
Mining-Based Compression Approach of Propositional

Formulae

Said Jabbour, Lakhdar Sais, Yakoub Salhi
CRIL - CNRS, University of Artois

F-62307 Lens Cedex, France
{jabbour, sais, salhi}@cril.fr

Takeaki Uno
National Institute of Informatics
2-1-2, Hitotsubashi, Chiyoda-ku

Tokyo 101-8430, Japan
uno@nii.jp

ABSTRACT
In this paper, we propose a first application of data min-
ing techniques to propositional satisfiability. Our proposed
mining based compression approach aims to discover and to
exploit hidden structural knowledge for reducing the size of
propositional formulae in conjunctive normal form (CNF).
It combines both frequent itemset mining techniques and
Tseitin’s encoding for a compact representation of CNF for-
mulae. The experimental evaluation of our approach shows
interesting reductions of the sizes of many application in-
stances taken from the last SAT competitions.

Categories and Subject Descriptors
F.4.1 [Mathematical logic and formal languages]: Math-
ematical Logic—Logic and constraint programming ; H.2.8
[Database management]: Database applications—Data
mining

Keywords
Compression; Data mining; Propositional satisfiability and
modeling

1. INTRODUCTION
Propositional satisfiability (SAT) i.e., the problem of check-

ing whether a Boolean formula in conjunctive normal form
(CNF) is satisfiable or not, became a core technology in
many application domains, such as formal verification, plan-
ning and various new applications derived by the recent im-
pressive progress in practical SAT solving. SAT has gained
a considerable audience with the advent of a new genera-
tion of solvers able to solve SAT instances with millions of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10$15.00.
http://dx.doi.org/10.1145/2505515.2505576.

variables and clauses [9, 4]. Today, these solvers represent
an important low-level building block for many important
fields, e.g., SAT modulo theory, Theorem proving, Model
checking, Quantified Boolean formulas, Maximum Satisfia-
bility, Pseudo Boolean, etc. In addition to the traditional
applications of SAT to hardware and software formal verifi-
cation, this impressive progress led to increasing use of SAT
technology to solve new real-world applications such as in
bioinformatics, cryptography and data mining.

Propositional formulae in CNF is the standard input for-
mat for propositional satisfiability. Indeed, most of the
state-of-the-art SAT solvers are based on this normal form.
Such convenient CNF representation is derived from a gen-
eral Boolean formula using the well-known Tseitin encoding
[14]. In practice, the general Boolean formula itself is usually
derived from high level language in which problem structure
is explicit.

Two important flaws were identified on the CNF form and
largely discussed in the literature (e.g. [6]). First, it is often
argued that by encoding arbitrary propositional formulae in
CNF, structural properties of the original problem are not
reflected in the CNF formula. Secondly, even if such transla-
tion is linear in the size of the original formula, a huge CNF
formula might result when encoding real-world problems.
Some instances exceed the capacity of the available mem-
ory, and even if the instance can be stored, the time needed
for reading the input instance might be higher than its solv-
ing time. The obstacle here is not the potential di�culty of
the instance, but its size. The growing success obtained in
solving real-world SAT problems highlights a real transition
to industrial and commercial scale. This results in a rapid
growth in the size of the CNF instances encoding real-world
problems. Consequently, the design of new e�cient models
for representing and for solving SAT instances of very large
sizes (”Big” instances) is clearly an important challenge.

To address this problem, developing a more compact rep-
resentation of CNF formulae is an interesting research issue.
By compact encoding of formulae, we have in mind a repre-
sentation model which through its use of structural knowl-
edge results in the most compact possible formula equivalent
with respect to satisfiability. By structural knowledge, we
mean patterns that can be recognized or discovered. To be
useful, such algorithm must be incremental.

289

Two promising models were proposed these last years.
The first, proposed by H. Dixon et al [3], uses group theory
to represent several classical clauses by a single clause called
an ”augmented clause”. The second model was proposed by
M. L. Ginsberg et al [5], called QPROP (”quantified proposi-
tional logic”), which may be seen as a propositional formula
extended by the introduction of quantifications over finite
domains, i.e. first order logic limited to finite types and
without functional symbols. The problem rises in finding
e�cient solving techniques of formulae encoded using such
models.

More recently, an original approach for compacting sets of
binary clauses was proposed by J. Rintanen in [12]. Binary
clauses are ubiquitous in propositional formulae that repre-
sent real-world problems ranging from model-checking prob-
lems in computer-aided verification to AI planning prob-
lems. In [12], using auxiliary variables, it is shown how
constraint graphs that contain big cliques or bi-cliques of
binary clauses can be represented more compactly than the
quadratic and explicit representation. The main limitation
of this approach lies in its restriction to particular sets of
binary clauses whose constraints graph represents cliques
or bi-cliques. Such particular regularities can be caused by
the presence of an at-most-one constraint over a subset of
Boolean variables, forbidding more than one of them to be
true at a time.

In the data mining community, several models and tech-
niques for discovering interesting patterns in large databases
has been proposed in the last few years. The problem of
mining frequent itemsets is well-known and essential in data
mining, knowledge discovery and data analysis. Since the
first article of Agrawal [1] on association rules and itemset
mining, the huge number of works, challenges, datasets and
projects show the actual interest in this problem (see [13]
for a recent survey).

Our goal in this work is to address the problem of finding
a compact representation of CNF formulae. Our proposed
mining based compression approach aims to discover hidden
structures from arbitrary CNF formulae and to exploit them
to reduce the overall size of the CNF formula while preserv-
ing satisfiability. It is the first application of data mining
techniques to Boolean Satisfiability.

Recently, a first constraint programming (CP) based data
mining framework was proposed by Luc De Raedt et al. in
[11, 2]. This new framework o↵ers a declarative and flex-
ible representation model. It allows data mining problems
to benefit from several generic and e�cient CP solving tech-
niques [8]. This first study leads to the first CP approach
for itemset mining displaying nice declarative opportunities
while opening interesting perspectives to cross fertilization
between data-mining, constraint programming and proposi-
tional satisfiability.

In this paper, we are particularly interested in the other
side of this innovative connection between these two research
domains, namely how data-mining can be helpful for SAT.
We present the first data-mining approach for Boolean Sat-
isfiability. We show that itemset mining techniques are very
suitable for discovering interesting patterns from CNF for-
mulae. Such patterns are then used to rewrite the CNF
formula more compactly. We also show how sets of binary
clauses can be also compacted by our approach. We also
prove that our approach can automatically achieve similar
reductions as in [12], on bi-cliques and cliques of binary

tid itemset
1 Joyce,Beckett, Proust
2 Faulkner,Hemingway,Melville
3 Joyce, Proust
4 Hemingway,Melville
5 F laubert, Zola
6 Hemingway,Golding

Table 1: An example of transactions database D

clauses. It is also important to note, that our proposed
mining4SAT approach is incremental. Indeed, our method
can be applied incrementally or in parallel on the subsets
of any partition of the original CNF formula. This will be
particularly helpful for huge CNF formula that can not be
entirely stored in memory.

