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Abstract—In this paper, we show how symmetries, a funda-
mental structural property, can be used to prune the search
space in itemset mining problems. Our approach is based on a
dynamic integration of symmetries in APRIORI-like algorithms
to prune the set of possible candidate patterns. More precisely,
for a given itemset, symmetry can be applied to deduce other
itemsets while preserving their properties. We also show that
our symmetry-based pruning approach can be extended to
the general Mannila and Toivonen pattern mining framework.
Experimental results highlight the usefulness and the efficiency
of our symmetry-based pruning approach.

I. INTRODUCTION

Frequent Itemset Mining is one of the most fundamental

problems in data mining. Since its introduction by Agrawal

in [24], the field of data mining has flourished into several

research areas with fundamental applications ranging from

security to bioinformatics. This basic data mining task is

now a building block of various other problems, such as

the ones of association rule mining, frequent pattern mining

in sequence data, data clustering, episode mining, etc. As

pointed out in [25], a lot of works focussed on the design

of highly scalable itemset mining algorithms for large scale

datasets.

The main objective of this paper is to introduce a new

symmetry-based pruning framework in data mining. As in

other domains such as constraint programming and Boolean

satisfiability where symmetries are extensively studied, our

goal is to show that symmetry-based pruning is also an

interesting issue in data mining and more generally for

solving enumeration problems. To this end, we consider one

of the fundamental data mining tasks, the itemset mining

problem and its associated popular APRIORI algorithm.

Symmetry is a fundamental concept in computer science,

mathematics, physics and many other domains. Many human

artifacts from classroom in a university to machines in a

company exhibit symmetries. Such symmetries allow us to

reason and to understand more complex entities and sys-

tems. For example, in a mathematical proof, we sometimes

state that a certain assumption can be made without loss

of generality. In combinatorial problem solving, symmetry

has been extensively studied. For instance, in scheduling

problems, as certain machines might be interchangeable,

from a valid schedule, one can permute these machines and

still obtain a valid schedule. Exploiting symmetries allows

us to reduce the search efforts, by avoiding the exploration

of symmetrical parts of the search space. This is why

this kind of structures and reasoning has received a lot of

attention in constraint satisfaction problems (CSP) (e.g. [9]),

propositional satisfiability (SAT) (e.g. [4]) and operation

research (OR) (e.g. [15]). As far as we know, symmetry

reasoning has been first introduced by Krishnamurthy [14]

to shorten resolution proofs in propositional logic. He shows

that a resolution proof system augmented with the symmetry

rule is more powerful than resolution.

In data mining, symmetries are studied mainly in frequent

graph mining (e.g. [11], [6], [26]). Recently, we proposed a

new framework for breaking symmetries in itemset mining

problems [12]. In [12], we consider symmetries as permu-

tations between items that leave invariant the transaction

database. First, we addressed symmetry detection in trans-

action databases, and we have shown how such discovered

symmetries can be eliminated in a preprocessing step by

rewriting the transaction database i.e. eliminating some items

from the original transaction database. This approach is

completely different from the symmetry breaking framework

widely used in propositional satisfiability and constraint

satisfaction problems. Indeed, in CSP and SAT, symme-

tries are usually eliminated by adding to the constraints

network, symmetry breaking predicates (SBP) i.e. additional

constraints.

In [12], we mentioned that symmetries can also be in-

tegrated in APRIORI-like algorithms to dynamically prune

the search space. In this paper, we propose to study this

issue in-depth. Our main motivation comes from the fact,

that symmetry-based pruning can be more easily generalized

to deal with other data mining problems, while breaking

symmetries in a preprocessing step [12] highly depends on

the input database and on the patterns to be mined. The

second problem behind symmetry breaking approach comes

from the fact that symmetries between items involved in the

same transaction can not be eliminated, while they can be

handled by the symmetry-based pruning approach presented

in this paper.

We choose APRIORI algorithm, the most popular itemset

mining algorithm, as an example to show the feasibility of

our symmetry-based pruning approach. Experimental results
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tid itemset
001 A, B, E, F
002 A, B, C, D
003 C, D, E, F
004 A, C
005 A, E
006 C, E
007 B, D
008 B, F
009 D, F

Table I
AN EXAMPLE OF A TRANSACTION DATABASE D

show the relevance and the efficiency of our symmetry-based

pruning approach (APRIORI algorithm with symmetry). To

the best of our knowledge, it is the first operative approach

taking benefit from symmetries of the datasets to prune the

search space in itemset mining tasks.

