A Pigeon-Hole Based Encoding of Cardinality Constraints¹

Saïd Jabbour Lakhdar Saïs Yakoub Salhi

January 7, 2014

CRIL - CNRS, Université Lille Nord de France, Lens, France

Motivation

- CP/SAT based data mining (Frequency constraint)
- Cardinality constraints appears in many other application domains
- ullet Cross-fertilization between 0/1 linear programming and SAT

Goal: Find the most efficient and compact CNF encoding

- (Efficient) Maintain generalized arc consistency via unit propagation
- (Compact) Encoding of smallest size? (w.r.t. number of variables and clauses)

CNF encodings of the cardinality constraint

$$\sum_{i=1}^{n} x_i \ge \lambda, \qquad x_i \in \{0, 1\}$$

Several polynomial CNF encodings have been proposed:

- Joost P. Warners [1996] [Wrong formulation in page 12]
- BDD encoding [Bailleux at al. 2003]
- ...
- Cardinality networks [Asín et al. 2011]

Joost P. Warners [1996] - page 12

Horn cardinality clauses

In this section we will consider a special class of linear inequalities, the Horn cardinality clauses, which have the form

$$\sum_{i=1}^{m} x_i \ge b. \tag{22}$$

This is the only form of inequalities that we are aware of, for which there exists a polynomial CNF expansion (Hooker [7]). The CNF equivalent of (22) is

$$z_{ik} \vee p_{x_i}, \qquad i = 1, \dots, m, k = 1, \dots, b,$$
 (23)

$$\neg z_{ik} \lor p_{x_i}, \quad i = 1, \dots, m, k = 1, \dots, b,$$

$$\bigvee_{i=1}^{m} z_{ik}, \quad k = 1, \dots, b,$$
(23)

$$\neg z_{ik} \lor \neg z_{jk}, \qquad i, j = 1, \dots, n, i \neq j, k = 1, \dots, b.$$

$$(25)$$

Here (23) says that x_i is true if some z_{ik} is true, and (24) combined with (25) say that for each k exactly one z_{ik} must be true.

[7] J.N. Hooker. Unpublished note.

Polynomial Encoding of $\sum_{i=1}^{n} x_i \geq \lambda$ to CNF

$$\bigwedge_{k=1}^{\lambda} (\neg p_{ki} \vee x_i), \quad i = 1, \dots, n$$
 (1)

$$\bigvee_{i=1}^{n} p_{ki}, \quad k=1,\ldots,\lambda \tag{2}$$

$$\bigwedge_{1 \le k < k' \le \lambda} (\neg p_{ki} \lor \neg p_{k'i}), \quad i = 1, \dots, n$$
(3)

- (2) and (3) encode the **Pigeon Hole** problem PHP_n^{λ}
 - p_{ki} expresses that pigeon k is in hole i
 - x_i is true if the hole i contains one of the pigeons k for $k=1,\ldots,\lambda$

Complexity

• number of additional variables: $\lambda \times n$

4 D > 4 B > 4 E > 4 E > E 900 • number of clauses: $O(n \times \lambda^2)$.

Symmetry Breaking on \mathcal{P}_n^{λ}

Let $Sym(\mathcal{P}_n^{\lambda})$ be the set of symmetries of \mathcal{P}_n^{λ} :

$$\bigcup_{1 \leq i < j \leq \lambda} \sigma(i,j) = (p_{i1}, p_{j1}), (p_{i2}, p_{j2}), \dots, (p_{in}, p_{jn})$$
(4)

$$\begin{pmatrix} p_{11} & \cdots & [p_{1\lambda} & \cdots & p_{1n}] \\ & \cdots & [p_{2(\lambda-1)} & \cdots & p_{2(n-1)}] \end{pmatrix}$$

$$\vdots & \ddots & \vdots \\ [p_{\lambda 1} & \cdots & p_{\lambda(n-\lambda+1)}] & \cdots & p_{\lambda n} \end{pmatrix} (5)$$

Symmetry Breaking on \mathcal{P}_n^{λ} (cont.)

