Boolean Satisfiability for Sequence Mining

Said Jabbour
jabbour@ocril.fr

Lakhdar Sais
sais@cril.fr

Yakoub Salhi
salhi@cril.fr

CRIL - CNRS, University of Artois
F-62307 Lens Cedex
France

ABSTRACT

In this paper, we propose a SAT-based encoding for the
problem of discovering frequent, closed and maximal pat-
terns in a sequence of items and a sequence of itemsets. Our
encoding can be seen as an improvement of the approach
proposed in [8] for the sequences of items. In this case, we
show experimentally on real world data that our encoding
is significantly better. Then we introduce a new extension
of the problem to enumerate patterns in a sequence of item-
sets. Thanks to the flexibility and to the declarative aspects
of our SAT-based approach, an encoding for the sequences
of itemsets is obtained by a very slight modification of that
for the sequences of items.

Categories and Subject Descriptors

F.4.1 [Mathematical logic and formal languages]: Math-
ematical Logic—Logic and constraint programming; H.2.8
[Database management]: Database applications—Data
mining

Keywords

Data mining; Propositional satisfiability and modeling

1. INTRODUCTION

Frequent sequence data mining is the problem of discov-
ering frequent patterns shared across time among an input
data-sequence. Sequence mining is a central task in compu-
tational biology, temporal sequence analysis and text min-
ing.

In this paper, we consider the pattern discovery problem
for a specific class of patterns with wildcards in a sequence.
The data-sequence can be seen as a sequence of items, while
the pattern can be seen as a subsequence that might con-
tains wildcards or jokers in the sense that they match any
item [18, 20, 2]. At the first sight, allowing wildcards to oc-
cur in a pattern can be seen as an even more restrictive type

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CIKM’13, Oct. 27-Nov. 1, 2013, San Francisco, CA, USA.

Copyright 2013 ACM 978-1-4503-2263-8/13/10$15.00.
http://dx.doi.org/10.1145/2505515.2505577 .

649

of patterns in general. However as argued in [18] "studying
patterns with wildcards has the merit of capturing one impor-
tant aspect of biological features that often concerns isolated
positions inside a motif that are not part of the biological
feature being captured’. The enumeration problem for max-
imal and closed motifs with wildcards has been investigated
recently by several authors [19, 20, 2, 8]. One of the major
problem is that the number of motifs can be of exponential
size. This combinatorial explosion is tackled using different
approaches. For example, in Parida et al. [18], the number
of patterns is reduced by introducing the maximal non re-
dundant g-patterns (patterns occurring at least q times in
a sequence). Arimura and Uno [2] proposed a polynomial
space and polynomial delay algorithm MaxMotif for maxi-
mal pattern discovery of the class of motifs with wildcards.

In this work, we follow the constraint programming (CP)
based data mining framework proposed recently by Luc De
Raedt et al. in [10] for itemset mining. This new framework
offers a declarative and flexible representation model. New
constraints often require new implementations in specialized
approaches, while they can be easily integrated in such a CP
framework. It allows data mining problems to benefit from
several generic and efficient CP solving techniques. The au-
thors show how some typical constraints (e.g. frequency,
maximality, monotonicity) used in itemset mining can be
formulated for use in CP [14]. This first study leads to the
first CP approach for itemset mining displaying nice declar-
ative opportunities without neglecting efficiency. More re-
cently, Coquery et al. [8] have proposed a SAT-Based ap-
proach for Discovering for enumerating frequent, closed and
maximal patterns with wildcards in a sequence of items. In
this paper, we first propose a new SAT encoding of the prob-
lem of enumerating frequent, closed and maximal patterns
with wildcards in a sequence of items. Our contribution can
be seen as an improvement of the approach proposed in [8].
Indeed, the experimental results clearly show that the new
encoding is significantly better than the original SAT encod-
ing proposed in [8].

Encouraged by these promising results, we propose in our
second contribution a new variant of the problem of discov-
ering patterns with wildcards in a sequence, by considering
a sequence of itemsets instead of a sequence of items. In
this extension the emptyset will simply play the same role
as the wildcard symbol. Indeed, one can use the emptyset
to match any itemset. This new problem admits some simi-
larities and differences with the classical sequential pattern

mining problem introduced in [1]. Indeed, given an alpha-
bet or a set of items 3, in both problems we consider a
sequence s as an ordered list of itemsets so,..., S, where
si €Y for i =0,...,n. However, the first difference resides
in the definition of a subsequence. Indeed, in the sequen-
tial patterns, we say that s’ is a subsequence of s if there
exists a one-to-one order-preserving function f that maps
(inclusion relation) itemsets in s’ with itemsets in s. In our
new setting, the notion of subsequence is defined w.r.t. to
a given location and by using empty itemsets as wildcards.
The other difference is that in the sequential pattern min-
ing we consider a database of sequences of itemsets, while
in our setting, we consider only a single sequence of item-
sets. These differences leads also to different definitions of
the notions of support, closeness and maximality. In sum-
mary, our new problem of discovering patterns in a sequence
of itemsets can be seen as a simple and natural extension of
the same problem in a sequence of items. As we can show
later, the SAT encoding can be derived from the one used
for the sequences of items with a very slight modification
demonstrating its flexibility.