The rest of this paper is organized as follows. After some

preliminaries on itemset mining and symmetries (Section II),

we introduce our symmetry-based pruning approach in Sec-

tion III. In Section V, we describe the generalization of

our symmetry pruning approach to the general Mannila and

Toivonen pattern mining framework [17]. Section VI, gives

an overview of related works on symmetries in data mining.

Our experimental evaluation is given in Section IV before

concluding with several paths for future research.

II. TECHNICAL BACKGROUND AND PRELIMINARY

DEFINITIONS

A. Itemset Mining problem

Let I be a set of items and T a set of names, called

transaction identifiers. A set I ⊆ I is called an itemset. A

transaction is a couple (tid, I) where tid is the transaction

identifier (tid ∈ T ) and I is an itemset (I ∈ I). A

transaction database D is a finite set of transactions over

I such that each transaction has a unique identifier. We

note Tid(D) = {tid| (tid, I) ∈ D} the set of transaction

identifiers associated to D. We use Iitems(O) to denote the

set of all the items appearing in the syntactic object O (e.g. a

transaction database, itemset, etc). We say that a transaction

(tid, I) supports an itemset J if J ⊆ I .

The cover of an itemset I in a transaction database

D is the set of identifiers of transactions in D support-

ing I: Cover(I,D) = {tid | (tid, J) ∈ D and I ⊆
J}. The support of an itemset I in D is defined by:

Supp(I,D) =|Cover(I,D)|. Moreover, the frequency of I

in D is defined by: Freq(I,D) = Supp(I,D)
|D| .

Example 1: Let us consider the transaction database D
(cf. Table I) over the set of items I = {A,B,C,D,E, F}.

For instance, we have Supp({B,D},D)= |{002, 007}|=2
and Freq({B,D},D)=2

9 .

In the sequel, we consider D as a transaction database over

I and λ a minimal support threshold with 0 ≤ λ ≤ |D|.

Proposition 1 (Anti-Monotonicity): Let I1 and I2 be two

itemsets such that I1 ⊆ I2. If Supp(I2,D) ≥ λ then

Supp(I1,D) ≥ λ.

Definition 1 (Frequent Itemset Mining Problem): The

frequent itemset mining problem consists in computing the

following set:

FIM(D, λ) = {I ⊆ I | Supp(I,D) ≥ λ}

B. Symmetry in Frequent Itemset Mining

Intuitively, a symmetry of a transaction database D
is a permutation of items that leaves D invariant. Such

permutation over the set of items induces a permutation

over the transactions. As the transaction database remains

unchanged, the properties of an itemset are preserved under

the application of a symmetry. The set of symmetries forms

a symmetry group, where the permutation that maps each

item with itself is a neutral element. In the sequel, we use

notations from computational group theory.

Let us now formally define symmetry in the frequent

itemset mining problem.

Definition 2 (Permutation): A permutation p over a finite

set S is a bijective mapping from S to S .

Each permutation p can be represented by a set of cycles

c1 . . . cn where each cycle ci = (a1, . . . , ak) is a list of

elements of S such that p(aj) = aj+1 for j = 1, . . . , k− 1,

and p(ak) = a1. In the sequel, for clarity reasons, we omit

cycles of the form (a, a) in the description of permutations

and symmetries.

Let D be a transaction database. We denote by

P(Iitems(D)) and P(Tid(D)) the sets of all the permuta-

tions over respectively Iitems(D) and Tid(D). Moreover, we

denote by P(Tid(D), Iitems(D)) the following set of permu-

tations {σ ◦ f | σ ∈ Iitems(D) and f ∈ Tid(D)}. It is easy

to see that (P(Tid(D), Iitems(D)), ◦) is a group where the

identity permutation is a neutral element. A structure (S′, ◦)
is a sub-group of the group (P(Tid(D), Iitems(D)), ◦) if and

only if (S′, ◦) is a group and S′ ⊆ P(Tid(D), Iitems(D)).
Let D be a transaction database. A permutation σ ◦ f is

extended to a transaction database D as follows: σ◦f(D) =
{(f(tid), σ(I))|(tid, I) ∈ D} where σ(I) = {σ(a)|a ∈ I}.

Definition 3 (Symmetry): A symmetry of D is a per-

mutation σ ◦ f in P(Tid(D), Iitems(D)) such that σ ∈
P(Iitems(D)), f ∈ P(Tid(D)) and σ ◦ f(D) = D.

