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A Pigeon-Hole Based Encoding of Cardinality Constraints
Introduction

Motivation

e CP/SAT based data mining (Frequency constraint)

e Cardinality constraints appears in many other application
domains

o Cross-fertilization between 0/1 linear programming and SAT

Goal : Find the most efficient and compact CNF encoding
o (Efficient) Maintain generalized arc consistency via unit
propagation
@ (Compact) Encoding of smallest size? (w.r.t. number of
variables and clauses)
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CNF encodings of the cardinality constraint

> Xz x; € {0,1}
i=1

Several polynomial CNF encodings have been proposed:
e Joost P. Warners [1996] [Wrong formulation in page 12]
e BDD encoding [Bailleux at al. 2003]
° ...

e Cardinality networks [Asin et al. 2011]



5 Horn cardinality clauses

In this section we will consider a special class of linear inequalities, the Horn cardinality clauses,
which have the form

m
Saizb (22)
i=1

This is the only form of inequalities that we are aware of, for which there exists a polynomial
CNF expansion (Hooker [7]). The CNF equivalent of (22) is

22k VPey =1 mk=1,...b, (23)
Vozw,  k=1,...b, (24)
i=1

2k V 2k, Lj=1,...,ni#j,k=1,...,b. (25)

Here (23) says that a; is true if some zj; is true, and (24) combined with (25) say that for each
k exactly one z;; must be true.

[7] J.N. Hooker. Unpublished note.
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Polynomial Encoding of >_7 ; x; > X to CNF

A
A Gpi V), i=1,...,n (1)

k=1
n
\/pk,-, k=1,...,\ (2)
i=1
/\ (_‘Pki\/_‘Pk’i)7 i = 17"‘7” (3)
1<k<k/<A

(2) and (3) encode the Pigeon Hole problem PHP}

@ py; expresses that pigeon k is in hole i
@ x; is true if the hole / contains one of the pigeons k for
k=1,...,)\

Complexity
@ number of additional variables: A X n
@ number of clauses: O(n x A\2).
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Symmetry Breaking on P}
Let Sym(P,)) be the set of symmetries of P,

U o)) = (pi, pir) (Pi2s Pi2)s - - (Pims Bin) — (4)
1<i<j<A

pi1 e [P1a X P1n]
[Pz(,\—l) T p2(n—1)]

[Pr1  Pa(nas)] . Pn
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Symmetry Breaking on P2 (cont.)

Let o(i,j) = (pi1, Pj1); (Pi2, Pj2)s - - - (Pins Pjn), 1 <0 <j< A
sbps(ij) =

® (pi1 < pj1)A

o (pi1 = pj1) = (pPi2 < pj2)A

o ...

° (pir = pj1) - (Pitn—1) = Pj(n-1)) — (Pin < Pjn)

Property
P) is satisfiable iff P) A sbp(Sym(Py)) is satisfiable

— Instead of adding SBP to the formula, we apply resolution
between clauses from P) and sbp(Sym(P2))

~
-
w



A Pigeon-Hole Based Encoding of Cardinality Constraints
Introduction

Symmetry Breaking on P2 (cont.)

Eliminating the upper-left corner triangle

® Py A sbpy(12) = —pur:

o = (p11, pa1) C o(1,2)

sbps = (p12 < p22) = (1)(—p11 V p21)
c=(=puV-pn) € Py

n[p21, (1), c] = —p11.

o PP A sbp(Sym(PR)) = —~p21 A =pa1h, - .., p(a-1)1
e Use similar reasoning

@ All the binary clauses from (3) involving
TP11, P21, - -+, TP(A-1)1 Are eliminated
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Symmetry Breaking on P2 (cont.)

Eliminating the lower-right corner triangle

@ P Asbp(Sym(P)) = =pan A —P3ny - s " Pan
o Py A sbp(Sym(Py)) = —pan:

U[le (PurV,..., Vpin-1) V pin), (—p1n V ﬁpzn)] =n=

(P1AV; -+« s VP1(a—1) V 7P20).

nlp2n, 11, (Poa—1) Vs - s VP2(n—1) V p2n)] = 12 =

(P1AV, ..., VP1(n—2) V P1(n—1) V P2x=1)V; - - -, VP2(n—1))-

To eliminate the first n — 1 literals from ra, we exploit sbpy(1,i)
with 2 <7 < A,

Let s1 = (p2a—1) V P1a V p2a V..., VPi(n—2) V Pa(n—2) V
“P1(n—1) V P2(n—1)) € SbPs(1,2) N[Pr(n-1), 12, 51] = 13 =

(P1AV, -, VP1(n—2) V PoA—1)V, - - - VP2(n—1))-

Now, pi(n—2) can be eliminated from r3. Let

2= (Par—1) V P1x V paa V ..., VP1(n=3) V Po(n—3) V TP1(n—2) V
P2(n—1)) € Sbps(1,2). We obtain n[pi(n_2), 13,%] = rn =

(P1AV, ..., VP1(n=3) V P2(A—1)V, - - - 5 VP2(n—1))-

e Similarly, we eliminate {p1x, ..., pi(n—3)} from ra.
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TPOA—k+1)(i+k—1) V X(i+k—1);

1<i<n—X\+1,
(6)
1<k<A\
n—A\+1

\/ PO—k+1)(i+k—1)s 1< k<A
i=1

(7)

PO —k+1)k V0V POA—k+1)(i+k) VY TPOA—k)(i+k+1)>
0<i<n-XA-1,1<k<X-1

(8)
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Soundness and Unit Propagation

Property
If p is a model of phP; then p is a model of S_7_; x; > \.

Property

If p is a model of Y_7_; x; > ), then there exists a model p' of
phP) such that for all i € {1,...,n}, p(x;) = p'(x)-

Property (Unit propagation)

Let p be a model of phP) assigning O to the elements of a set

S ={xy,...,xj_,} of n— X propositional variables included in

X ={x1,...,xa}. Unit propagation is sufficient to deduce that for
all variable x € X\S, p(x) = 1.
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Theoretical Comparison with other encodings

‘ Encoding ‘ #Clauses ‘ # Variables ‘ Decided ‘
Sequential unary counter [Sinz05] | O(\ X n) O(X x n) uP
Parallel binary counter [Sinz05] 7n—3log(n) —6 | 2n—2 Search
Totalizer [Bailleux03] O(n?) O(n x logx(n)) | UP
Buttner & Rintanen [Buttner05] O(\% x n) O(n x log>(n)) | UP
Sorting Network [EenS06] O(n x log2(n)) O(n x logz(n)) | UP
Cardinality Network [AsinNOR11] | O(n x logs(\)) O(n x logz()\)) | UP
Warners [Warners96] 8n 2n Search

[ phP} [0 x(n=X) [ OMXx(n=X) [ UP \

Table : Comparison of CNF encodings of Y7, x; < A
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Conclusion & future works

@ Pigeon Hole Based formulation of the cardinality constraint
@ Competitive with most of the previous encoding
@ Erratum to Joost P. Warners formulation [1996 paper]

@ A nice methodology: reduction of the encoding modulo symmetry,
redundant constraints, resolution...

Future works

e CNF encoding of >-7 ; ajx; > A for both x; € {0,1} and
x; € {1...,n;} (done - Best encoding)

@ Use of the same methodology to encode global constraints to CNF
(e.g. allDifferent constraint)
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