2. FREQUENT ITEMSET MINING PROB-
LEM

2.1 Preliminary Notations and Definitions
Let I be a set of items. A set I ✓ I is called an itemset.

A transaction is a couple (tid, I) where tid is the transaction
identifier and I is an itemset. A transactions database D is
a finite set of transactions over I where for all two di↵erent
transactions, they do not have the same transaction identi-
fier. We say that a transaction (tid, I) supports an itemset
J if J ✓ I.

The cover of an itemset I in a transactions database D
is the set of identifiers of transactions in D supporting I:
C(I,D) = {tid | (tid, J) 2 D and I ✓ J}. The support of an
itemset I in D is defined by: S(I,D) =| C(I,D) |. Moreover,

the frequency of I in D is defined by: F(I,D) = S(I,D)
|D| .

For example, let us consider the transactions database in
Table 1. Each transaction corresponds to the favorite writers
of a library member. For instance, we have :
S({Hemingway,Melville},D) = |{2, 4}| = 2 and
F({Hemingway,Melville},D) = 1

3 .
Let D be a transactions database over I and � a minimal
support threshold. The frequent itemset mining problem
consists of computing the following set: FIM(D,�) = {I ✓
I | S(I,D) > �}.

The problem of computing the number of frequent item-
sets is #P -hard [7]. The complexity class #P corresponds
to the set of counting problems associated with a decision
problem in NP . For example, counting the number of mod-
els satisfying a CNF formula is a #P problem.

2.2 Maximal and Closed Frequent Itemsets
Let us now recall two popular condensed representations

of the set of all frequent itemsets: maximal and closed fre-
quent itemsets.

Definition 1 (Maximal Frequent Itemset). Let D
be a transactions database, � a minimal support threshold
and I 2 FIM(D,�). I is called maximal when for all
I 0 � I, I 0 /2 FIM(D,�) (I 0 is not a frequent itemset).

We denote by MAX (D,�) the set of all maximal frequent
itemsets in D with � as a minimal support threshold. For
instance, in the previous example, we have MAX (D, 2) =
{{Joyce, Proust}, {Hemingway,Melville}}.

290

Definition 2 (Closed Frequent Itemset). Let D be
a transactions database, � a minimal support threshold and
I 2 FIM(D,�). I is called closed when for all I 0 � I,
C(I,D) 6= C(I 0,D).

We denote by CLO(D,�) the set of all closed frequent
itemsets in D with � as a minimal support threshold. For
instance, we have CLO(D, 2) = {{Hemingway},
{Joyce, Proust}, {Hemingway,Melville}}. In particular,
let us note that we have C({Hemingway},D) = {2, 4, 6}
and C({Hemingway,Melville},D) = {2, 4}. That explains
why {Hemingway} and {Hemingway,Melville} are both
closed. One can easily see that if all the closed (resp. max-
imal) frequent itemsets are computed, then all the frequent
itemsets can be computed without using the corresponding
transactions database. Indeed, the frequent itemsets cor-
respond to all the subsets of the closed (resp. maximal)
frequent itemsets.

The number of maximal (resp. closed) frequent itemsets
is significantly smaller than the number of frequent itemsets.
Nonetheless, this number is not always polynomial in the size
of the database [16]. In particular, the problem of counting
the number of maximal frequent itemsets is #P -complete
(see also [16]).
Many algorithm has been proposed for enumerating fre-

quent closed itemsets. One can cite Apriori-like algorithm,
originally proposed in [1] for mining frequent itemsets for
association rules. It proceeds by a level-wise search of the
elements of FIM(D,�). Indeed, it starts by computing the
elements of FIM(D,�) of size one. Then, assuming the
element of FIM(D,�) of size n is known, it computes a
set of candidates of size n + 1 so that I is a candidate if
and only if all its subsets are in FIM(D,�). This proce-
dure is iterated until no more candidates are found. Ob-
viously, this basic procedure is enhanced using some prop-
erties such as the anti-monotonicity property that allow us
to reduce the search space. Indeed, if I /2 FIM(D,�),
then I 0 /2 FIM(D,�) for all I 0 ◆ I. In our experiments,
we consider one of the state-of-the-art algorithms LCM for
mining frequent closed itemsets proposed by Takeaki Uno
et al. in [15]. In theory, the authors prove that LCM ex-
actly enumerates the set of frequent closed itemsets within
polynomial time per closed itemset in the total input size.
Let us mention that LCM algorithm obtained the best im-
plementation award of FIMI’2004 (Frequent Itemset Mining
Implementations).

3. FROM CNF FORMULA TO TRANSAC-
TION DATABASE

We first introduce the satisfiability problem and some
necessary notations. We consider the conjunctive normal
form (CNF) representation for the propositional formulas. A
CNF formula � is a conjunction of clauses, where a clause is
a disjunction of literals. A literal is a positive (p) or negated
(¬p) propositional variable. The two literals p and ¬p are
called complementary. A CNF formula can also be seen
as a set of clauses, and a clause as a set of literals. The
size of the CNF formula � is defined as |�| =

P
c2� |c|,

where |c| is equal to the number of literals in c. A unit
clause is a clause containing only one literal (called unit lit-
eral), while a binary clause contains exactly two literals. A
formula containing only binary clauses is called 2-CNF for-

mula. An empty clause, denoted ?, is interpreted as false
(unsatisfiable), whereas an empty CNF formula, denoted >,
is interpreted as true (satisfiable).

Let c1 and c2 be two clauses of a formula �. We say that c1
subsumes c2 i↵ c1 ✓ c2. If c1 subsumes c2, then the clause c2
can be deleted from � while preserving satisfiability. A CNF
formula � is closed under subsumption i↵ 8c 2 �, @c0 2 �
such that c 6= c0 and c0 subsumes c. We denote by �s, the
formula obtained from � by eliminating all the subsumed
clauses.

We note l̄ the complementary literal of l. More precisely,
if l = p then l̄ is ¬p and if l = ¬p then l̄ is p. Let us recall
that any propositional formula can be translated to CNF
using Tseitin’s linear encoding [14]. We denote by V� the
set of propositional variables appearing in �, while the set
of literals of � is defined as L�.

An interpretation B of a propositional formula � is a func-
tion which associates a value B(p) 2 {0, 1} (0 corresponds
to false and 1 to true) to the variables p 2 V�. A model of
a formula � is an interpretation B that satisfies the formula:
B(�) = 1. The SAT problem consists in deciding if a given
CNF formula admits a model or not.