The paper is organized as follows. In the next section, we
give a short overview of necessary definitions and notations
about Boolean Satisfiability (SAT) and Frequent Pattern
mining in a Sequence of items (FPS). The extension to the
Frequent Pattern mining in a Sequence of Itemsets (FPSI)
is presented in Section 3, followed by a discussion of some
related works. Then our new SAT-based approach for FPS
is described in Section 4, while the closeness and maximal-
ity constraints are discussed in Section 5. In Section 6, we
show how the SAT encoding of FPSI, can be obtained by
a slight modification of the SAT encoding of FPS. Finally,
experimental results are conducted and discussed before con-
cluding.

2. PRELIMINARIES
2.1 Boolean Satisfiability

In this section, we introduce the Boolean satisfiability
problem, called SAT. It corresponds to the problem of decid-
ing if a formula of propositional classical logic is consistent
or not. It is one of the most studied NP-complete decision
problem. In this work, we consider the associated problem
of Boolean model enumeration.

We consider the conjunctive normal form (CNF) repre-
sentation for the propositional formulas. A CNF formula
® is a conjunction of clauses, where a clause is a disjunc-
tion of literals. A literal is a positive (p) or negated (—p)
propositional variable. The two literals p and —p are called
complementary.

A CNF formula can also be seen as a set of clauses, and a
clause as a set of literals. Let us recall that any propositional
formula can be translated to CNF using linear Tseitin’s en-
coding [22]. We denote by Var(®) the set of propositional
variables occurring in ®.

An interpretation B of a propositional formula ® is a func-
tion which associates a value B(p) € {0, 1} (0 corresponds to
false and 1 to true) to the variables p € Var(®). A model
of a formula @ is an interpretation B that satisfies the for-
mula. SAT problem consists in deciding if a given formula
admits a model or not.

650

We denote by [the complementary literal of I, i.e., if | = p
then [= —p and if [= —p then [= p. For a set of literals L,
L is defined as {I | I € L}. Moreover, B (1 is an interpreta-
tion over Viar(®)) corresponds to the clause \/ ¢y o, (a) f(P),
where if B(p) = 0 then f(p) = p, otherwise f(p) = —p.

Let us informally describe the most important compo-
nents of modern SAT solvers. They are based on a rein-
carnation of the historical Davis, Putnam, Logemann and
Loveland procedure, commonly called DPLL [9]. It performs
a backtrack search; selecting at each level of the search tree,
a decision variable which is set to a Boolean value. This
assignment is followed by an inference step that deduces
and propagates some forced unit literal assignments. This is
recorded in the implication graph, a central data-structure,
which encodes the decision literals together with there im-
plications. This branching process is repeated until finding
a model or a conflict. In the first case, the formula is an-
swered satisfiable, and the model is reported, whereas in the
second case, a conflict clause (called learnt clause) is gen-
erated by resolution following a bottom-up traversal of the
implication graph [17, 24]. The learning or conflict analy-
sis process stops when a conflict clause containing only one
literal from the current decision level is generated. Such a
conflict clause asserts that the unique literal with the cur-
rent level (called asserting literal) is implied at a previous
level, called assertion level, identified as the maximum level
of the other literals of the clause. The solver backtracks to
the assertion level and assigns that asserting literal to true.
When an empty conflict clause is generated, the literal is
implied at level 0, and the original formula can be reported
unsatisfiable.

In addition to this basic scheme, modern SAT solvers
use other components such as activity based heuristics and
restart policies. An extensive overview about propositional
Satisfiability can be found in [6, 15].

2.2 Frequent Pattern Mining in a Sequence of
Items (FPS)

In this section, we present the frequent pattern mining
problem of enumerating frequent, closed and maximal pat-
terns with wildcards in a sequence of items [18, 20, 2]. Let
us first give some preliminary definitions and notations.

Sequences of items.

Let X be a finite set of items, called alphabet. A sequence
of items s over X is a simple sequence of symbols sg -+ - Sp—1
belonging to . We denote by |s| its length and by Ps the set
{0,...]s| — 1} of all the locations of its symbols. A wildcard
is a new symbol o which is not in 3. This symbol matches
any symbol of the alphabet.

Pattern.

A pattern over ¥ is a sequence p = pg...pm—1, Where
Po € X, pm—1 € B and p; € XU {o} fori=1,...,m —2.
We say that p is included in s = s¢...sp,—1 at the location
l € Ps, denoted p <; s, if Vi € {0...m — 1}, p; = s14; or
p; = o. We also say that p is included in s, denoted p < s,
if 31 € P such that p =<; s. The cover of p in s is defined as
the set Ls(p) = {l € Ps|p =i s}. Moreover, The support of
p in s is defined as the value |Ls(p)].

FPS problem.

Let s be a sequence, p a pattern and A > 1 a minimal
support threshold, called also a quorum. We say that p is
a frequent pattern in s w.r.t. X if |[Ls(p)| > X. The fre-
quent pattern mining problem in a sequence of items (FPS)
consists in computing the set M2 of all the frequent pat-
terns w.r.t. A. For instance, let us consider the sequence
s = aaccbcabcba and then pattern p = a oc. We have
Ls(p) = {0,1,6}, since p <0 s, p =1 s and p <6 s. In
this case, if we consider that the minimal support thresh-
old is equal to the value 3, then the pattern p is a frequent
pattern of s.

Closed and Maximal Patterns.

