses, but
introduces extra variables.
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Linear Encoding of at-most-one

Constraint Reasoning Part 2: SAT, PB, WCSP 56



Linear Encoding of at-most-one: extra clauses
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Linear Encoding of at-most-one: example

T
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Linear Encoding of at-most-one: propagation

F F

F

FF

FT T

T
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Direct encoding: Encoding Constraints

Let C be a CSP constraint in extension represented by a
list of forbidden forbidden tuples {t1, t2, . . . , tn}
For each forbidden tuple ti = ((X1, v1), (X2, v2), . . . ,
(Xn, vn)), we add a clause that forbids this tuple

¬bX1,v1 ∨ ¬bX2,v2 ∨ . . . ∨ ¬bXn,vn

When the contraint is represented by allowed tuples, we
can either complement this set to obtain forbidden tuples
(possible combinatorial explosion), or associate a Boolean
variable to each allowed tuple which is true iff the variables
in the constraint scope are assigned the values of the
tuple, and add binary constraints to enforce assignment of
variables consistent with this tuple when it is selected.
UP propagation does not maintain AC on this encoding.
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Support Encoding

Same encoding of variables as in the direct encoding
For a binary constraint C with scope X ,Y , we encode the
sets of support of each value by clauses which encode the
following reasoning: whenever X is assigned vi , Y must be
assigned a value which is compatible with X = vi .

¬bX ,vi ∨ bY ,w1 ∨ . . . ∨ bY ,wn

such that ∀j ,Y = wj is a support of X = vi .
The same kind of clauses must be added for the sets of
support of values of Y
UP propagation maintains AC on this encoding.
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Knowledge Compilation of Direct Encoding

A knowledge compilation can be performed on the direct
encoding to obtain the support encoding. Let si be the
values of Y that are compatible with X = vi (supports) and
ci be the values of Y which are incompatible with X = vi
(conflicts). The direct encoding generates the following
clauses:

bY ,c1 ∨ . . . ∨ bY ,cn ∨ bY ,s1 ∨ . . . bY ,sm

¬bY ,c1 ∨ ¬bX ,vi
...
¬bY ,cn ∨ ¬bX ,vi

which by hyper resolution generates

¬bX ,vi ∨ bY ,s1 ∨ . . . bY ,sm
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Knowledge Compilation of Direct Encoding

This kind of resolvents can be added either by
preprocessing (knowledge compilation) or even learned by
a CDCL solver.
This clause is only needed when ¬bX ,vi is a merge literal,
that is, when there are at least 2 values conflicting with
X = vi

These clauses are the ones generated by the support
encoding.
Hence, support encoding can be seen as a knowledge
compilation of the direct encoding.
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Log Encoding

A CSP variable X is encoded with dlog2 |dom(X )|e Boolean
variables. These Boolean variables encode the index of
the value assigned to the variable.
Forbidden tuples are encoded by a single clause which
states that the indices of the conflicting values cannot be
used simultaneously.
Example: X = 2 and Y = 1 are incompatible is encoded as

(x1, x0) 6= (1,0) ∨ (y1, y0) 6= (0,1))

In clausal form:
¬x1 ∨ x0 ∨ y1 ∨ ¬y0
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Order Encoding

A CSP variable X which takes integer values is encoded
by Boolean variables px ,i which are true iff X ≤ i .
Example: x ∈ {2,3,4,5,6} is encoded by

clause meaning
¬px ,1 X > 1
¬px ,6 x ≤ 6
¬px ,i−1 ∨ px ,i with i ∈ {2..6} X ≤ i − 1⇒ X ≤ i

Constraints are encoded by considering conflict regions (a
region is a cartesian product of subsets of the variables
domains).
Example: If every pair (X ,Y ) ∈ {2,3,4} × {5,6,7,8} is
forbidden, we can write

X 6∈ {2,3,4} ∨ Y 6∈ {5,6,7,8}
which is translated as

px ,1 ∨ ¬px ,4 ∨ px ,4 ∨ ¬px ,8
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Pseudo-Booleans (PB)
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Linear Pseudo-Boolean (PB) Constraints

A linear pseudo-Boolean constraint is defined over
Boolean variables by ∑

i

ai .li . d

with
ai ,d ∈ Z
li ∈ {xi , x̄i}, xi ∈ B
. ∈ {<,>,≤,≥,=}

Examples:

3x1 − 3x2 + 2x̄3 + x̄4 + x5 ≥ 5

x1 + x2 + x̄4 < 3

A pseudo-Boolean instance is a conjunction of PB
constraints
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Normalization

Any constraint using operators {<,>,≤,≥,=} can be
rewritten as a conjunction of constraints using only ≥
where each coefficient is positive.
Steps of the normalization:

Replace = by a conjunction of ≤ and ≥
Multiply by −1 constraints with <,≤
Replace > d by ≥ d + 1
Since x = 1− x , replace −a.x (with a > 0) by a.x − a
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Cardinalities

Definition (atleast)

atleast(k , {x1, x2, . . . , xn}) is true if and only if at least k literals
among x1, x2, . . . , xn are true.