Example 2: Let us consider again the transaction database

D given in Table 1. Let σ =
(A,C)(B,D) a permutation over Iitems(D) and f =
(001, 003)(005, 006)(008, 009) a permutation over Tid(D).
The permutation σ ◦ f is a symmetry of D.

Let S(D) be the set of all the symmetries of D.

It is worth noting that (S(D), ◦) is a sub-group of

(P(Tid(D), Iitems(D)), ◦).
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Obviously, as a symmetry leaves the transaction database

invariant, all the properties of an itemset such as frequency,

closeness, maximality are preserved. The following proposi-

tion, shows that symmetry preserves the frequency property.

Proposition 2: Let D be a transaction database, σ ◦ f a

symmetry of D, λ a minimal support threshold and I an

itemset. I ∈ FIM(D, λ) iff σ(I) ∈ FIM(D, λ).
Proof: Since σ ◦ f is a symmetry, it is easy to see that

the support of I is equal to the one of σ(I). Therefore,

I ∈ FIM(f(D), λ) if and only if σ(I) ∈ FIM(D, λ).

C. Symmetry Detection in Transaction Databases

One of the most popular means for discovering symme-

tries can be accomplished by encoding the problem into a

graph and seek for graph automorphism i.e. permutations

of its vertices that maps edges to edges. Graph automor-

phism is a particular case of graph isomorphism which is

believed to be easier than NP-Complete and for which no

polynomial algorithm is known. The good news is that graph

isomorphism is rarely difficult in practice as demonstrated by

the efficient available tools. Most of the symmetry detection

tools mainly focus on the automorphism of a colored graph.

The colors on vertices are used to constrain the mapping to

vertices with the same color i.e. two vertices with different

colors can not be mapped each others. The first practical

implementation for graph automorphism, called nauty,

is due to Brendan McKay [18]. In order to tackle larger

graphs, different improvements in terms of data structures

and sophisticated group-theoretic pruning heuristics have

been proposed yielding to powerful symmetry detection

systems [2], [13].

In order to search for symmetries in a transaction database

D, we only need to find how to encode D as a colored

undirected graph G such that symmetries on D correspond

to automorphisms of G.

Definition 4: A colored undirected graph is a triplet G =
(V,E,η ) with vertex set V and edge set E ∈ V × V and η
is a function from V to N that associates a positive integer

(a color) to each vertex.

Definition 5: A permutation α of V is an automorphism

of G iff σ(G) = G or equivalently σ(E) = E.

Definition 6: An automorphism α of G respects a parti-

tion π of V if for each v ∈ V , v and σ(v) belong to the

same cell (or element) of π. The set of all automorphisms of

G with respect to a partition π is called the automorphism

group of G under π and is denoted A(G)π .

We now show how a transaction database can be encoded

as a colored undirected graph.

Definition 7 (From D to G): We define the colored undi-

rected graph G associated to D as G(D) = (V,E,η ) where

V = I ∪ Tid(D), E = {(tid, i)|∃(tid, I) ∈ D, i ∈ I} and

∀v ∈ V ,

η(v) =

{
0 for v ∈ Iitems(D)
1 for v ∈ Tid(D)

Let us note that π = {{v|v ∈ V,η (v) = 0}, {v|v ∈
V,η (v) = 1}} is the initial partition of V . Several refine-

ments have been proposed to improve the partition π. The

goal of these refinements is to reduce the search space by

distinguishing as much as possible non symmetric vertices

using vertex invariant such as vertex degree (e.g. [5]).

Figure 1 depicts the conversion of the transaction database

D given in Example 1 to a colored undirected graph G(D).
In the Figure 1, items are represented with nodes as circles

(color 1) while the transaction identifiers are represented by

rectangles (color 2).
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Figure 1. From transaction database D to colored graph G(D)

Thanks to this construction, the symmetries of the trans-

action database correspond to the automorphisms of the

colored undirected graph. Given G(D) and an initial partition

π, the goal is to compute A(G(D))π . Using NAUTY [18],

one can find the automorphisms that leave G(D) invariant.

For example, A = (A,C)(B,D)(001, 003)(005, 006)
(008, 009) is an automorphism of G(D). The corresponding

symmetry is σ ◦ f where σ = (A,C)(B,D) and f =
(001, 003)(005, 006)(008, 009).