A frequent pattern p of a sequence s is said to be closed if
for any frequent pattern g satisfying ¢ > p, there is no integer
d such that L£,(q) = Ls(p) + d, where Ls(p)+d ={l+d|l €
Ls(p)}. Moreover, it is said to be mazimal if for any frequent
pattern q, g * p. Clearly, the set of closed frequent patterns
(resp. maximal frequent patterns) is a condensed represen-
tation of the set of frequent patterns. Indeed, the frequent
patterns can be obtained from the closed (resp. maximal)
ones by replacing items with wildcards.

Note that if p1 and p2 are two patterns such that p1 < pa,
then if |Ls(p2)| > A then |Ls(p1)| > A. This property is
called anti-monotonicity.

3. FREQUENT PATTERN MINING IN A SE-
QUENCE OF ITEMSETS (FPSI)

In this section, we define a new variant of the problem of
discovering patterns with wildcards in a sequence, by consid-
ering a sequence of itemsets instead of a sequence of items.
The role of wildcard symbol is nicely played by the empty
itemset as it match any itemset. As mentioned in the in-
troduction, this new problem admits some similarities and
differences with the classical sequential pattern mining prob-
lem introduced in [1]. The main difference resides in the
definition of the notion of subsequence (inclusion), where
empty itemsets are used as wildcards, and in the use or not
of a single or several sequences

A sequence of itemsets s over an alphabet Y is defined as
a sequence So,...,Sn—1, where s; C ¥ fori =0,...,n — 1.
Similarly to the sequences of items, we denote by |s| its
length (|s| = n) and by P, the set {0,...|s| — 1} of the lo-
cations.

A pattern p = po,...,pm—1 over X is also defined as a se-
quence of itemsets where the first and the last elements are
different from the empty itemset. In this context, let us men-
tion that we do not need the wildcard symbol. Indeed, one
can use the empty itemset to match any itemset. Further-
more, we say that p is included in s = s¢...sn—1, denoted
p =<1 s, at the location | € P, if Vi € {0...m—1}, p; C si4.
The relation < and the set £;(p) are defined in the same way
as in the case of the sequences of items. The cover (resp.
support) of p in s is defined as the set L£(p) (resp. as the
value |Ls(p)]).

The frequent, closed and maximal patterns are also defined
in the same way. For instance, a frequent pattern p of

651

a sequence s is said to be closed if for any frequent pat-
tern g satisfying ¢ > p, there is no integer d such that
Ls(q) = Ls(p) + d, where Ls(p) +d = {Il +d|l € Ls(p)}.
The frequent patterns can be obtained from the closed (resp.
maximal) ones by replacing itemsets with their subsets.

For example, let us consider the sequence of itemsets s =
{a,b},{a,b}, {c,d}, {c,e}, {1}, {g}, {d}, {a, b, d}, {f}, {c} and
the pattern p = {a,b},{}, {c}. If we set the minimal sup-
port threshold to 3, then p is a frequent pattern in s, since
Ls(p) = {0,1,7}. The pattern p is also a closed frequent
pattern, but p’ = {a}, {},{c} is not closed, since p < p’.

The pattern mining task that we consider in the sequences
of itemsets allows to exhibit a high degree of self similarity
for better understandings of large volumes of data. For in-
stance, a sequence of itemsets can be seen as a record of the
articles bought by a customer over a period of time. In such
a case, a frequent pattern could be "the customer bought
acetylsalicylic acid two days after buying beer and wine in
20% of the days from 2008 to 2012”.

3.1 Related Works and Motivations

SAT-based encodings for enumerating frequent, closed and
maximal patterns in the sequences of items have been pro-
posed in [8]. They follows the constraint programing (CP)
based approach proposed recently by Luc De Raedt et al.
in [10] for itemset mining. The SAT and CP based ap-
proaches in data mining are proposed in order to offer declar-
ative and flexible frameworks. Indeed, new constraints re-
quire often new implementations in specialized approaches,
while they can be easily integrated in such frameworks.

In this paper, we propose a SAT-based encodings for enu-
merating frequent, closed and maximal patterns in the se-
quences of items and the sequences of itemsets. The choice
of SAT comes from our desire to exploit the efficiency of
modern SAT solvers [6]. In this context, our encodings can
be seen as an improvement and an extension of the encod-
ings proposed in [8]. Indeed, we show experimentally on
real world data that our encodings are better than those
in [8]. Furthermore, we show that encodings in the case
of the sequences of itemsets are obtained by a very slight
modification of that for the sequences of items.

4. ANEW SAT-BASED APPROACH FOR FPS

We describe here our new Boolean encoding for the prob-
lem of enumerating the frequent patterns in a sequence of
items FPS. The base idea consists in using a propositional
variable to represent the location of an element of the al-
phabet in the candidate pattern. Moreover, we use the well-
known cardinality constraint to reason about the support of
the candidate pattern.

Let ¥ = {a1,...,am} be an alphabet, s a sequence over X of
length n and A\ a minimal support threshold. We associate to
each character a appearing in s a set of k, propositional vari-
ables pa,o, ..., Pa,(k,—1) such that k, = min(max(Ls(a)) +
1,n—A+1). The variable p,,; means that a is in the candi-
date pattern at the location i. In fact, that explains why we
associate only min(maz(Ls(a)) + 1,n — A + 1) variables to
each character a, because {0,...,min(maz(Ls(a)),n — A)}
corresponds to the set of all possible locations of a in the
candidate patterns.