Definition (atmost)

atmost(k , {x1, x2, . . . , xn}) is true if and only if at most k literals
among x1, x2, . . . , xn are true.

atmost(k , {x1, x2, . . . , xn}) ≡ atleast(n − k , {x1, x2, . . . , xn})
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Expressivity of linear constraints

PB constraints generalize both clauses and cardinality
constraints

clauses: ≥, all ai = 1 and d = 1

a ∨ b ∨ c is represented by a + b + c ≥ 1
cardinalities: ≥, all ai = 1 and d ≥ 1

atleast(2, {a,b, c}) is represented by a + b + c ≥ 2

atmost(2, {a,b, c}) is represented by ā + b̄ + c̄ ≥ 1

PB constraints facilitates some encodings. As an example,
A + B = C where A,B are two integers of n bits can be
encoded as one single constraint

n−1∑
i=0

2iai +
n−1∑
i=0

2ibi =
n∑

i=0

2ici

PB constraints are more expressive than clauses (one PB
constraint may replace an exponential number of clauses)
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Translation of atleast(k , {x1, x2, . . . , xn}) to SAT

Encoding without adding extra variables
Express that no more than n − k literals can be false,
which means that as soon as n − k + 1 literals are
selected, at least one of them must be true (a clause).
So, atleast(k , {x1, x2, . . . , xn}) is equivalent to the
conjunction of all possible clauses obtained by choosing
n − k + 1 literals among {x1, x2, . . . , xn}.
There are

( n
n−k+1

)
such clauses. The worst case is

obtained when k = n/2− 1 and since
( n

n/2

)
≥ 2n/2, this

encoding is exponential.
Polynomial encodings exist but they require the introduction of
extra variables.
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Non-Linear Pseudo-Boolean Constraints

A non-linear pseudo-Boolean constraint is defined over
Boolean variables by∑

i

ai(
∏

j

li,j) . d

with
ai ,d ∈ Z
li ∈ {xi , x̄i}, xi ∈ B
. ∈ {<,>,≤,≥,=}

Example:

3x1x̄2 − 3x2x4 + 2x̄3 + x̄4 + x5x6x7 ≥ 5

A product is a AND
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Expressivity of non-linear constraints

More compact and natural encoding for several problems
Example: factorization problem.
Given an integer N, find P and Q such that N = P.Q and
P > 1,Q > 1.
N = P.Q is encoded as one single non-linear PB
constraint:

∑
i
∑

j 2i+jpiqi = N.
Example: CNF
Any CNF can be encoded as one single non-linear PB
constraint.

a clause C = a ∨ b ∨ c can be expressed as P(C) = 1 with
P(C) = a + b + c − a.b − a.c − b.c + a.b.c
rewrite the whole CNF as

∑
i P(Ci ) = n, with n the number

of clauses in the CNF.

Constraint Reasoning Part 2: SAT, PB, WCSP 73



Some complexities

Complexity of the satisfiability problem in specific cases:

Linear Non-linear
Clauses PB constraints (≥) PB constraints (≥)

1 constraint O(1) O(n) NP-complete
2 constraints O(n) NP-complete NP-complete
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Linearization

A non-linear contraint can be easily translated into a linear
pseudo-Boolean by introducing new variables and
constraints s.t.

v ⇔
n∏

k=1

lk

This can be done
with 2 PB constraints

v ∨ ¬l1 ∨ ¬l2 ∨ . . . ∨ ¬ln∑n
k=1 lk − nv ≥ 0

or n+1 clauses

v ∨ ¬l1 ∨ ¬l2 ∨ . . . ∨ ¬ln
l1 ∨ ¬v
l2 ∨ ¬v
...
ln ∨ ¬v
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Decision and Optimization problems