III. SYMMETRY-BASED PRUNING

In this section, we show how the set of symmetries

can be used to prune the search space of frequent mining

problems. To this end, we consider the well known APRIORI

algorithm [1], which is given in Algorithm 1. It is an algo-

rithm for mining frequent itemsets for association rules. This

algorithm is mainly based on the anti-monotonicity property:

an itemset is frequent if and only if all its subsets are

frequent (Proposition 1). It proceeds by a level-wise search

of the frequent itemsets. Indeed, it starts by computing the

frequent itemsets of size one F1 (line 1). Then, it iteratively

computes the frequent itemsets of size from 2 (F2) to the

maximal size n (Fn) such that Fn+1 = ∅ (lines 2-8). The
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basic idea consists in assuming the frequent itemsets of size

k − 1 known, and generating a set of candidates of size k
by using the anti-monotonicity property (line 4).

Algorithm 1: APRIORI

Data: D: database, λ: minimal support threshold

Result: the set of all frequent itemsets

F1 ← {frequent itemsets of size 1};1

for (k = 2; Fk−1 �= ∅; k ++) do2

Fk ← ∅;3

Ck ← CandidatesGen(Fk−1);4

for (c ∈ Ck) do5

supp(c) ← CalculSupp(c,D);6

if (supp(c) ≥ λ) then7

Fk ← Fk ∪ {c};8

return (
⋃

k Fk);9

We now describe the integration of our symmetry-based

pruning approach into the APRIORI algorithm. It mainly

consists in using symmetries to reduce the set of candidates

in the same way as the anti-monotonicity property. The use

of our approach of symmetry-based pruning is described in

Algorithm 2.

Algorithm description:: Similarly, APRIORISym

algorithm takes as input, a transaction database D, a

minimal support threshold λ, and an additional argument:

the set S of symmetries in D. It has as output the set of all

the frequent itemsets.

Lines 1-4. This part is similar to that in APRIORI algorithm.

However, we consider that the set S of symmetries is used

to improve the function that computes the frequent itemsets

of size one (line 1). For instance, we know that if {a} is

frequent (resp. not frequent) then, for all σ ◦ f ∈ S , the

itemset {σ(a)} is also frequent (resp. not frequent).

Lines 5-10. In this for-loop, we start by computing

the support of a candidate c (line 6) and the set Sc of the

candidates symmetric to c (line 7). If c is a frequent itemset

(line 8), then all the elements of Sc are also frequent

itemsets (line 9). Then, the elements of Sc are removed

from the set of candidates (line 10).

Proposition 3: APRIORISym algorithm is correct.

Proof: It is an immediate consequence of the correct-

ness of APRIORI algorithm and Proposition 2.

Algorithm 2: APRIORISym

Data: D: database, λ: minimal support threshold, S:

symmetries in D

Result: the set of all frequent itemsets

F1 ← {frequent 1-itemsets};1

for (k = 2; Fk−1 �= ∅; k ++) do2

Fk ← ∅;3

Ck ← CandidatesGen(Fk−1);4

for (c ∈ Ck) do5

supp(c) ← CalculSupp(c,D);6

Sc ← SymmGen(c,S);7

if (supp(c) ≥ λ) then8

Fk ← Fk ∪ {c} ∪ Sc;9

Ck = Ck \ Sc;10

return (
⋃

k Fk);11

For instance, let D be a transaction database such that

Iitems(D) = {A,B,C,D} and σ◦f is a symmetry such that

σ = (A,D)(B,C). We assume that the itemsets {A}, {B},

{C} and {D} are frequent. We also assume that in line 8,

we obtain that the itemset {A,B} is not frequent. By using

the anti-monotonicity property, we obtain that the itemsets

{A,B,C}, {A,B,D} and {A,B,C,D} are not frequent.

Moreover, by using σ, we also obtain that the itemsets

{C,D} = σ({A,B}), and by the anti-monotonicity property

we deduce that {A,C,D} and {B,C,D} are not frequent.

This example is illustrated in Figure 2 where the circle nodes

correspond to the itemsets pruned by our symmetry-based

pruning approach.
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Figure 2. Symmetry Pruning

IV. EXPERIMENTAL EVALUATION

A. Experimental setup

We present in this section some experimental results

highlighting the usefulness and the practical benefits of using

symmetry-based pruning in itemset mining tasks.