We define �|
x

as the formula obtained from � by assigning
x the truth-value 1. Formally �|

x

= {c | c 2 �, {x,¬x}\c =
;} [{c\{¬x} | c 2 �,¬x 2 c}. �⇤ denotes the formula �
closed under unit propagation, defined recursively as follows:
(1) �⇤ = � if � does not contain any unit clause, (2) �⇤ =?
if � contains two unit-clauses {x} and {¬x}, (3) otherwise,
�⇤ = (�|

x

)⇤ where x is the literal appearing in a unit clause
of �.

A CNF formula can be considered as a transactions database,
called CNF database, where the items correspond to literals
and the transactions to clauses. Note that complementary
literals correspond to two di↵erent items.

Definition 3 (CNF to D). Let � =
V

16i6n

c
i

be a
CNF formula. The set of items I = L� and the transactions
database associated to � is defined as Dc

� = {(tid
i

, c
i

)|1 6
i 6 n}
For instance, the CNF formula (x1_¬x2_¬x3)^(x1_¬x2_
x4)^x1^(x3_¬x4) corresponds to the following transactions
database:

tid itemset
1 x1,¬x2,¬x3

2 x1,¬x2, x4

3 x1

4 x3,¬x4

In this context, a frequent itemset corresponds to a fre-
quent set of literals: the number of clauses containing these
literals is greater or equal to the minimal support threshold.
For instance, if we set the minimal threshold � to 2, we get
{x1,¬x2} as a frequent itemset in the previous database.
The set of maximal frequent itemsets is the smallest set of
frequent set of literals where each frequent set of literals is
included in at least one of its elements. For instance, the
unique maximal frequent itemset in the previous example is
{x1,¬x2} (� = 2). Furthermore, the set of closed frequent
itemsets is the smallest set of frequent set of literals where
each frequent itemset is included in at least one of its ele-
ments having the same support. For instance, the set of the
closed frequent itemsets is {{x1,¬x2}, {x1}}.

291

In the definition of a transaction database, we did not
require that the set of items in a transaction to be unique.
Indeed, two di↵erent transactions can have the same set of
items and di↵erent identifiers. A CNF formula may contain
the same clause more than once, but in practice this does
not provide any information about satisfiability. Thus, we
can consider a CNF database as just a set of itemsets (sets
of literals).

4. MINING-BASED APPROACH FOR SIZE-
REDUCTION OF CNF FORMULAE

In this section, we describe our mining based approach,
called Mining4SAT, for reducing the size of CNF formulae.
The key idea consists in searching for frequent sets of liter-
als (sub-clauses) and substituting them with new variables
using Tseitin’s encoding [14].

4.1 Tseitin’s Encoding
Tseitin’s encoding consists in introducing fresh variables

to represent sub-formulae in order to represent their truth
values. For example, given a Boolean formula, containing
the variables a and b, and v a fresh variable, one can add the
definition v $ a _ b (called extension) to the formula while
preserving satisfiability. Tseitin’s extension principle is at
the basis of the linear transformation of general Boolean for-
mulae into CNF. Two decades later, after Tseitin’s seminal
paper, Plaisted and Greenbaum presented an improved CNF
translation that essentially produces a subset of Tseitin’s
representation [10]. They noticed that by keeping track
of polarities of sub-formulae, one can remove large parts
of Tseitin translation. In the sequel, we use Plaisted and
Greenbaum improvement. More precisely, as the disjunction
a _ b is a sub-clause with positive polarity, it is su�cient to
add the formula v ! a _ b i.e. a clause (¬v _ a _ b).

Let consider the following DNF formula (Disjunctive Nor-
mal Form: a disjunction of conjunctions):

(x1 ^ · · · ^ x
l

) _ (y1 ^ · · · ^ y
m

) _ (z1 ^ · · · ^ z
n

)

A naive way of converting such a formula to a CNF for-
mula consists in using the distributivity of disjunction over
conjunction (A _ (B ^ C)$ (A _B) ^ (A _ C)):

(x1 _ y1 _ z1) ^ (x1 _ y1 _ z2) ^ · · · ^ (x
l

_ y
m

_ z
n

)

Such a naive approach is clearly exponential in the worst
case. In Tseitin’s transformation, fresh propositional vari-
ables are introduced to prevent such combinatorial explo-
sion, mainly caused by the distributivity of disjunction over
conjunction and vice versa. With additional variables, the
obtained CNF formula is linear in the size of the original
formula. However the equivalence is only preserved w.r.t
satisfiability:

(t1 _ t2 _ t3)^ (t1 ! (x1 ^ · · · ^ xl

))^ (t2 ! (y1 ^ · · · ^ ym))

^(t3 ! (z1 ^ · · · ^ z
n

))

4.2 A Size-Reduction Method
Let us now describe in more details, how itemset min-

ing techniques can be combined with Tseitin’s principle to
compress CNF formula.
To illustrate the main ideas behind our mining based com-

pression approach, we consider the CNF formula �:

(x1 _ · · · _ x
n

_ ↵1) ^ · · · ^ (x1 _ · · · _ x
n

_ ↵
k

)

where n > 2, k > n+1
n�1 and ↵1, . . . ,↵k

are clauses. As we
can observe, the sub-clause (x1 _ . . . ,_x

n

) appears in each
clause of �. Using Tseitin’s encoding, we can rewrite � as
follows:

(y _ ↵1) ^ · · · ^ (y _ ↵
k

) ^ (x1 _ · · · _ x
n

_ ¬y)
where y is a fresh propositional variable. Indeed, n ⇥ k
literals are replaced with k+ n+ 1 literals leading to a gain
in terms of number of literals of (n⇥ k)� (n+ k + 1).

Now, if we consider the CNF database corresponding to
�, {x1, . . . , xn

} is a frequent itemset where the minimal sup-
port threshold is greater or equal to k. It is easy to see that
to reduce the number of literals n must be greater or equal
to 2. Indeed, if n < 2 then there is no reduction of the num-
ber of literals, on the contrary, their number is increased.
Regarding the value of k, one can also see that such a trans-
formation is interesting only when k > n+1

n�1 . Thus, there are
three cases : if n = 2, then k > 4, else if n = 3 then k > 3,
k > 2 otherwise. Therefore, the number of literals is always
reduced when k > 4.

Obviously, a boolean interpretation is a model of the for-
mula obtained after reduction if and only if it is a model of
�.