As in SAT, the decision problem consists in finding an
assignment which satisfies all constraints.
But most PB problems contain a cost function to optimize.
For example,

minimize f =
∑

i

ci .xi with ci ∈ Z, xi ∈ B

The optimization problem consists in finding an assignment
which satisfies all constraints and has the least cost.
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Example of an optimization instance

Problem:
minimize 5x1 + x2 + 8x3 + 2x4 + 3x5
subject to x1 + x̄2 + x3 ≥ 1

x̄1 + x2 + x̄3 + x4 ≥ 3
2x̄1 + 4x2 + 2x3 + x4 + 5x5 ≥ 5
5x1 + 4x2 + 6x3 + x4 + 3x5 ≥ 10

Solution:

Optimum: 8
x1 = x2 = x4 = 1
x3 = x5 = 0
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Obvious rules

x = 1− x
(negation)

x .x = x
(idempotence)

x ≥ 0
−x ≥ −1

(bounds)
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Cutting Plane Proof System

∑
j ajLj ≥ b∑
j cjLj ≥ d∑

j(aj + cj)Lj ≥ b + d
(addition)

∑
j ajLj ≥ b
α > 0
α ∈ N∑

j αajLj ≥ αb
(multiplication)

∑
j ajLj ≥ b
α > 0∑

jd
aj
α eLj ≥ d b

αe
(division)

These three rules form a complete proof system,which means
that whenever the constraints are unsatisfiable, these rules
allow to derive the contradiction 0 ≥ 1.
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Another system

Generalization of resolution:∑
j ajLj ≥ b∑
j cjLj ≥ d

α ∈ N, β ∈ N
α > 0, β > 0∑

j(αaj + βcj)Lj ≥ αb + βd

(generalized resolution)

Truncate coefficients large than the right side term∑
j ajLj ≥ b
∀j ,aj ≥ 0
ak > b

bLk +
∑

j 6=k ajLj ≥ b

(saturation)
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Cutting Plane Stronger than Resolution

Saturation corresponds to the merging rule in SAT. Hence,
the cutting plane proof system can polynomially simulate
the resolution proof system. This means that the cutting
plane proof system is at least as powerful as the resolution
proof system.
With the Cutting Plane proof system, the Pigeon-Hole
problem can be solved in polynomial time, in a way which
is natural for a CDCL solver.
Proofs of the Pigeon-Hole problem in the resolution system
are exponential.
Hence, the Cutting Plane system is stronger than the
resolution proof system.
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The Pigeon-Hole Example

Let Pp,h be a Boolean variable which is true if and only if pigeon
number p is placed in hole number h. The problem of placing 5
pigeons in only 4 holes, with at most one pigeon per hole is
encoded as:

P1,1 + P1,2 + P1,3 + P1,4 ≥ 1 (P1)
P2,1 + P2,2 + P2,3 + P2,4 ≥ 1 (P2)
P3,1 + P3,2 + P3,3 + P3,4 ≥ 1 (P3)
P4,1 + P4,2 + P4,3 + P4,4 ≥ 1 (P4)
P5,1 + P5,2 + P5,3 + P5,4 ≥ 1 (P5)

P1,1 + P2,1 + P3,1 + P4,1 + P5,1 ≥ 4 (H1)

P1,2 + P2,2 + P3,2 + P4,2 + P5,2 ≥ 4 (H2)

P1,3 + P2,3 + P3,3 + P4,3 + P5,3 ≥ 4 (H3)

P1,4 + P2,4 + P3,4 + P4,4 + P5,4 ≥ 4 (H4)
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First conflict

Literal val@lvl reason
P1,1 1@1 −
P2,1 0@1 H1
P3,1 0@1 H1
P4,1 0@1 H1
P5,1 0@1 H1
P2,2 1@2 −
P1,2 0@2 H2
P3,2 0@2 H2
P4,2 0@2 H2
P5,2 0@2 H2
P3,3 1@3 −
P1,3 0@3 H3
P2,3 0@3 H3
P4,3 0@3 H3
P5,3 0@3 H3
P4,4 1@3 P4
P1,4 0@3 H4
P2,4 0@3 H4
P3,4 0@3 H4
P5,4 0@3 H4
� P5
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First conflict analysis

conflict reason
P5: P5,1 + P5,2 + P5,3 + (P5,4) ≥ 1 H4: P1,4 + P2,4 + P3,4 + P4,4 + (P5,4) ≥ 4