We first need to encode that the first symbol must be a
solid character (different from the wildcard symbol). This
property is expressed by the following simple clause:

\/ Pa,0

a€Xx

(1)

The following constraint composed of binary clauses al-
lows us to capture the locations where the candidate pattern
does not appear:

A\

a€%,0<I<n—1,0<i<kq—1

(2)

(Payi A Si4i # @) = by

where by, ...,b,—1 are n new propositional variables. In
the previous formula b; = 1 if the candidate pattern does
not appear in s at the location j. Let us recall that, in clas-
sical propositional logic, we have A — B := =A V B, and
that explains why the previous formula can be seen as a set
of binary clauses (the expressions of the for s;+; # a are
constants, i.e. s;4; # a € {0,1}).

In the problem of enumerating all the frequent patterns in
s w.r.t. A, we need to express that the candidate pattern
occurs at least A\ times. This property is obtained by the
following cardinality constraint:

®3)

Indeed, if this constraint is not satisfied, then we know
that there exist at least n — A + 1 locations where the can-
didate pattern does not appear. This is equivalent to say
that there exist at most A — 1 locations where the candidate
pattern appears, i.e. it is not frequent. Otherwise, there
exist at least A locations of the candidate pattern , i.e. it
is frequent. Hence this constraint allows us to reason about
the support of the considered candidate pattern an to de-
cide whether it is greater or equal to the minimal support
threshold or not.

The previous constraint involves the well known cardinality
constraint (0/1 linear inequality). Several polynomial en-
coding of this kind of constraints into a CNF formula have
been proposed in the literature. The first linear encoding
of general linear inequalities to CNF have been proposed
by J. P. Warners [23]. Recently, efficient encodings of the
cardinality constraint to CNF have been proposed, most of
them try to improve the efficiency of constraint propagation
(e.g. [4, 21, 3, 16]).

PROPOSITION 1. The problem of enumerating all frequent
patterns in a given sequence s is expressed by the constraints

(1), (2) and (3).

Proor. We first prove that if p = ao,...,ar—1 is a fre-
quent pattern, then there exists an extension of its corre-
sponding Boolean interpretation B, which is a model of (1),
(2) and (3). Note that By, is defined as follows: for all a € &
and for all ¢ € {0,...,kq}, if a; = a then By(pa;) = 1.
One can easily see that the constraint (1) is satisfied by B,
since Bp(pay,0) = 1. Let us now extend the Boolean Inter-
pretation B, to the variables bo, ..., b,—1. This extension is

652

obtained as follows: for all 0 < ¢ < n —1, if p A; s then
By (b;) = 1. Clearly this extension corresponds to a Boolean
interpretation that satisfies (2). Finally, it also satisfies (3),
since p is a frequent pattern, i.e. its support is greater or
equal to the minimal support threshold A.

Conversely, we have to prove that if a Boolean interpretation
B is a model of (1), (2) and (3), then there exists a unique
pattern pg corresponding to B which is frequent. Note that,
using the constraints (2) and (3), we have, for all a,a’ €
% and for all i € {0,...,kq — 1}, if B(pay) = Bpari) =
1, then @ = a’. Indeed, if there exists a # a’ such that
B(pa,i) = B(par i) = 1, then we get 377 by = n and this is
in contradiction with > ;" 01 b <n—A (A #0). Furthermore,
using the constraint (1), we know that the first symbol of p
is different from o. Therefore, we deduce that there exists
a unique pattern associated to B. This pattern corresponds
to ps = ao - - ax—1 such that, for all i € {0,...,k — 1} with
a; # o, B(pa;,i) = 1, and B(pa,;) = 0 for all a € ¥ with
a # a;. Moreover, using the constraint (2), we know that
if B(b;) = 1, then p A; s. Hence, using the cardinality
constraint (3), we deduce that the support of p is greater or
equal to the support threshold A. [J

Example. Consider the frequent pattern mining problem
in the case of the sequence aabb with 2 as minimal support
threshold. Our encoding corresponds to the following for-
mulae:

Pa,0 V Pbg

Pa,0 — (bz N b3)

Pa,1 — (b1 /\bz/\bg,)
Pa,2 = (bo A b1 Aba A bs)
Pvo — (bo A bl)

Pb,1 — (bo A\ bg)

Pb,2 — (bQ A b3)

bo + b1 + b2+ b3 <2

Note that, for all Boolean interpretation B, if B(pa,:) =
B(pv,:), then bo+ b1 + bz +bs = 4. Hence we cannot have dif-
ferent solid characters at the same position. Moreover, using
the last constraint, for all Boolean interpretation B which is
a model of the encoding, we must have B(pa,1) = B(pa,2) =0
and B(pa,0) # B(ps,1). If we describe each Boolean model
of the formula by a subset of {pa,0,Pa,1;Pa,2, Db,05Db,15Db,2}s
then we obtain as models {pa,0}, {Ps,0} and {pa,0,ps,2}.
These Boolean models correspond to the patterns a, b and
aob.

Note that in order to consider the frequent patterns with
at least min solid characters, we just have to add the fol-
lowing constraint:

>

a€D,0<i<kq—1

Pa,i Z min

(4)

Conversely, in order to only consider the frequent patterns
with at most max solid characters, we add:

>

a€X,0<i<kq—1

()

Da,i = MAT

Moreover, the combination of the two previous constraints
allows us to only consider with the number of solid char-
acters between min and max. Let us mention that such
extensions show that our approach is flexible.