In the previous example, we illustrate how the problem
of finding frequent itemsets can be used to reduce the size
of a CNF formula. One can see that, in general, it is more
interesting to consider a condensed representation of the fre-
quent itemsets (closed and maximal) to reduce the number
of literals. Indeed, by using a condensed representation, we
consider all the frequent itemsets and the number of fresh
propositional variables and new clauses (in our example, y
and (x1 _ · · · _ x

n

_ ¬y)) introduced is smaller than that
of those introduced by using all the frequent itemsets. For
instance, in the previous formula, it is not interesting to
introduce a fresh propositional variable for each subset of
{x1, . . . , xn

}.
Example 1. Let us consider a formula � containing the

following 8 clauses:

¬x0 _ x2

¬x1 _ x4

¬x3 _ x4

¬x5 _ x6

——————
¬x0 _ x1 _ | x4 _ x5 _ x6 |

x3 _ | x4 _ x5 _ x6 |
¬x1 _ x2 _ | x4 _ x5 _ x6 |
¬x2 _ x3 _ | x4 _ x5 _ x6 |

——————

Suppose that the minimal support threshold is less than 4,
then the sub-clause (x4 _ x5 _ x6) is frequent. Using our
approach, the formula � can be rewritten as:

¬x0 _ x2

¬x1 _ x4

¬x3 _ x4

¬x5 _ x6

—
¬x0 _ x1 _ | y |

x3 _ | y |
¬x1 _ x2 _ | y |
¬x2 _ x3 _ | y |

—
¬y _ x4 _ x5 _ x6

292

In this simple example, the original formula contains 27
literals, while the new formula involves only 23 literals.

Closed vs. Maximal.
In Section 2.2, we introduced two condensed representa-

tions of the frequent itemsets: closed and maximal. The
question is, which condensed representation is better? We
know that the set of maximal frequent itemsets is included
in that of the closed ones. Thus, a small number of fresh
variables and new clauses are introduced using the maximal
frequent itemsets. However, there are cases where the use of
the closed frequent itemsets is more suitable. For example,
let us consider the following formula:

(x1 _ . . . _ x
k

_ . . . _ x
n

_ ↵1) ^
...

...
(x1 _ . . . _ x

k

_ . . . _ x
n

_ ↵
m

) ^
(x1 _ . . . _ x

k

_ �1) ^
...

...
(x1 _ . . . _ x

k

_ �
m

0)

where k > 2, m,m0 > 4 and n > k. We assume that
the frequent itemsets are only the subsets of {x1, . . . , xn

}.
Therefore, {x1, . . . , xn

} is the unique maximal itemset and
the closed itemsets are {x1, . . . , xn

} and {x1, . . . , xk

}. Let
us start by using the closed frequent itemset {x1, . . . , xn

} in
the reduction of the number of literals:

(y _ ↵1) ^
...

...
(y _ ↵

m

) ^
(x1 _ . . . _ x

k

_ �1) ^
...

...
(x1 _ . . . _ x

k

_ �
m

0) ^
(x1 _ . . . _ x

n

_ ¬y)
Now, by using {x1, . . . , xk

}, we get the following formula:

(y _ ↵1) ^
...

...
(y _ ↵

m

) ^
(z _ �1) ^
...

...
(z _ �

m

0) ^
(z _ x

k+1 _ . . . _ x
n

_ ¬y) ^
(x1 _ . . . _ x

k

_ ¬z)
In this example, it is more interesting to consider the closed
frequent itemsets in our Mining4SAT approach.
In fact, a (closed) frequent itemset I and one of its subsets

I 0 (which can be closed) are both interesting if S(I 0)�S(I) >
|I0|+1
|I0|�1 � 1. Indeed, if we apply our transformation using I,

then the support of I 0 in the resulting formula is equal to
S(I 0) � S(I) + 1, and we know that I 0 is interesting in the

resulting formula if its support is greater to |I0|+1
|I0|�1 .

Overlap.
Let � be a set of itemsets. Two itemsets I and I 0 of �

overlap if I \ I 0 6= ;. Moreover, I and I 0 are in the same

overlap class if there exist k itemsets I1, . . . , Ik of � such
that I = I1, Ik = I 0 and for all 1 6 i 6 k � 1, I

i

and I
i+1

overlap.
In our transformation, one can have some problems when

two frequent itemsets overlap. For example, if {x1, x2, x3}
and {x2, x3, x4} are two frequent itemsets (3 is the minimal
support threshold) such that S({x1, x2, x3}) = 3, S({x2, x3,
x4}) = 3 and S({x1, x2, x3, x4}) = 2, then if we apply
our transformation using {x1, x2, x3}, then the support of
{x2, x3, x4} is equal to 2 (infrequent) in the resulting for-
mula and vice versa. Thus, we can not use both of them in
the transformation.

Le us note that the overlap notion can be seen as a general-
ization of the subset one. Let I and I 0 be frequent itemsets
such that they overlap. They are both interesting in our
transformation if:

1. S(I) � S(I [I 0) > |I|+1
|I|�1 � 1 or S(I 0) � S(I [I 0) >

|I0|+1
|I0|�1 � 1. This comes from the fact that if we apply

the transformation using I (resp. I 0), then the support
of I 0 (resp. I) is equal to S(I 0) � S(I [I 0) + 1 (resp.
S(I)� S(I [I 0) + 1).

2. |I\I 0| > k (resp. |I 0\I| > k) where k = 2 if S(I) > 4
(resp. S(I 0) > 4), k = 3 if S(I) = 3 (resp. S(I 0) = 3),
k = 4 otherwise. Indeed, in the previous cases, I\I 0
(resp. I 0\I) can be used in our transformation.

Mining4SAT algorithm.
We now describe our compression algorithm, called Min-

ing4SAT, using the set of closed frequent itemsets. Let us
note that the optimal transformation using the set of all
the closed frequent itemsets can be obtained by an optimal
transformation using separately the overlap classes of this
set. Actually, since any two distinct overlap classes do not
share any literal, the reduction applied to a given formula
using the elements of an overlap class does not a↵ect the
supports of the elements of the other classes. Moreover, one
can easily compute the set of all the overlap classes of the set
of the closed frequent itemsets: let G = (V,E) be an undi-
rected graph such that V is the set of the closed frequent
itemsets and (I1, I2) is an edge of G if and only if I1 and I2
overlap; C is an overlap class if and only if it corresponds to
the set of vertices of a connected component of G which is
not included in any other connected component of G. For
this reason, we restrict here our attention to the reductions
that can be obtained using a single overlap class. The whole
size reduction process can be performed by iterating on all
the overlap classes.

Let I be a closed frequent itemset, we denote by ↵(I) the
value S(I)⇥(|I|�1)�|I|�1 that corresponds to the number
of literals reduced by applying our transformation with I on
a CNF formula.