↓ ↙
P5,1 + P5,2 + P5,3 + P1,4 P4: P4,1 + P4,2 + P4,3 + (P4,4) ≥ 1

+P2,4 + P3,4 + (P4,4) ≥ 4
↓ ↙

P4,1 + P4,2 + (P4,3)
+P5,1 + P5,2 + (P5,3)

+P1,4 + P2,4 + P3,4 ≥ 4 H3: P1,3 + P2,3 + P3,3 + (P4,3 + P5,3) ≥ 4
↓ ↙

L1: P4,1 + P4,2 + P5,1 + P5,2 + P1,3 + P1,4 + P2,3 + P2,4 + P3,3 + P3,4 ≥ 6
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Second conflict

Literal val@lvl reason
P1,1 1@1 −
P2,1 0@1 H1
P3,1 0@1 H1
P4,1 0@1 H1
P5,1 0@1 H1
P2,2 1@2 −
P1,2 0@2 H2
P3,2 0@2 H2
P4,2 0@2 H2
P5,2 0@2 H2
P1,3 0@2 L1
P1,4 0@2 L1
P2,3 0@2 L1
P2,4 0@2 L1
P3,3 0@2 L1
P3,4 0@2 L1
� P3
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Second conflict analysis

conflict reason
P3: P3,1 + P3,2 + (P3,3 + P3,4) ≥ 1 L1: P4,1 + P4,2 + P5,1 + P5,2

+P1,3 + P1,4 + P2,3 + P2,4
+(P3,3 + P3,4) ≥ 6

↓ ↙
P3,1 + (P3,2) + P4,1 + (P4,2) + P5,1
+(P5,2) + P1,3 + P1,4 + P2,3 + P2,4 ≥ 5 H2: P1,2 + P2,2

+(P3,2 + P4,2 + P5,2) ≥ 4
↓ ↙

L2: P3,1 + P4,1 + P5,1 + P1,2 + P1,3 + P1,4 + P2,2 + P2,3 + P2,4 ≥ 6
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Third conflict

Literal val@lvl reason
P1,1 1@1 −
P2,1 0@1 H1
P3,1 0@1 H1
P4,1 0@1 H1
P5,1 0@1 H1
P1,2 0@1 L2
P1,3 0@1 L2
P1,4 0@1 L2
P2,2 0@1 L2
P2,3 0@1 L2
P2,4 0@1 L2
� P2
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Third conflict analysis

conflict reason
P2: P2,1 + (P2,2 + P2,3 + P2,4) ≥ 1 L2: P3,1 + P4,1 + P5,1 + P1,2 + P1,3 + P1,4

+(P2,2 + P2,3 + P2,4) ≥ 6
↓ ↙

(P2,1 + P3,1 + P4,1 + P5,1) H1: P1,1 + (P2,1 + P3,1 + P4,1 + P5,1) ≥ 4
+P1,2 + P1,3 + P1,4 ≥ 4

↓ ↙
L3: P1,1 + P1,2 + P1,3 + P1,4 ≥ 4
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Final step

Literal val@lvl reason
P1,1 0@0 L3
P1,2 0@0 L3
P1,3 0@0 L3
P1,4 0@0 L3
� P1
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PB propagation: slack based

The slack of a constraint
∑

i ai .li ≥ b is defined as

s =
∑

li not false

ai − b

It represents the maximal amount by which the left side
may exceed the right side of the constraint when all yet
unassigned variables are set to true.
If s < 0, the constraint is falsified.
If s − ai < 0 then li must be set to true (propagation).
Several literals can be propagated by a constraint!
(example: 4a + b + c + d + e ≥ 4 when a becomes false)
Propagation can be performed by incrementally
maintaining the slack. This corresponds to the counter
scheme in SAT.
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PB propagation: watched literals

Let W be the set of watched literals (which may not be
false) in the constraint and

S(W ) =
∑
li∈W

ai

Let amax be the largest coefficient of an unassigned literal
in the constraint.
As long as S(W ) ≥ b + amax , no propagation can occur
because the watched literals are sufficient to satisfy the
constraint even when lmax is set to false.
When this condition is not met, new watched literals must
be found in order to satisfy it, otherwise propagation
occurs.
The number of watched literals can greatly vary during
search!
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PB propagation: watched literals illustration