S. ENUMERATING CLOSED AND MAXI-
MAL MOTIFS

5.1 Enumerating Closed Motifs (CPS)

In order to provide constraints allowing to enumerate the
closed frequent patterns, we associate to each symbol a a set
of kg + (n — min(Ls(a)) — 1) propositional variables:

Pa,—kls -+ > Paka—1

where k, = n — min(Ls(a)) — 1. Similarly to our previous
encoding, the propositional variables pq.o, ..., Pa,k,—1 allow
us to reason about the possible locations of a in the candi-
date pattern. The variables with negative indices are used
to force the candidate pattern to be closed. Our encoding
of the problem of enumerating the closed frequent patterns
in a sequence of items CPS is obtained by extending the
previous one with new constraints.

We first have to capture all the locations where the can-
didates pattern appears. This is obtained by the following
constraint:

n—1

/\(bl—)

=0

V

€D, 0<i<ka—1

(Payi A Si4i # a)) (6)

Indeed, the previous constraint combined to the constraint
(2) allows us to obtain that, if the Boolean interpretation
B is a model of the constraints (1), (2) and (6), then the
candidate pattern that corresponds to B appears only in the
locations {0 <1 <n —1|B(b) = 0}.

Now, we introduce a necessary, but not sufficient, constraint,
w.r.t. the previous constraints, for obtaining a closed fre-
quent pattern:

n—1

/\ (/\bil_>sl+i:a)_>pa,i

a€R,0<i<kg—1 1=0

(7)

Intuitively, the previous constraint maximizes the number
of the symbols different from wildcard on the right side of
the symbol represented by the propositional variable having
0 as index.

We now define a constraint with the propositional variables
having the negative indices. Conversely to the previous con-
straint, the following constraint allows us to to maximize
the number of the symbols different from wildcard on the
left side:

n—1

/\ (/\bilﬁsl—i:a)Hpa,—i

a€x,1<i<k! 1=0

(8)

Let us note that if the Boolean interpretation B is a model
of ()A(2)AB)A(6)A(T)A(8) and B(pa,i) = 1, then, for all
b € X such that a # b and py,; exists, B(py,i) = 0 holds. This
property is mainly obtained from the constraints (2) and (8)
(see arguments used in the proof of Proposition 1). A closed
motif is obtained from a model by using the propositional
variables associated to the elements of ¥ and evaluated to
1 by this model. Let pag,igsPay,iry---1Pap_1.i,_, b€ these

653

variables. In this case, the closed motif is:
i1 —ip—1

ap O+++0 a1+ Ak—1

We now provide another encoding without using propo-
sitional variables with negative indices. The idea consists
in excluding each interpretation whenever its corresponding
pattern is not closed. This encoding is obtained by replacing
the constraint (8) with the following constraint:

n—1

(N b= sii=a)

=0

A)

a€S,1<i<kl,

By the previous constraint, we simply force the candidate
pattern to be closed.

PROPOSITION 2. The problem of enumerating all the closed
frequent patterns in a given sequence s is expressed by the

constraints (1), (2), (3), (6), (7) and (9).

ProoF. Let p = ao,...,ar—1 be a closed frequent pat-
tern. We define its corresponding Boolean interpretation B),
as follows: for all a € ¥ and for all i € {0,...,k.},ifa; =a
then By (pa,i) = 1. We extend B, to the propositional vari-
ables {bo,...,bn—1} as follows: p A; s iff By(b;) = 1, for
i =0,...,n—1. By using similar arguments as in our proof
of Proposition 1, we know that B, satisfies the constraints
(1), (2) and (3). It also satisfies (6), since if Bp(b;) = 1
then p A; s. In this context, the support of p is equal to
[{bi | Bp(b;) = 0}|. This allows us to deduce that B, satisfies
(7) and (9), since p is closed. Indeed, if (7) or (9) are not sat-
isfied by B,, then there exists a pattern p’ such that p < p’
with a support greater or equal to that of p and we get a con-
tradiction because that means that p is not a closed pattern.

Conversely, consider B a model of (1), (2), (3), (6), (7) and
(9). Using the constraints (2) and (3), we have, for all a,a’ €
Y and for all ¢ € {0,...,ka — 1}, if B(pa,i) = B(par,i) = 1,
then a = a’. Hence, there exists a unique pattern associated
to B that corresponds to pg = ao - - - ax—1 such that, for all
1 €40,...,k—1} with a; # o, B(pa,,i) = 1, and B(pa,:) =0
for all a € ¥ with a # a;. Using Prposition 1, we know that
the pattern pg is frequent. The constraint (6) allows us to
obtain that the support of p is equal to |{b; | B(b;) = 0}].
Using the constraints (7) and (9), we now that there is no
frequent pattern ¢ having the same support as p such that
p < q. Therefore, we deduce that p is a closed frequent
pattern. [

Note that in order to enumerate all frequent patterns with-
out any condition on their supports, we only have to remove
the constraint 3.

5.2 Enumerating Maximal Motifs (MPS)

In our encoding of the problem of enumerating the maxi-
mal frequent patterns in a sequence of items MPS, we only
use the propositional variables associated to the elements of
3. with positive indices, i.e. we associate to each symbol a
a set of k, propositional variables pa.o,...,Pa,(ke—1)- Our
encoding of MPS is obtained by extending the one of FPS
in a similar way as our encoding of CPS.