Algorithm 1 takes as input a CNF formula � and an
overlap class C, and returns � after applying size-reduction
transformations. It iterates until there is no element in C.
In each iteration, it first selects one of the most interesting
elements in C (line 2): an element I of C such that there is
no element I 0 2 C satisfying ↵(I 0) > ↵(I). Note that this el-
ement is not necessarily unique in C. This instruction means
that Algorithm 1 is a greedy algorithm because it makes a
locally optimal choice at each iteration. Then, it applies

293

Algorithm 1 Size Reduction

Require: A formula �, an overlap class of closed frequent
itemsets C

1: while C 6= ; do
2: I MostInterstingElment(C);
3: replace(�, I, x);
4: Add(�, I, x):
5: remove(C, I);
6: replaceSubset(C, I, x);
7: removeUninterestingElements(C);
8: updateSupports(C);
9: end while
10: return �

our transformation using I = {y1, . . . , yn}: it replaces the
occurrences of I with a fresh propositional variable x (line
3); and it adds the clause y1 _ . . . _ y

n

_ ¬x to � (line 4).
It next removes I from C (line 5) and replaces I in the the
other elements of C with x (line 6). The next instruction
(line 7) consists in removing the elements of C that could
increase the number of literals: the elements that overlap
with I and are not included in I. As explained before, an el-
ement of C overlapping with I does not necessarily increase
the number of literals. Thus, by removing elements from C
because only they overlap with I, our algorithm can remove
closed frequent itemsets decreasing the number of literals.
A partial solution to this problem consists in recomputing
the closed frequent itemsets in the formula returned by Al-
gorithm 1. The last instruction in the while loop (line 8)
consists in updating the supports of the elements remaining
in C following the new value of �: a support of an element
I 0 remaining in C changes only when it is included in I and
its new support is equal to S(I 0)�S(I)+1. This instruction
also removes all the elements of C becoming uninteresting
because of the new supports and sizes.

5. APPLICATION: A COMPACT REPRESEN-
TATION OF SETS OF BINARY CLAUSES

Binary clauses (2-CNF formula) are ubiquitous in CNF
formula encoding real-world problems. Some of them con-
tain more than 90% of binary clauses. One of the main
reason is that the encoding of several kinds of constraints
to CNF leads to big sets of binary clauses. As an exam-
ple, expressing that the variables x1, . . . , xn

must take dif-
ferent values in {v1, . . . , vm} can leads to n2 ⇥ m2 binary
clauses (cliques of binary clauses) with a naive encoding.
For n = 100 and m = 10, we get about one million of binary
clauses or 10 Megabytes if each binary clause takes 10 bytes.
Another example given by Rintanen in [12], concerns the en-
coding of planning problem to SAT and particularly of some
invariants such as the one expressing that an object cannot
be in two locations at the same time. For n state variables
there are n⇥(n�1)

2 invariants that are binary clauses. In the
case of a planning problem with n = 5000 state variables
and a formula that encodes the search for plans of 100 time
points, if only one of the state variables is true at any given
time, the total size of the set of binary clauses is about 12
Gigabytes.

Table 2 illustrates the proportion of binary clauses on a
sample of SAT instances (application category) taken from
the last SAT competitions [17]. For each instance (first col-

umn), we give the total number of clauses (#cls), the num-
ber of binary clauses (#bin) and the ratio of binary clauses
((%)bin).

instance #cls #bin (%) bin

velev-pipe-o-uns-1.1-6 304026 268354 88,26 %

9dlx vliw at b iq2 542253 500227 92,24 %

1dlx c iq57 a 8562505 7567948 88,38 %

7pipe k 751116 722278 96,16 %

SAT dat.k100.debugged 670701 523153 78,00 %

BM FV 2004 rule batch 445444 339588 76,23 %

sokoban-sequential-p145-*.040-* 1413816 1364160 96,48 %

openstacks-*-p30 1.085-* 1621926 1601145 98,71 %

aaai10-planning-ipc5-*-12-step16 1029036 991140 96,31 %

k2fix gr rcs w8.shu✏ed 271393 270136 99,53 %

homer17.shu✏ed 1742 1716 98,50 %

gripper13u.shu✏ed-as.sat03-395 38965 35984 92,34 %

grid-strips-grid-y-3.045-* 2750755 2695230 97,98 %

Table 2: Ratio of binary clauses in some SAT in-
stances

In our Mining4SAT general approach presented previously,
binary clauses are not taken into account. Indeed, to reduce
the size of a formula, we only search for itemsets of size
at least two. The case where a binary clause representing
a closed frequent itemset can be considered by our Min-
ing4SAT algorithm is when it appears at least four times in
a formula �. For example, when � contains the following
clauses c1 = (a_ b), c2 = (a_ b_↵1), c3 = (a_ b_↵2), and
c4 = (a_ b_ ↵3), where ↵

i

for 1 6 i 6 3 are clauses. In this
case, the last three clauses are subsumed by the first binary
clause. The clauses c2, c3 and c4 are redundant and can be
eliminated from �. Consequently, if we suppose that a for-
mula is closed under subsumption, this case do not happen.
Let us give a more general formulation of this particular
case. Let � be the following formula:

(x1 _ · · · _ x
n

) ^
(x1 _ · · · _ x

n

_ ↵1) ^
...

...
(x1 _ · · · _ x

n

_ ↵
k

)

where ↵1, . . . ,↵k

are clauses. As we can see, the first clause
subsumes all the remaining clauses. Then we obtain the
formula closed under subsumption �s = (x1 _ · · · _ x

n

).
Suppose that I = {x1, · · · , xn

} is a frequent closed itemset
of Dc

�. Using I, we obtain the following formula �0:

(y) ^ (y _ ↵1) ^ · · · ^ (y _ ↵
k

) ^ (¬y _ x1 _ · · · _ x
n

)

Applying unit propagation, we obtain �0⇤ = (x1 _ · · ·_ xn

).
As we can remark �s = �0⇤. To summarize, our general
Mining4SAT can derive unit literals (y). Then by applying
unit propagation closure, some redundant clauses are elimi-
nated automatically.

5.1 Compacting Arbitrary Sets of Binary
Clauses

In this section, we first show how our mining based ap-
proach can be used to achieve a compact representation of
arbitrary set of binary clauses. Then, we consider two inter-
esting special cases corresponding to sets of binary clauses
representing either a clique or a bi-clique. It is important to
note that, in [12], the authors investigated only these par-
ticular cases.

294

In order to make strong reductions in terms of literals but
also in terms of clauses, we propose a four step approach
for the compression of a set of binary clauses. In the first
step, we rewrite the set of binary clauses using another more
suitable representation. Secondly, from this intermediary
representation, we derive a new transactions database. Then
we search for frequent closed itemsets. Finally, we apply the
compression algorithm obtained by a slight modification to
the compression Algorithm 1 on the set of binary clauses .

Let us first introduce a more convenient and equivalent
representation of a set binary of clauses.

Definition 4 (B-implication). A B-implication is a
Boolean formula of the following from : x_�(x) where �(x)
is a conjunction of literals.

Let S be the following set of binary clauses: {(x_y1), . . . , (x_
y
k

)}, with k > 1. Note that the B-implication B(S) =
x _ (y1 ^ · · · ^ y

k

) is equivalent to the conjunction of the
elements of S. Hence, each 2-CNF formula � can be trans-
formed into a set of B-implications, noted B[_(^)](�). The
original formula � can be obtained from B[_(^)](�) by dis-
tributing _ over ^. However, there exist several ways for
rewriting a 2-CNF as a conjunction of B-implications. A
naive way is to simply fix a complete order relation over L�.