Experiments were performed on several datasets from the
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UCI repository1 and the real dataset BMS-WebView-2 [28],

this dataset contains click-stream data from e-commerce

websites. Table II provides for each dataset its number

of transaction (#trans), its total number of distinct items

(#items) and its density: the density of a dataset is defined as

the average transaction size of the dataset divided by #items.

A dataset is said to be dense, when most transactions tend

to be similar i.e they have about the same size and contain

mostly the same items.

dataset #trans #items density
Zoo 101 43 39%

Mushroom 8 142 117 18%
Australian 690 55 25%
Solar flare 323 40 32%
BMS-WebView-2 77 512 3 341 0.14%

Letter-recognition 20 000 74 23%

Table II
DESCRIPTION OF THE DATASETS

For symmetry detection in datasets, we use Saucy2, a new

implementation of the Nauty system. It was first proposed

in [2] and significantly improved in [5]. In most cases, Saucy

enables us to detect symmetries in common UCI databases

in less than a second. Table III summarizes symmetry

extraction time on the datasets we use in our experiments.

dataset #sym time (s)
Zoo 2 0.02

Mushroom 10 0.94
Australian 2 0.06
Solar flare 2 0.05

BMS-WebView-2 10 4.31
Letter-recognition 0 2.12

Table III
SYMMETRY EXTRACTION TIME (SECONDS)

Symmetries are present in the datasets regardless itemset

mining tasks and measures thresholds, thus the symmetry-

based pruning approach we propose in this paper proceeds in

two steps. First, we extract symmetries using Saucy. Then,

APRIORISym takes as input the set of symmetries in D in

addition to the input of APRIORI which is composed by the

dataset D and a minimal support threshold.

In order to quantify the runtime acceleration obtained with

and without symmetry-based pruning approach, we define

the mining time acceleration measure MT A as follows:

MTA =
runtime(APRIORI)−runtime(APRIORISym)

runtime(APRIORI)

1http://www.ics.uci.edu/∼mlearn/MLRepository.html
2Saucy2: Fast symmetry discovery, http://vlsicad.eecs.umich.edu/BK/

SAUCY/

This measure quantifies the runtime acceleration obtained

when considering symmetries during the itemset mining

process. It does not consider the symmetry extraction time

because symmetry extraction is done only once (offline) for

a database and could be used after whatever are the itemset

mining tasks and the thresholds. The symmetry detection

time is less than 5 seconds on the considered datasets.

We also show how using our symmetry-based pruning

approach reduces significantly the number of frequency

computation operations that we call in this paper database

scans. For this task, we define the following database scan

reduction measure:

MSR =
#db scans(APRIORI)−#db scans(APRIORISym)

#db scans(APRIORI)

B. Experimental results

For our experiments, we take as an example the classi-

cal frequent itemset mining algorithm APRIORI (cf. Algo-

rithm 1).

We mainly focus on the contribution of symmetry-based

pruning on reducing the number of database scans and

reducing the frequent itemsets mining algorithm runtime.

Our first observation is that, in real datasets, we find few

symmetries (cf. Table III). This is an expected result as, in

most cases symmetries in real datasets are rather local ones

(symmetries on a portion of D) than global (symmetries on

the whole D)

Experiments conducted in this section, show that these

few symmetries are enough to obtain interesting pruning

results.

Table IV shows the efficiency of integrating symmetry-

based pruning into the APRIORI algorithm even if we have

only few detected symmetries in the database. #freqSym

(resp. #infreqSym) denotes the number of frequent (resp.

infrequent) patterns deduced using symmetries. For example,

for Australian dataset containing only two symmetries,

and 1% as a minimal frequency threshold (minfr), we

observe the following: using APRIORI, the database needs

to be scanned about 480 thousand times in order to check

the property of candidate itemsets (whether a candidate

itemset is frequent or not). Whereas, using APRIORISym,

the properties of about 115 thousand candidate itemsets

(#freqSym+#infreqSym) are deduced due to symmetries and

no more scan of the database is needed (cf. Table IV). Finally

we note that, in this case, APRIORISym is 23% faster than

APRIORI.