In order to enumerate the maximal frequent patterns, we

need to capture all the locations where the candidates pat-
tern appears. To this end, similarly to our encodings of CPS,
we use the constraint (6). Indeed, the combination of the
constraints (2) and (6) allows us to obtain, if B is a Boolean
model of these two constraints, then {0 <1 <n —1|B(b;) =
0} corresponds to the set of the locations where the candi-
date pattern appears.

We now provide the constraint allowing to maximize the
number of symbols different from wildcard on the right side
of the symbol represented by the propositional variable hav-
ing 0 as index:

n—1
A Db Asiri=a>X) = pa

a€X,1<i<ky,—1 1=0

(10)

Intuitively, the constraint means that if p = agp - --ax—1 is
the patter candidate and there exists a € ¥ such that then
pattern ag - --ax—10--- oa have the same support as p, then
p is not a maximal frequent pattern.

Coversely to the previous constraint, we finally introduce
the constraint allowing to maximize the number of symbols
different from wildcard on the left side of the symbol repre-
sented by the propositional variable having 0 as index:

A

a€x,1<i<k!,

n—1
SO biAsii=a>)) (11)
=0

One can easily see that it is equivalent to the following
constraint:

(12)

n—1
/\ ZEAsl,i:ag)\—l

aex,1<i<k! 1=0

Indeed, the constraint —(3) '

n—1

cardinality constraint > ;" " < A — 1.

x >) is equivalent to

PRrROPOSITION 3. The problem of enumerating all the mazx-
imal frequent patterns in a given sequence s is expressed by
the constraints (1), (2), (3), (6), (10) and (12).

PRrROOF. Similar to our proof of Proposition 2. []

Let us mention that we can also use the constraints (4)
and (5) to reason about the number of the solid characters
in the considered patterns in the cases of CPS and MPS.
Furthermore, we can use a constraint in order to only con-
sider the closed and maximal patterns with support between
X and). This constraint is the following:

n—1
S bizn-N (13)
=0

6. SAT-BASED ENCODINGS AND SEQUENCE

OF ITEMSETS

In this section, we extend our SAT-based approach for
discovering frequent, closed and maximal patterns in a se-
quence of itemsets. We will show that our encodings in this
case can be obtained from the previous ones with a very
slight modification.

Our encoding of the problem of enumerating the frequent
patterns in a sequence of itemsets FPSI can be easily ob-
tained from the one of FPS. We only have to replace the

654

equalities of the form s;4; # a with a ¢ s;44:

\/ Pao (14)
a€EX
/\ (pa,i Na ¢ SLJM') — b (15)
a€x,0<1<n—1,0<i<kq—1
n—1
dbi<n—A (16)
1=0

In this case, the variable po,; means that the symbol a is
in the candidate pattern in the itemset at the location ¢. Let
us recall that we use the empty itemset as wildcard.

We denote by CPSI (resp. MPSI) the problem of enumer-
ating the closed (resp. maximal) frequent patterns in a se-
quence of itemsets. Similarly to FPSI, Boolean encodings of
CPSI and MPSI can be directly obtained from the ones of re-
spectively CPS and MPS by replacing the expressions of the
form s;4; # a (resp. Si4: = a) with a ¢ si4; (resp. a € si44).

Constraints of closeness:

n—1
N\ (b — \/ (Pai Na & si44)) (17)
1=0 a€X,0<i<kq—1
n—li
A (Ab—acsii)—pai (18)
a€x,0<i<ky,—1 1=0
nfli
N ~(A\b—acs) (19)

a€n1<i<k! 1=0

Constraints of maximality: to express the maximality,
we add the following two constraints to (17):

n—1
A O biNa€Esii>A) = pai (20)

a€D,1<i<kg—1 1=0

n—1
N D birnaesi<ia-1 (21)

a€x,1<i<k! 1=0

The slight modification of our encodings in the case of
the sequences of items in order to obtain encodings for the
sequences of itemsets clearly shows the high flexibility of our
proposed framework.

7.

In our study, we carried out a preliminary experimental
evaluation of our proposed approaches using two different
datasets.

1. Bioinformatics: proteinic data encoded as a sequence
of items, where an item is an amino-acid *.

"http://www.biomedcentral.com/1471-
2105/11/175/additional/

IMPLEMENTATION AND EXPERIMENTS

2. Synthetic datasets: we use the well-known IBM item-
set data generator? to derive datasets with different
features. We used this generator to get sequences of
itemsets, that can be seen as an ordered set of trans-
actions.