6 x1 5 x2 5 x3 3 x4 2 x5 2 x6 x7 ≥ 12

w1 w2 w3 w4

x5 = 1@1
x7 = 0@2

6 x1 5 x2 5 x3 3 x4 2 x5 2 x6 x7 ≥ 12

w1 w2 w3 w4

x3 = 0@3

6 x1 5 x2 5 x3 3 x4 2 x5 2 x6 x7 ≥ 12

w1 w2 w3 w4 w5

x4 = 0@4
x1 = 1@4
x2 = 1@4

6 x1 5 x2 5 x3 3 x4 2 x5 2 x6 x7 ≥ 12

w1 w2 w3 w4

backtrack

to level 3

6 x1 5 x2 5 x3 3 x4 2 x5 2 x6 x7 ≥ 12

w1 w2 w3 w4 w5
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CDCL on PB constraints

The general approach is the same as in SAT. However:
A constraint may propagate more than one literal and
hence appear as reason several times.
“Resolution” may generate a constraint which is not
falsified and hence cannot become an asserting constraint.
This occurs because reasons may be oversatisfied. To
avoid this, careful reductions must be performed (removing
literals which are not relevant).
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Example of problem in conflict analysis

Consider the two constraints below:

C1 : 3x1 + 2x2 + x3 + 2x4 ≥ 3
C2 : 3x1 + x5 + x6 + x7 ≥ 3

With {x2 = 0, x4 = 1, x5 = 0}, C1 propagates x1 = 1 and
then C2 is falsified.
“Resolving” upon x1 gives

2x2 + x3 + 2x4 + x5 + x6 + x7 ≥ 3

which is satisfiable!
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Comments

Propagation and conflict analysis is harder in PB and
coefficients in the learned constraints keep growing
(arbitrary precision numbers are needed!)
Therefore, it is sometimes more efficient to learn clauses
rather than PB constraints. But of course, clauses are less
powerful than PB constraints (allow less inferences).
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PB Constraints stronger than clauses?

Several facts suggest that PB constraints are more expressive
than clauses

PB constraints use basic arithmetic
many problems are more easily encoded as PB (e.g.
adder)
NP-complete problems can be encoded as one single PB
constraint (e.g. variants of Knapsack)
any CNF can be encoded as one single non-linear PB
constraint
without additional variables, encoding a PB constraint into
CNF is exponential
the Pigeon-Hole problem can be solved polynomially when
encoded as PB constraints (with learning).

but is it so sure?
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Encoding PB constraints into CNF

1 more or less specialized “direct encoding”
doesn’t introduce additional variables
exponential

2 BDD (Binary Decision Diagrams)

requires additional variables
exponential

3 Adder+Comparator (Warner’s encoding)

requires additional variables
polynomial

4 and a few other encodings
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Generalized Arc Consistency (GAC)

Let C be a PB constraint, l and li be literals
Whenever C ∧ {l1, l2, . . . ln} |= l , we expect that l will be
generated by the inference process
When this is the case for any set of literals, the inference
process is said to maintain Generalized Arc Consistency
(GAC).
Basic PB inference rules maintain GAC.
Depending on the encoding into CNF, Unit Propagation
(UP) may or may not maintain GAC
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Example

4x1 + 3x2 + 3x3 + x4 + x5 < 7
As soon as x1 becomes true, x2 and x3 must be set to false
(otherwise the constraint will be falsified)
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Encoding PB constraints into CNF

1 more or less specialized “direct encoding”
doesn’t introduce additional variables
exponential
UP generally maintains GAC

2 BDD (Binary Decision Diagrams)

requires additional variables
exponential
UP maintains GAC

3 Adder+Comparator (Warner’s encoding)

requires additional variables
polynomial
UP does not maintain GAC
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The trouble with UP on the adder encoding

4x1 + 3x2 + 3x3 + x4 + x5 < 7
x1 = T , all other variables are unknown (U), UP doesn’t
infer anything
x1 = x2 = x3 = T , all other variables are unknown (U), UP
doesn’t even detect inconsistency

U

4x1

3x2

3x3

x4

x5

+
+

+
+ < 7 UU

U

T

T

T

7
10

U
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The big question:

Does there exist an encoding which is both
polynomial
and such that UP maintains GAC ?

Mainly a theoretical question (such an encoding may not be
efficient in practice).

But the existence of this encoding would narrow the gap
between PB constraints and clauses.

And the answer is...
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YES!