We define a complete order relation over L�. Let f be
a bijective mapping from L� to {1 . . . |L�|}. A literal x is
smaller than a literal y, noted x � y, i↵ f(x) 6 f(y). In
this way, each literal of � is mapped to a unique natural
number. � is a complete order. Now, using this order, we
get a unique way to rewrite a 2-CNF formula as a set of
B-implications. Let � be a 2-CNF formula and (x_ y) 2 �,
we conjunctively add y (respectively x) to �(x) (respectively
�(y)), if x � y (respectively y � x).

Algorithm 2 aims to compute the set of B-implications
associated to a 2-CNF formula �. It takes a 2-CNF formula
� and a complete order � over L(�) as inputs, and pro-
vides a set of B-implications B[_(^)](�) as output. In line 1,
we initialize C(x) to the empty set for all the literals of �.
Following our order relation, in lines 2� 9, we build the set
�(x) for each literal x 2 L�. Indeed, for each binary clause
(x _ y) 2 �, y is added to C(x) (respectively x is added to
C(y)) if x � y (respectively y � x).
In lines 10 � 14, if according to the chosen ordering, we

have x � y and �(x) contains only one literal, then we
try to enhance the compression of the set of B-implications
B[_(^)](�). In this case, we add x to the set C(y), only if
it contains at least one literal, and we set C(x) to the emp-
tyset. In line 16, we return only the B-implications of the
form [x _ �(x)] only when C(x) is not empty.

Assuming that adding an element to a set can be per-
formed in constant time, the worst case complexity of the
Algorithm 2 is in O(|�|+ |L(�)|).

Now, we explain how a transactions database is associated
to a 2-CNF formula, using a set of B-implications which we
consider as an intermediate representation.

Definition 5 (2-CNF to D). Let � be a 2-CNF for-
mula. The transactions database associated to � is defined
as Db

� = {(tid
xi ,�i

)|x
i

_ �
i

2 B[_(^)](�)}.

Mining4Binary algorithm.
Let us describe our approach to compact a 2-CNF formula

�, called Mining4Binary (for reducing the size of a set of

Algorithm 2 B-implications

Require: A formula �, a complete order � over L(�)
1: C(x) = ;, 8x 2 L(�)
2: for c = (x _ y) 2 � do
3: if x � y then
4: C(x) C(x) [{y}
5: else
6: C(y) C(y) [{x}
7: end if
8: end for
9: for x 2 L(�) do
10: if C(x) = {y} and |C(y)| > 1 then
11: C(y) C(y) [{x}
12: C(x) ;
13: end if
14: end for
15: return {[x _ (

V
y2C(x) y)]|x 2 L(�) | C(x) 6= ;}

binary clauses). First, after rewriting � as B[_(^)](�), we
build the transactions database Db

�. Then the set of closed
frequent itemsets and its associated overlap classes C are
computed. The last step aims to reduce the size of the 2-
CNF � using a slightly modified version of the Algorithm 1.
We only need to add two modifications. First, our 2-CNF
compression algorithm takes as input B[_(^)](�) and returns
a compressed set of B-implications. Secondly, for an itemset
I = {y1, . . . , yn}, in line 4 of the Algorithm 1, we introduce
a fresh variable x and we add a B-implication [¬x_(y1^y2^
· · · ^ y

n

)] to B[_(^)](�). This modified algorithm returns a
set of compressed B-implications. The last step is a trivial
translation of the obtained B-implications to 2-CNF.

Obviously, the compression rate depends on the chosen or-
dering. Indeed, the intermediate representation (B-implications)
is build according to a total order, and the transactions
database depends on this intermediary representation.

Example 2. Let us consider the following 2-CNF �:
� = (x1 _ x2) ^ (x1 _ x3) ^ (x1 _ x4) ^ (x1 _ x5) ^

(x1 _ x6) ^ (x1 _ x7) ^ (x2 _ x3) ^ (x2 _ x4) ^
(x2 _ x5) ^ (x2 _ x6) ^ (x2 _ x7) ^ (x3 _ x4) ^
(x3 _ x6) ^ (x3 _ x7) ^ (x3 _ x5) ^ (x4 _ x5) ^
(x4 _ x6) ^ (x4 _ x7) ^ (x5 _ x6) ^ (x5 _ x7) ^
(x6 _ x7)

Using the complete order relation x1 � . . . � x7 over
L�, we can rewrite � as the following set of B-implications
B1

[_(^)](�):

B1
_[^](�) = {[x1 _ (x2 ^ x3 ^ x4 ^ x5 ^ x6 ^ x7)],

[x2 _ (x3 ^ x4 ^ x5 ^ x6 ^ x7)],
[x3 _ (x4 ^ x5 ^ x6 ^ x7)],
[x5 _ (x6 ^ x7)],
[x6 _ (x7)]}

The transactions database representation Db

� is built from
B1

[_(^)](�) by considering only �(x1), . . . ,�(x6):

tid itemset

tid
x1 x2 x3 x4 x5 x6 x7

tid
x2 x3 x4 x5 x6 x7

tid
x3 x4 x5 x6 x7

tid
x4 x5 x6 x7

tid
x5 x6 x7

tid
x6 x7

295

The itemset mining process is done on the conjunctive part
of B1

_[^](�) represented in the transactions database. Setting
the minimum support threshold to 4, we get as a frequent
itemset {x5, x6, x7}. Using 2-CNF compression algorithm
described above, we can rewrite B1

[_(^)](�) as B2
[_(^)](�):

B2
_[^](�) = {[x1 _ (x2 ^ x3 ^ y)] ,

[x2 _ (x3 ^ x4 ^ y)] ,
[x3 _ (x4 ^ y)] ,
[x5 _ (x6 ^ x7)] ,
[x6 _ (x7)] ,
[¬y _ (x5 ^ x6 ^ x7)]}

Finally a simple encoding of B2
[_(^)](�) as CNF formula

leads to following compressed 2-CNF formula:
� = (x1 _ x2) ^ (x1 _ x3) ^ (x1 _ x4) ^ (x2 _ x3) ^

(x2 _ x4) ^ (x3 _ x4) ^ (x5 _ x6) ^ (x5 _ x7) ^
(x6 _ x7) ^
(x1 _ y) ^ (x2 _ y) ^ (x3 _ y) ^ (x4 _ y) ^
(x5 _ ¬y)^ (x6 _ ¬y) ^ (x7 _ ¬y)

The substitution of the itemset {x5, x6, x7} allows us to
reduce the size of the 2-CNF formula �. Indeed, the resulting
2-CNF contains 5 binary clauses less.