To make fair our comparison with the approach proposed
in [8], we adopted the similar choices in our implementa-
tions. First, as we deal with the problem of enumerating
all the models of a given CNF formula encoding our se-
quence mining problem, we implemented a model enumera-
tion solver based on the CDCL-based solver MiniSAT 2.2 3.
To enumerate all the models, each time a model is found,
we add only the negation of the sub-model restricted to the
literals encoding the pattern to the formula and we restart
the search. Secondly, as our SAT encodings include cardi-
nality constraints, we also use the BDD encoding [5] using
BoolVar/PB open source java library 4,

In the first experiment, we compare our new SAT encod-
ing (noted CPS1) against the SAT encoding proposed in
[8] (noted CPS2), on bioinformatics datasets (sequences of
items). This first evaluation concerns the enumeration of fre-
quent closed patterns with wild cards in a sequence of items.
We consider a sequence of fixed length and we measure the
evolution of computation time with respect to the minimal
support threshold (quorum) A. The quorum evolves linearly
(Mo =5and A; = A\i—1+5). Several datasets have been con-
sidered, their evaluation shows similar behavior. The results
obtained on a representative dataset are depicted in Figure
1. This experiment confirms that in the case of sequences of
items, our new SAT-based sequence mining approach out-
performs (in terms of CPU time) the approach proposed re-
cently in [8]. We also obtain significant improvement w.r.t.
the size of the encoding. For instance, if we consider the
most difficult dataset of the Figure 1 (quorum X = 5), the
obtained CNF formula using our encoding contains about 19
millions of clauses and 3 millions of variables, whereas with
the encoding proposed in [8] the formula contains about 30
millions of clauses and 7.5 millions of variables.

The second experiment concerns the new extension of the
problem to the case of sequence of itemsets. Our goal is
show the feasibility of our proposed extension and its as-
sociated encodings. For our evaluation, we considered syn-
thetic datasets, generated using the approach outlined in [1]
and also used by several authors (e.g. [12]). In our context,
we only consider a single sequence of itemsets with differ-
ent features (size of the sequence, number of items, average
size of the itemsets). In Figure 2, we illustrate the results
obtained on two datasets: datasetl (size of the sequence =
100, avg. size of itemsets = 15, number of items = 40) and
dataset2 obtained from datasetl by cutting the sequence at
50th position. The quorum is also varied linearly as in the
first experiment. The main observation that can be made,
is that the hardness of the enumeration problem increase as
the quorum decrease. Indeed, for smaller values of A, the
number of frequent closed patterns is huge, leading to even
harder problems. However for higher values of A, the enu-

http:/ /sourceforge.net /projects/ibmquestdatagen,/
SMiniSAT: http://minisat.se/
“BoolVAR/PB : http://boolvar.sourceforge.net/

655

meration problem becomes easy as the number of interesting
patterns decreases.

7000

6000

5000

4000

3000

time(seconds)

2000 [\

1000 -

— e b R SUNDNR S
20 30 40 50 6 70
quorum

80 90

Figure 1: Bioinfo: time Vs quorum (Sequence of
Items - Frequent Closed Patterns)

8000

aataset1 Lo
dataset2 ——
7000

6000

5000

4000

time(seconds)

3000

2000

1000

25
quorum

15 20 30 35 40 45

Figure 2: Synthetic datasets: time Vs quorum (Se-
quence of Itemsets - Frequent Closed Patterns)

As a summary, in the above experiments, we have shown
that our encoding significantly improve the one proposed in
[8, 7]. For comparison purposes, we used the same encoding
of the cardinality constraint and also the same algorithm
for enumerating all models of a CNF formula. We think
that several room for future improvements can be obtained
by using the state-of-the-art encoding of the cardinality [3],
and by using more efficient model enumeration algorithm
[13, 11, 25]. Obviously, our SAT based approach is less
efficient than dedicated approaches such as the state-of-the-
art algorithm proposed by Arimura et al. in [2]. However,
our SAT model is declarative and highly flexible. Indeed,
the SAT encoding for a sequence of itemsets is obtained
with a very slight modification of the SAT encoding of a
sequence of items. Also, one can easily combine several kind
of constraints. Finally, SAT-based data mining benefits from
the continuous progress of SAT community.

8. AKNOWLEDGMENTS

We thank the reviewers for their helpful comments. This
work has been supported in part by the CNRS and the
French ANR project "DAG: Declarative Approaches for Enu-
merating Interesting Patterns”under the Défis program 2009.

9. CONCLUSION AND PERSPECTIVES

The contributions of this paper are twofolds. First, we
proposed an interesting improvement of the SAT-based en-
codings introduced in [8] for enumerating frequent, closed
and maximal patterns with wildcards in a sequence of items.
Secondly, we introduced a new and natural extension of the
problem to deal with the sequences of itemsets. Interest-
ingly, its encoding to SAT is obtained with a slight modifi-
cation of the SAT encoding of the problem dealing with the
sequences of items. This clearly shows the high flexibility of
our proposed framework and opens several issues for future
research. We first plan to investigate other variants of the
problem such as sequences of sequences of items or itemsets.
It would be interesting to extend our encoding with con-
straints on the form of the enumerated patterns (restriction
on the number of consecutive wildcards, regular expressions,
etc). Finally, on the Boolean satisfiability side, the design
of efficient model generation procedures is an important is-
sue for SAT-based data mining framework in general and to
other important application domains.

10. REFERENCES

[1] R. Agrawal and R. Srikant. Mining sequential
patterns. In A. L. P. C. Philip S. Yu, editor,
Proceedings of the Eleventh International Conference
on Data Engineering (ICDE’1995), pages 3—14. IEEE
Computer Society, 1995.

H. Arimura and T. Uno. An efficient polynomial space
and polynomial delay algorithm for enumeration of
maximal motifs in a sequence. Journal of
Combinatorial Optimization, 13, 2007.