It does exist, and it is rather easy. Sketch:
1 normalize constraints to use only <
2 for each literal lj , transform the constraint

∑
i ai .li < d into

“watchdogs”
∑

i 6=j ai .li ≥ d − aj =⇒ ¬lj

3 add an offset so that the new right term d ′ is a multiple
of the power of 2 corresponding to the last stage

4 decompose each coefficient ai into binary
5 for each power of two occurring in the binary

decomposition, use a unary encoding to sum the variables
having a coefficient with this bit set to 1

6 compute the half of each sum and use it as a carry for the
next stage

7 compare the result of the final stage with d − aj (UP
doesn’t work well on this)
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YES!

It does exist, and it is rather easy. Sketch:
1 normalize constraints to use only <
2 for each literal lj , transform the constraint

∑
i ai .li < d into

“watchdogs”
∑

i 6=j ai .li ≥ d − aj =⇒ ¬lj
3 add an offset so that the new right term d ′ is a multiple

of the power of 2 corresponding to the last stage
4 decompose each coefficient ai into binary
5 for each power of two occurring in the binary

decomposition, use a unary encoding to sum the variables
having a coefficient with this bit set to 1

6 compute the half of each sum and use it as a carry for the
next stage

7 compare the result of the final stage with d ′ (one
single bit to compare, this is the trick!)
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The big picture

bucket for 20

in the bucket

half

+

input variables
in the bucket

half

+

input variables

bucket for 21

in the bucket

half

+

input variables

bucket for 22

in the bucket

+

input variables

result of the
comparison

bucket for 23
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Rewrite coefficient in binary

10x1 + 7x2 + 3x3 is rewritten as
(8 + 2)x1 + (4 + 2 + 1)x2 + (2 + 1)x3

and then as
(x1).23 + (x2).22 + (x1 + x2 + x3).21 + (x2 + x3).20

input variables multiplied by a given power of 2 form a
bucket
variables in a bucket are added and represented in unary
the half operator reports a carry from one bucket (for 2i ) to
the next one (for 2i+1)
the last bucket represents the sum (almost)
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Unary representation

n bits encode an integer x between 0 and n
X = 0

0 0 0 0 0
x1 x2 x3 x4 x5

X = 1
1 0 0 0 0
x1 x2 x3 x4 x5

X = 2
1 1 0 0 0
x1 x2 x3 x4 x5

X = 5
1 1 1 1 1
x1 x2 x3 x4 x5
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Convention

1s must be at the beginning, 0s must be at the end
so, the unary representation

1 1 U U 0
x1 x2 x3 x4 x5

encodes a number which is ≥ 2 and ≤ 4
any input vector of Booleans can be converted to this
representation by a cascade of unary adders/sorters. UP
actually does the conversion (sorts the bits).
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Unary adder (Totalizer)

sum of two numbers in unary notation X + Y = Z
1 1 U U 0
x1 x2 x3 x4 x5

+
1 U U 0 0
y1 y2 y3 y4 y5

=
1 1 1 U U U U 0 0 0
z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

can be encoded with simple clauses xi ∧ yj =⇒ zi+j
(meaning if X ≥ i and Y ≥ j then Z ≥ i + j) to deal with 1s.
Same principle with 0s but we don’t need them in our
context.
or by using sorting networks (asymptotically more efficient)
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Half operator

Retaining bits of even indices in the unary representation
of X gives the unary representation of bX/2c
Example

1 1 1 1 0 0
x1 x2 x3 x4 x5 x6

1 1 0
x2 x4 x6
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Comparator and offset

Unit Propagation doesn’t work well on a usual comparator
Solution: add the same constant to both side of the
constraint so that the right term becomes a multiple of 2max

(the weight of the last bucket)
this only adds a constant term to the buckets (easy)
but most importantly it makes the comparator trivial (the
result of the comparator is just one output bit of the last
adder)
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Properties of this encoding

Unit Propagation maintains GAC
O(n2 log(n) log(amax )) variables
O(n3 log(n) log(amax )) clauses
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Weighted CSP (WCSP)
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WCSP

A WCSP instance is defined by a 4-tuple < X ,D,C, k >
such that

X is the set of variables
D is the set of domains of variables
C is the set of constraints
k is the forbidden cost (a positive integer or∞).
Any instantiation with a cost greater or equal to k is
unacceptable.
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Notations

t [X ] is the value of X in tuple t
l(S) (labeling) is the set of all tuples than can be built on
scope S
n is the number of variables
e is the number of constraints
d is the maximum domain size
r is the greatest arity of a constraint
k is the forbidden cost
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Bounded addition

k plays the role of∞. To add or subtract costs, we use the
following operators:
a⊕ b = max(a + b, k)

a	 b =


a− b if a 6= k ∧ b 6= k
k if a = k ∧ b 6= k
−k if a 6= k ∧ b = k
undef if a = k ∧ b = k
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Constraints