Another important result of our experiments is that the

APRIORIsym algorithm preserves the same efficiency as

APRIORI when dealing with datasets which do not con-

tain symmetries (cf. Table IV, letter-recognition
dataset). Thus, our symmetry-based pruning approach could

be generalized to be used with other itemset mining al-

gorithms allowing them to take benefit from symmetries

whether they exist. We prove in section V the feasibility
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Dataset minfr Sym Pruning #db scans MSR #freq #freqSym #infreqSym MT A

Australian
1%

−− 479 402
24% 426 763

−− −−
23%� 364 822 100 961 13 613

5%
−− 28 535

22% 20 386
−− −−

22%� 22 288 4.461 1 886

Solar-Flare
1%

−− 147 270
9% 145 893

−− −−
8%� 133 056 14 128 1 291

15%
−− 5 684

8% 5 495
−− −−

9%� 5 203 448 33

Mushroom 5%
−− 3 764 532

0.4% 3 755 511
−− −−

6%� 3 748 084 16 384 8 957

Zoo
5%

−− 587 782
20% 486 099

−− −−
15%� 487 224 100 480 78

15%
−− 103 318

23% 102 440
−− −−

17%� 79 492 23 776 50

BMS-
1%

−− 4 908
0% 81

−− −−
0%WebView-2 � 4 908 0 0

Letter-
5%

−− 32 680
0% 15 719

−− −−
0%recognition � 32 680 0 0

Table IV
EXPERIMENTAL RESULTS

of this generalization when dealing with interestingness

predicates which are stable by symmetry.

Finally, we notice that for BMS-WebView-2 dataset, con-

taining 10 symmetries, we do not observe any effect of

these symmetries on the search space. In fact, the pruning

efficiency is not proportional to the number of symmetries in

the dataset: if symmetries appear in only few transactions, as

is the case for BMS-WebView-2, then all concerned itemsets

are not frequent and are pruned by APRIORI.

C. Discussion

Our experiments show that the symmetry pruning ap-

proach we present in this paper could be integrated into

APRIORI algorithm in order to reduce the number of the

costly frequency computation operations. If the dataset does

not contain symmetries, APRIORIsym has the same perfor-

mance as APRIORI. Symmetries are extracted only once

for each dataset, thus the obtained mining time acceler-

ation is always greater or equal to zero (MTA(APRIORI

Sym,APRIORI ) ≥ 0).
Symmetries are then important properties that we should

consider in order to improve current itemset mining algo-

rithms on some families of datasets.

V. A GENERALIZATION OF THE USE OF SYMMETRIES

In this section, we propose a generalization of our ap-

proach to different problems of knowledge discovery in the

transaction databases. The model that we consider is inspired

from [17]. Let D be a transaction database, L a language

for expressing considered knowledges ( a set of patterns),

and q an interestingness predicate for evaluating whether

an element of L is an interesting knowledge (or pattern).

In this context, we consider that a mining task consists in

computing the following set:

T H(D,L, q) = {a ∈ L | q(D, a) is true}

For instance, the problem of enumerating frequent itemsets

can be obtained by defining L as all the non-empty subsets

of the set of items in the considered transaction database,

and q as the predicate expressing that an itemset has a

support higher than the considered threshold.

An interestingness predicate q is said to be stable by

symmetry if, for all transaction database D and a ∈ L, and

for all symmetry σ, q(D, a) is true if and only if q(D, σ(a))
is true.

One can easily see that in the case of an interestingness

predicate which is stable by symmetry, the set of sym-

metries can be used to prune the search space. Indeed,

if an element a of the considered language is interesting

(resp. not interesting), then σ(a) is also interesting (resp.

not interesting), for each symmetry σ. Thus, our approach

can be integrated to different mining algorithms where the

interestingness predicates are stable by symmetry.

In order to illustrate our generalization, let us consider the

problem of enumerating closed itemsets. We recall that an

itemset I in a transaction database D is closed if and only if,

for all itemset J such that I ⊂ J , Supp(I,D) > Supp(J,D)
holds. Let D be a transaction database, I a closed itemset

in D and σ a symmetry of D. Since σ is a symmetry,

Supp(σ(I),D) = Supp(I,D) holds. We now prove that

σ(I) is also a closed itemset in D. Let I ′ be an itemset such

that σ(I) ⊂ I ′ and Supp(σ(I),D) ≤ Supp(I ′,D). One can

see that I ⊂ σ−1(I ′) and Supp(I,D) ≤ Supp(σ−1(I ′),D).
Thus, we get a contradiction and we deduce that σ(I) is

a closed itemset. Therefore, our symmetry-based pruning
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approach can also be used in the problem of enumerating

closed itemsets.

VI. RELATED WORKS

In the context of data mining, symmetries are structural

knowledge that can be efficiently exploited in reducing

the size of the search space or the size of the outputs.