R. Asin, R. Nieuwenhuis, A. Oliveras, and

E. Rodriguez-Carbonell. Cardinality networks: a
theoretical and empirical study. Constraints,
16(2):195-221, 2011.

O. Bailleux and Y. Boufkhad. Efficient CNF Encoding
of Boolean Cardinality Constraints. In 9th
International Conference on Principles and Practice of
Constraint Programming - CP 2003, pages 108-122,
2003.

O. Bailleux, Y. Boufkhad, and O. Roussel. A
translation of pseudo boolean constraints to sat.
Journal on Satisfiability, Boolean Modeling and
Computation (JSAT), 2(1-4), 2006.

A. Biere, M. J. H. Heule, H. van Maaren, and

T. Walsh, editors. Handbook of Satisfiability, volume
185 of Frontiers in AI and Applications. I0S Press,
20009.

E. Coquery, S. Jabbour, and L. Sais. A constraint
programming approach for enumerating motifs in a
sequence. In M. Spiliopoulou, H. Wang, D. J. Cook,

J. Pei, W. Wang, O. R. Zalane, and X. Wu, editors,
ICDM Workshops, pages 1091-1097. IEEE, 2011.

E. Coquery, S. Jabbour, L. Sais, and Y. Salhi. A
SAT-Based Approach for Discovering Frequent, Closed

656

[9]

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

and Maximal Patterns in a Sequence. In 20th
FEuropean Conference on Artificial Intelligence ECAI,
pages 258-263, 2012.

M. Davis, G. Logemann, and D. W. Loveland. A
machine program for theorem-proving.
Communications of the ACM, 5(7):394-397, 1962.

L. De Raedt, T. Guns, and S. Nijssen. Constraint
Programming for Itemset Mining. In Proceedings of
the 14th International Conference on Knowledge
Discovery and Data Mining (ACM SIGKDD’2008),
pages 204-212; Las Vegas, Nevada, USA, August
24-27 2008.

M. Gebser, B. Kaufmann, A. Neumann, and

T. Schaub. clasp : A conflict-driven answer set solver.
In 9th International Conference Logic Programming
and Nonmonotonic Reasoning (LPNMR’2007),
volume 4483 of Lecture Notes in Computer Science,
pages 260-265. Springer, 2007.

K. Gouda, M. Hassaan, and M. J. Zaki. Prism: A
primal-encoding approach for frequent sequence
mining. In Proceedings of the 7th IEEE International
Conference on Data Mining (ICDM 2007), pages
487-492, Omaha, Nebraska, USA, October 28-31 2007.
IEEE Computer Society.

O. Grumberg, A. Schuster, and A. Yadgar. Memory
efficient all-solutions sat solver and its application for
reachability analysis. In In Proceedings of the 5th
International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pages 275-289.
Springer, 2004.

T. Guns, S. Nijssen, and L. D. Raedt. Itemset mining;:
A constraint programming perspective. Artificial
Intelligence, 175(12-13):1951-1983, 2011.

Y. Hamadi, S. Jabbour, and L. Sais. Learning from
conflicts in propositional satisfiability. 4OR,
10(1):15-32, 2012.

S. Jabbour, L. Sais, and Y. Salhi. A pigeon-hole based
encoding of cardinality constraints. In In proceedings
of the 29th International Conference on Logic
Programming (ICLP’2013), August 24-29 2013.

J. P. Marques-Silva and K. A. Sakallah. GRASP - A
New Search Algorithm for Satisfiability. In Proceedings
of IEEE/ACM CAD, pages 220-227, 1996.

L. Parida, I. Rigoutsos, A. Floratos, D. Platt, and

Y. Gao. Pattern Discovery on Character Sets and
Real-valued Data: Linear Bound on Irredundant
Motifs and an Efficient Polynomial Time Algorithm.
In ACM-SIAM Symposium on Discrete Algorithms,
pages 297-308, 2000.

L. Parida, I. Rigoutsos, and D. Platt. An
output-sensitive flexible pattern discovery algorithm.
In In proceedings of the 12th Annual Symposium on
Combinatorial Pattern Matching (CPM’2001), volume
2089 of Lecture Notes in Computer Science, pages
131-142. Springer, 2001.

N. Pisanti, M. Crochemore, R. Grossi, and M.-F.
Sagot. Bases of motifs for generating repeated
patterns with wild cards. IEEE/ACM Transactions on
Computational Biology and Bioinformatics
(TCBB’2005), 2(1):40-50, 2005.

C. Sinz. Towards an Optimal CNF Encoding of
Boolean Cardinality Constraints. In 11th International

Conference on Principles and Practice of Constraint
Programming - CP 2005, pages 827-831, 2005.

G. Tseitin. On the complexity of derivations in the
propositional calculus. In H. Slesenko, editor,
Structures in Constructives Mathematics and
Mathematical Logic, Part I, pages 115-125, 1968.

J. P. Warners. A linear-time transformation of linear
inequalities into conjunctive normal form. Information
Processing Letters, 68(2):63-69, 1998.

657

[24] L. Zhang, C. F. Madigan, M. W. Moskewicz, and

S. Malik. Efficient conflict driven learning in Boolean
satisfiability solver. In IEEE/ACM CAD’2001, pages
279-285, 2001.

[25] W. Zhao and W. Wu. Asig: An all-solution sat solver

for cnf formulas. In 11th International Conference on
Computer-Aided Design and Computer Graphics,
CAD/Graphics 2009, Huangshan, China, August
19-21 (CAD/Graphics), pages 508-513. IEEE, 2009.