A constraint Ci defined on a scope (X1, . . . ,Xn) maps each
tuple of values to a cost in [0..k ]. A cost of k means that
the tuple if strictly forbidden, a cost of 0 means that the
tuple is completely satisfying.
The cost of an instantiation I is the sum of the constraints
costs

cost(I) =
⊕

i

Ci(I)

The WCSP problem consists in finding an instantiation with
a minimal cost which must be smaller than k (optimization
problem)

Constraint Reasoning Part 2: SAT, PB, WCSP 116



Special constraints

Costs of values
Values of variables can be assigned individual costs.
For simplicity, this is modelled by constraints of arity 1.

Constant cost
The cost of an instantiation may contain a constant term
that does not depend on the instantiation.
For simplicity, this cost is associated to a single constaint
with an empty scope named C∅.
Every instantiation has a cost at least equal to cost(C∅).
This constant cost plays an important role in Soft Arc
Consistencies.
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Branch and Bound

UB: upper bound, cost of the best solution found so far
LB: lower bound, minimum cost of any instantiation that
extends the current partial instantiation considered in the
search.
LB is obtained by inference.
As soon as LB≥UB, the branch can be pruned (any
complete instantiation will have a cost at least equal to UB
and hence cannot be preferred to the current best solution)
Whenever a solution is found with a cost c, k can be set to
c in order to prune instantiation with a cost greater or equal
to c.
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Equivalence Preserving Transformation (EPT)

An Equivalence Preserving Transformation (EPT)
transforms a WCSP instance into an equivalent instance.
Two instances are equivalent if they maps any instantiation
to the same cost.
The basic EPT are:

UnaryProject
Project
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Unary Project

Transfer a cost α from a unary constraint CX on X to C∅. Each
value of X must have a cost ≥ α

Algorithm 1 Unary Project
Require: 0 ≤ α ≤ min(CX (vi)|vi ∈ dom(X ))

1: function UNARYPROJECT(X : variable, α: cost)
2: C∅ ← C∅ + α
3: for all vi ∈ dom(X ) do
4: Cx (vi)← Cx (vi)− α
5: end for
6: end function
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Unary Project Example

Each value of X has at least a cost of 3

C∅
0

CX
X cost
a 4
b 3
c 5
d 7

Hence a cost of 3 can be factored to C∅

C∅
0 + 3 = 3

CX
X cost
a 4− 3 = 1
b 3− 3 = 0
c 5− 3 = 2
d 7− 3 = 4
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Project

Transfer a cost α between a value v of X and the tuples of a
constraint Ci where X equals v . If α > 0, cost is moved from
the constraint to the value. If α < 0, cost is moved from the
value to the constraint.

Algorithm 2 Project
Require: |scope(Ci)| ≥ 2
Require: X ∈ scope(Ci)
Require: −CX (v) ≤ α ≤ min({Ci(t)|t [X ] = v})

1: function PROJECT(Ci ,X , v , α)
2: CX (v)← CX (v) + α
3: for all tuple t built on scope(Ci ) s.t. t [X ] = v do
4: Ci(t)← Ci(t)− α
5: end for
6: end function
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Project Example

Initial constraints

CX
X cost
a 0
b 1

CXY
X Y cost
a c 3
a d 0
b c 0
b d 0

CY
Y cost
c 0
d 1

C∅
0

Project a cost of 1 from X = b to the tuples of CXY where
X = b

CX
X cost
a 0
b 1− 1 = 0

CXY
X Y cost
a c 3
a d 0
b c 0 + 1 = 1
b d 0 + 1 = 1

CY
Y cost
c 0
d 1

C∅
0
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Project Example (2)

Project a cost of 1 from tuples of CXY where Y = c to
Y = c

CX
X cost
a 0
b 0

CXY
X Y cost
a c 3− 1 = 2
a d 0
b c 1− 1 = 0
b d 1

CY
Y cost
c 0 + 1 = 1
d 1

C∅
0

Unary project from Y

CX
X cost
a 0
b 0

CXY
X Y cost
a c 2
a d 0
b c 0
b d 1

CY
Y cost
c 1− 1 = 0
d 1− 1 = 0

C∅
0 + 1 = 1
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EPTs are not confluent