5.2 Special Case of (Bi-)cliques of Binary
Clauses

In [12], J. Rintanen addressed the problem of represent-
ing big sets of binary clauses compactly. He particularly
shows that constraint graphs arising from practically inter-
esting applications (eg. AI planning) contain big cliques
or bi-cliques of binary clauses. An identified bi-clique in-
volving the two sets of literals X = {x1, x2, . . . , xn

} and
Y = {y1, y2, . . . , ym} expresses the propositional formula
� = (x1 ^ x2 ^ · · · ^ x

n

) _ (y1 ^ y2 ^ · · · ^ y
m

), while a
clique involving the literals X = {x1, x2, . . . , xn

} expresses
that at-most one literal from X is false.

Bi-cliques of Binary Clauses.

Let us explain how a bi-clique can be compacted with
Mining4Binary method. Let � = [(x1_y1)^ (x1_y2)_ · · ·_
(x1 _ y

m

)] . . . [(x
n

_ y1) ^ (x
n

_ y2) _ · · · _ (x
n

_ y
m

)] a bi-
clique of n⇥m binary clauses (see Figure 1). Considering the
complete order relation defined by: f(x

i

) = i, f(y
j

) = n+ j.
Using this order relation B[_(^)](�) corresponds exactly to
{(x

i

_ [y1 ^ y2 ^ · · · ^ y
m

])|1 6 i 6 n}. Obviously, the
transactions database Db

� contains a single closed frequent
itemset {y1, y2, . . . , ym}. Applying our algorithm leads to
the following compact representation of �0 = [

V
16i6n

(x
i

_
z)]^ [V16j6m

(¬z_y
j

)]. We obtain exactly the same gain as
in [12] (O(n+m) binary clauses and one additional variable).

Cliques of Binary Clauses.

Let � =
V

16i6n�1[(xi

_x
i+1)^ · · ·^ (xi

_x
n

)] be a clique

of n2 binary clauses (see Figure 2). The set B[_(^)](�) =
{[x

i

_(x
i+1^· · ·^xn

)]|1 6 i 6 n�1} using the order relation
defined by: f(x

i

) = i. If we take a closer look to Db

 ,
the closed frequent itemset I with the greatest value ↵(I)
corresponds to {x

n/2, . . . , xn

}. In the first n

2 rows of Db

�, I
is substituted by a fresh variable x and a new set of binary
clauses [x _ (xn

2
^, · · · ^ x

n

)]) is added to it, leading to two
subproblems of size n

2 + 1. Obviously, the same treatment
is done on the set B[_(^)](�). Consequently, the number of
variables is defined by the following recurrence equation:

x2

x1

x

n�1
y

m�1

y

m

y2

y1

x

n

Figure 1: Bi-clique representation of the n ⇥ m
clauses

V(n) = 2⇥ V(n
2
+ 1) + 1 (1)

V(6) = 1. (2)

The basic case is reached for n = 6, where the last fresh
variable is introduced to represent the conjunction x4^x5^
x6. For n < 6 no fresh variable is introduced because no
frequent closed itemset can lead to a reduction of the size of
the formula. Consequently, from the solution of the previous
recurrence equation, we obtain that our encoding is in O(n)
auxiliary variables. Using the same reasoning, we also obtain
the same complexity O(n) for the number of binary clauses.
This corresponds to the complexity obtained in [12].

x2x1

x5 x4

x3x6

Figure 2: Clique representation of n2 clauses

The two special cases of cliques and bi-cliques of binary
clauses considered in this section, allow us to show that when
a constraint is not well encoded, our approach can be used to
correct and to derive a more e�cient and compact encodings
automatically.

6. EXPERIMENTS
In this section, we present an experimental evaluation of

our proposed approaches. Two kind of experiments have
been conducted. The first one deals with size reduction of
arbitrary CNF formulas using Mining4SAT algorithm, while
the second one attempts to reduce the size of the 2-CNF
sub-formulas only, using Mining4Binary algorithm.

Both algorithms are tested on di↵erent benchmarks taken
from the last SAT challenge 2012. From the 600 instances

296

Instance orig. comp. % red

1dlx c iq57 a 190 Mb 164 Mb 13.68 %

6pipe 6 ooo.*-as.sat03-413 11 Mb 7.7 Mb 30.00 %

9dlx vliw at b iq6.*-*04-347 76 Mb 65 Mb 14.47 %

abb313GPIA-9-c.*.sat04-317 21 Mb 6.9 Mb 67.14 %

E05F18 3.7 Mb 2.2 Mb 40.54 %

eq.atree.braun.11.unsat 120 Kb 72 Kb 40.00 %

eq.atree.braun.12.unsat 144 Kb 88 Kb 38.88 %

k2mul.miter.*-as.sat03-355 1.5 Mb 1.3 Mb 13.33 %

korf-15 1.2 Mb 752 Kb 37.33 %

rbcl xits 08 UNSAT 1.1 Mb 856 Kb 22.18 %

SAT dat.k45 3.5 Mb 2.6 Mb 25.71 %

tra�c b unsat 18 Mb 12 Mb 33.33 %

x1mul.miter.*-as.sat03-359 1.1 Mb 928 Kb 15.63 %

9dlx vliw at b iq3 19 Mb 15 Mb 21.05 %

9dlx vliw at b iq4 31 Mb 26 Mb 16.12 %

AProVE07-09 2.8 Mb 2.7 Mb 3.57 %

eq.atree.braun.10.unsat 96 Kb 56 Kb 41.66 %

goldb-heqc-frg1mul 348 Kb 328 Kb 5.74 %

minand128 7.7 Mb 2.6 Mb 66.23 %

ndhf xits 09 UNSAT 2.6 Mb 2.1 Mb 19.23 %

velev-pipe-o-uns-1.1-6 5.5 Mb 4.4 Mb 20.00 %

Table 3: Results of Mining4SAT : a general ap-
proach

of the application category submitted to this challenge, we
selected 100 instances while taking at least one instance from
each family. All tests were made on a Xeon 3.2GHz (2 GB
RAM) cluster and the timeout was set to 4 hours.

In Table 3 and Table 4, we indicate the size in Kilobytes
(Kb) or Megabytes (Mb) of each SAT instance before (orig.)
and after reduction (comp.). We also provide %red, the
reduction percentage.

Table 3 highlights the results obtained by Mining4SAT
general approach. In this experiments, and to allow possible
reductions, we only search for frequent closed itemsets of size
greater or equal to 4. Consequently, binary clauses are not
considered. As we can observe, our Mining4SAT reduction
approach allows us to reduce the size more than 20% on the
majority of instances. Let us also note that the maximum
(67.14 %) is reached in the case of the instance abb313GPIA-
9-c.*.sat04-317: its original size is 21 Mb and its size after
reduction is 6.9 Mb.

In Table 4, we present a sample of the results obtained by
Mining4Binary algorithm on compacting only binary clauses.
We observe similar behavior as in the first experiment in
terms of size reduction.