Symmetries can also be seen as relevant knowledge and

extracting symmetries can itself be a data mining task.

As structural knowledge, it may for instance help a data

analyst in understanding some relationships between items.

Note that symmetries are hidden knowledge requiring to

explore empirical data and their extraction depends on the

types of symmetries one is searching for. The semantics

that can be associated with each symmetry pattern in a

given application field represents a high level piece of

knowledge revealing some properties of the underlying data.

For example, in frequent graph mining problems, symmetric

items (subgraphs) are patterns satisfying some properties

with respect to the frequent graph mining problem. In a

transaction dataset, symmetric items may reveal for example

that such items play the same role. Exploiting symmetries

has received an increasing attention in artificial intelligence.

In particular, symmetries are widely studied in satisfiability

(e.g. [3], [4]) and constraint satisfaction problems (e.g. [23]).

In data mining, symmetries are studied mainly in frequent

graph mining [26], [6], [21], [10].

In the frequent sub-graph mining problem, many works

use symmetry-related concepts in the mining process. For

instance, in [6] the authors make use of sub-graph symme-

tries in order to prune the search space during the candidate

enumeration steps. The concept of symmetries is used in

[26] along with constraints on sub-graphs widths in order

to mine relevant sub-graphs. Symmetries (in the sense of

automorphisms) are used in this work as interestingness

measure. In [7], the author proposes approaches for mining

symmetries in social networks. Another work using the

symmetry concept related with graph mining is the one of

[27] where automorphism-based partition of graphs provide

some structural informations. Many other works use the

concept of symmetries in graph related problems but for

other purposes rather than graph-mining.

In data clustering, many works use symmetry-related

concepts for different purposes. For instance, the authors

in [22] deal with hierarchical clustering of massive data to

mine symmetries and other interesting patterns. In this work,

symmetric patterns are understood as a structure which

reveals invariants and intrinsic properties in data. In [21],

the author provides a unifying view on symmetry in data

mining and data analysis based on hierarchy. The authors in

[16] use symmetry-related concepts in relational clustering.

For the itemset mining problem, symmetries have not

yet received much attention. One can mention two related

works addressing a particular case of general symmetries

considered in this paper [20], [19]. Indeed, this restricted

form of symmetry, called pairwise items symmetry, is ob-

tained by exchanging two items, while leaving the remaining

items unchanged. This is clearly a restriction of the general

symmetry principle. In [20], an efficient ZBDD algorithm for

detecting pairwise symmetries is proposed and the property

of symmetric items in transaction database are discussed.

In this work, the author deals only with a special case of

symmetries, namely only pairs of symmetric items are con-

sidered. Here the concept of symmetric item refers to pairs

of items that if permuted, the dataset remains unchanged and

consequently, the mined frequent itemsets are the same.

Pairwise items symmetries, called clone items, have been

proposed by Medina and Nourine [8] to explain why some-

times, the number of rules of a minimum cover of a relation

is exponential in the number of items of the relation. More

recently, in the context of constraint programming for k-

pattern set mining, Guns et al. [10] used symmetry breaking

constraints to impose a strict ordering on the patterns in

the pattern set. The symmetry concept in this work is more

related to symmetries in constraint satisfaction problems

than to symmetric items in the sense of support.

VII. CONCLUSION AND FUTURE WORKS

We have proposed an efficient approach for taking ad-

vantage of symmetries in transaction databases in order to

improve search space pruning in itemset mining algorithms.

Symmetries are structural knowledge showing interesting

properties for some enumeration and search problems. In this

paper, we showed how such knowledge can be efficiently

used in the pruning step of the well-known APRIORI algo-

rithm in order to limit the number of databases scans. We

provided an experimental evaluation showing that on some

datasets, the number of database scans has been reduced

by about 24% in comparison with the standard APRIORI

algorithm. This approach is very interesting since computing

symmetries can be done in an offline mode and only once.

Moreover, we showed that symmetry-based pruning can be

extended to other data-mining and enumeration tasks as far

as the underlying predicates are stable by symmetry.

Future works will address the extension of symmetry-

based pruning to other data mining problems such as se-

quences, trees and graphs mining. Other problems such as

clustering can benefit from this important symmetry proper-

ties. We also plan to investigate other form of symmetries

such as local or conditional symmetries i.e. symmetries on

the portion of the transaction database.
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