CX
X cost
a 0
b 0

CXY
X Y cost
a c 1
a d 1
b c 1
b d 0

CY
Y cost
c 0
d 0

can give

CX
X c
a 1
b 0

CXY
X Y c
a c 0
a d 0
b c 1
b d 0

CY
Y c
c 0
d 0

or
CX

X c
a 0
b 0

CXY
X Y c
a c 0
a d 1
b c 0
b d 0

CY
Y c
c 1
d 0
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Node Consistency

Definition (NC)
A WCSP is Node Consistent (NC) if for any variable X

∀v ∈ dom(X )C∅ ⊕ CX (v) < k
∃v ∈ dom(X )CX (v) = 0
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(Soft) Arc Consistency

Definition (AC)
A WCSP is (Soft) Arc Consistent if for any constaint CS such
that S = scope(S) and |S| ≥ 2

∀t ∈ l(S),Cs(t) = k if C∅ ⊕ CS(t)⊕⊕X∈S CX (t [X ]) = k
∀X ∈ S,∀v ∈ dom(X ),∃t ∈ l(S) such that t [X ] = v and
CS(t) = 0

l(S) (labeling) represents the set of all tuples that can be built
on scope S
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Directional Arc Consistency (DAC)

Definition (DAC)
A binary WCSP is Directional Arc Consistent (DAC) for a given
ordering of variables if ∀CXY such that X < Y ,
∀v ∈ dom(X ),∃w ∈ dom(Y ) such that
CXY (X = v ,Y = w) = CY (w) = 0

Directional arc consistency can be established in O(ed2) time.
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Full Directional Arc Consistency (FDAC)

Definition (FDAC)
A binary WCSP is full directional arc consistent (FDAC) with
respect to an order < on the variables if it is arc consistent and
directional arc consistent with respect to <.

Full directional arc consistency can be established in O(end3).
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Existential Arc Consistent (EAC)

Definition (EAC)
A binary WCSP is existential arc consistent (EAC) if it is node
consistent and if ∀X ,∃v ∈ dom(X ), such that CX (v) = 0 and for
all constraint CXY , ∃w ∈ dom(Y ) such that
CXY (X = v ,Y = w) = CY (w) = 0.
Value v is called the EAC support value of variable X .
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Existential Directional Arc Consistent (EDAC)

Definition (EDAC)
A binary WCSP is existential directional arc consistent (EDAC)
with respect to an order < on the variables if it is existential arc
consistent (EAC) and full directional arc consistent (FDAC) with
respect to <.

EDAC can be established in O(ed2max(nd , k))
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Virtual Arc Consistency (VAC)

Definition (Bool(P))

Let P be a WCSP instance. Bool(P) is a CSP instance built by
copying P (same variables, domains and constraints scopes)
and only allowing tuples which a cost of 0 in P. Any tuple of P
with a cost > 0 is forbidden in Bool(P).

If Bool(P) has a solution, then P has a solution of cost C∅

Definition (VAC)

A WCSP instance P is Virtual Arc Consistent (VAC) if Bool(P)
is AC.
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VAC

When a domain wipe-out occurs in enforcing AC on
Bool(P), it can be traced to identify cost transfers in P than
will increase C∅. This process is similar to conflict analysis.
However, costs may be used in more than one direction
and hence have to be split. Therefore, cost transfers
become fractional.
Cost transfers may become smaller and smaller at each
iteration. Therefore, the number of iteration is not bounded.
One can decide to abort the algorithm when cost transfers
become smaller than ε for a given number of iterations
(algorithm VACε). The instance produced by VACε is not
necessarily VAC.
VACε can be enforced in O(ed2k/ε)
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Optimal Soft Arc Consistency (OSAC)

The idea is to translate every possible EPT (UnaryProject
and Project performed simultaneously) into inequations
and choose the values of cost transfers (α) in order to
maximize the increase of C∅.
We obtain a linear program which can be solved in
polynomial time if we allow costs to be real (instead of
integers).
Short description of the constraints in the linear program:

maximize sum of transfers from variable values to C∅
for each variable value:
initial cost-transfer to C∅+sum of transfers from
constraints≥ 0
for each tuple t in a constraint:
initial cost - sum of transfers to t [X ] for any X in the
scope≥ 0
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OSAC

The resulting costs are real.
The linear program has O(edr + n) variables and
O(ed r + nd) constraints
In practice, only useful for pre-processing.
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Comparison of WCSP consistencies

NC

AC

DAC

FDAC EDAC VAC OSAC< <<
<

<

<

<
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