To study the influence of our size reduction approaches on
the solving time, we also run the SAT solver MiniSAT 2.2
on both the original instance and on those obtained after
reduction. As a summary, our approach achieve significant
reductions in the size of instances without loosing solving
e↵ectiveness.

In our experiments, we have presented the two compres-
sion algorithms, Mining4SAT (for clauses of arbitrary size)
and Mining4Binary (for 2-CNF formulae). As the two algo-
rithms can be applied independently, we have not presented
the results using a two steps compression algorithm: appli-
cation of the general Mining4SAT algorithm in the first step
on the original formula, followed by the specialized Min-
ing4Binary algorithm on the compressed formula derived in
the first step. The results can be derived by cumulating the
reductions obtained in both steps. For example, if we take
the SAT instance 1dlx_c_iq57_a presented in both Table
3 and Table 4, the reduction by the two steps algorithm is

Instance orig. comp. % red

velev-pipe-o-uns-1.1-6 5.5 Mb 3.2 Mb 41.81 %

9dlx vliw at b iq2 11 Mb 6 Mb 44.45 %

1dlx c iq57 a 190 Mb 124 Mb 34.73 %

7pipe k 14 Mb 5.4 Mb 61.42 %

SAT dat.k100.debugged 16 Mb 13 Mb 18.75 %

IBM FV 2004 rule batch 9.7 Mb 7.5 Mb 22.68 %

2 31 1 SAT dat.k80.debugged

sokoban-sequential-p145-*.040-* 24 Mb 14 Mb 41.66 %

openstacks-*-p30 1.085-* 30 Mb 26 Mb 13.33 %

aaai10-planning-ipc5-*-12-step16 17 Mb 12 Mb 29.41 %

k2fix gr rcs w8.shu✏ed 3.4 Mb 1.7 Mb 50.00 %

homer17.shu✏ed 20 Kb 16 Kb 20.00 %

gripper13u.shu✏ed-as.sat03-395 524 Kb 364 Kb 30.35 %

grid-strips-grid-y-3.045-* 52 Mb 42 Mb 19.23 %

Table 4: Results of Mining4Binary: a 2-CNF ap-
proach

computed as follows : (190 � 164) + (190 � 124) = 92Mb.
The reduction ratio is equal to 48.42%.

7. AKNOWLEDGMENTS
We thank the reviewers for their helpful comments. This

work has been supported in part by the French ANR project
”DAG: Declarative Approaches for Enumerating Interesting
Patterns” under the Défis program 2009.

8. CONCLUSION AND FUTURE WORKS
In this paper, we propose the first data-mining approach,

called Mining4SAT, for reducing the size of Boolean formu-
lae in conjunctive normal form (CNF). It can be seen as a
preprocessing step that aims to discover hidden structural
knowledge that are used to decrease the number of literals
and clauses. Mining4SAT combines both frequent itemset
mining techniques for discovering interesting substructures,
and Tseitin-based approach for a compact representation of
CNF formulae using these substructures. Thus, we show in
this work, inter alia, that frequent itemset mining techniques
are very suitable for discovering interesting patterns in CNF
formulae.

Since we use a greedy algorithm in our approach, the for-
mula obtained after transformation is not guaranteed to be
optimal w.r.t. size. An important open question, which
we will study in future works, is how to optimally use the
closed frequent itemsets ranging in an overlap class. For the
special case of sets of binary clauses, finding a better com-
plete ordering leading to an optimal compression is clearly
an important challenge.

Finally, our framework can be extended to constraint sat-
isfaction problems (CSP), Pseudo Boolean etc.

9. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining

association rules between sets of items in large
databases. In ACM SIGMOD International
Conference on Management of Data, pages 207–216,
Baltimore, 1993. ACM Press.

[2] E. Coquery, S. Jabbour, L. Säıs, and Y. Salhi. A
sat-based approach for discovering frequent, closed
and maximal patterns in a sequence. In Proceedings of
the 20th European Conference on Artificial
Intelligence (ECAI 2012), pages 258–263, 2012.

297

[3] H. E. Dixon, M. L. Ginsberg, D. K. Hofer, E. M.
Luks, and A. J. Parkes. Implementing a generalized
version of resolution. In Proceedings of the Nineteenth
National Conference on Artificial Intelligence (AAAI
2004), pages 55–60, 2004.

[4] N. Eén and N. Sörensson. An extensible sat-solver. In
Proceedings of the Sixth International Conference on
Theory and Applications of Satisfiability Testing
(SAT’03), pages 502–518, 2003.

[5] M. L. Ginsberg and A. J. Parkes. Search, subsearch
and qprop. In Proceedings of the Seventh International
Conference on Principles of Knowledge Representation
and Reasoning (KR 2000), 2000.

[6] É. Grégoire, R. Ostrowski, B. Mazure, and L. Säıs.
Automatic extraction of functional dependencies. In
Proceedings of the Seventh International Conference
on Theory and Applications of Satisfiability Testing
(SAT’04), pages 122–132, 2004.

[7] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja,
H. Toivonen, and R. S. Sharma. Discovering all most
specific sentences. ACM Trans. Database Syst.,
28(2):140–174, June 2003.

[8] T. Guns, S. Nijssen, and L. D. Raedt. Itemset mining:
A constraint programming perspective. Artif. Intell.,
175(12-13):1951–1983, 2011.

[9] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Cha↵: Engineering an e�cient sat
solver. In DAC, pages 530–535, 2001.

[10] D. A. Plaisted and S. Greenbaum. A
structure-preserving clause form translation. Journal
of Symbolic Computation, 2(3):293–304, 1986.

[11] L. D. Raedt, T. Guns, and S. Nijssen. Constraint
programming for itemset mining. In ACM SIGKDD,
pages 204–212, 2008.

[12] J. Rintanen. Compact representation of sets of binary
constraints. In Proceedings of the 17th European
Conference on Artificial Intelligence (ECAI 2006),
pages 143–147. IOS Press, 2006.

[13] A. Tiwari, R. Gupta, and D. Agrawal. A survey on
frequent pattern mining: Current status and
challenging issues. Inform. Technol. J, 9:1278–1293,
2010.

[14] G. Tseitin. On the complexity of derivations in the
propositional calculus. In H. Slesenko, editor,
Structures in Constructives Mathematics and
Mathematical Logic, Part II, pages 115–125, 1968.

[15] T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 2:
E�cient mining algorithms for
frequent/closed/maximal itemsets. In R. J. B. Jr.,
B. Goethals, and M. J. Zaki, editors, FIMI, volume
126 of CEUR Workshop Proceedings. CEUR-WS.org,
2004.

[16] G. Yang. The complexity of mining maximal frequent
itemsets and maximal frequent patterns. In
Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining,
KDD ’04, pages 344–353, New York, NY, USA, 2004.

[17] International sat competition.
http://www.satcompetition.org. Organized in
conjunction with the International Conference on
Theory and Applications of Satisfiability Testing.

298