Let
$$\sigma(i,j) = (p_{i1}, p_{j1}), (p_{i2}, p_{j2}), \dots, (p_{in}, p_{jn}), \quad 1 \leq i < j \leq \lambda$$

 $sbp_{\sigma(i,j)} =$

- $(p_{i1} \leq p_{j1}) \wedge$
- $(p_{i1} = p_{j1}) \to (p_{i2} \le p_{j2}) \land$
- ...
- $(p_{i1} = p_{j1}) \dots (p_{i(n-1)} = p_{j(n-1)}) \rightarrow (p_{in} \leq p_{jn})$

Property

 \mathcal{P}_n^{λ} is satisfiable iff $\mathcal{P}_n^{\lambda} \wedge sbp(\mathcal{S}ym(\mathcal{P}_n^{\lambda}))$ is satisfiable

 \rightarrow Instead of adding SBP to the formula, we apply resolution between clauses from \mathcal{P}_n^{λ} and $sbp(\mathcal{S}ym(\mathcal{P}_n^{\lambda}))$

Symmetry Breaking on \mathcal{P}_n^{λ} (cont.)

Eliminating the upper-left corner triangle

- $\mathcal{P}_n^{\lambda} \wedge sbp_{\sigma(1,2)} \models \neg p_{11}$:
 - $\sigma = (p_{11}, p_{21}) \subset \sigma(1, 2)$
 - $sbp_{\sigma} = (p_{12} \leq p_{22}) = (1)(\neg p_{11} \vee p_{21})$
 - $c = (\neg p_{11} \lor \neg p_{21}) \in \mathcal{P}_n^{\lambda}$
 - $\eta[p_{21},(1),c] = \neg p_{11}$.
- $\mathcal{P}_n^b \wedge sbp(\mathcal{S}ym(\mathcal{P}_n^b)) \models \neg p_{21} \wedge \neg p_{31} \wedge, \dots, \neg p_{(\lambda-1)1}$
 - Use similar reasoning
- All the binary clauses from (3) involving $\neg p_{11}, \neg p_{21}, \dots, \neg p_{(\lambda-1)1}$ are eliminated
- ...

• . . .

Symmetry Breaking on \mathcal{P}_n^{λ} (cont.)

Eliminating the lower-right corner triangle

- $\bullet \ \mathcal{P}_n^{\lambda} \wedge sbp(\mathcal{S}ym(\mathcal{P}_n^{\lambda})) \models \neg p_{2n} \wedge \neg p_{3n}, \ldots, \neg p_{\lambda n}$
 - $\mathcal{P}_n^{\lambda} \wedge sbp(\mathcal{S}ym(\mathcal{P}_n^{\lambda})) \models \neg p_{2n}$:
 - $\eta[p_{1n},(p_{1\lambda}\vee,\ldots,\vee p_{1(n-1)}\vee p_{1n}),(\neg p_{1n}\vee \neg p_{2n})]=r_1=(p_{1\lambda}\vee,\ldots,\vee p_{1(n-1)}\vee \neg p_{2n}).$
 - $\eta[p_{2n}, r_1, (p_{2(\lambda-1)} \lor, \dots, \lor p_{2(n-1)} \lor p_{2n})] = r_2 = (\mathbf{p}_{1\lambda} \lor, \dots, \lor \mathbf{p}_{1(n-2)} \lor \mathbf{p}_{1(n-1)} \lor p_{2(\lambda-1)} \lor, \dots, \lor p_{2(n-1)}).$
 - To eliminate the first n-1 literals from r_2 , we exploit $sbp_{\sigma(1,i)}$ with $2 \le i \le \lambda$.
 - Let $s_1 = (p_{2(\lambda-1)} \lor p_{1\lambda} \lor p_{2\lambda} \lor \dots, \lor p_{1(n-2)} \lor p_{2(n-2)} \lor \neg p_{1(n-1)} \lor p_{2(n-1)}) \in sbp_{\sigma(1,2)}. \ \eta[p_{1(n-1)}, r_2, s_1] = r_3 = (p_{1\lambda} \lor, \dots, \lor p_{1(n-2)} \lor p_{2(\lambda-1)} \lor, \dots, \lor p_{2(n-1)}).$
 - Now, $p_{1(n-2)}$ can be eliminated from r_3 . Let $s_2 = (p_{2(\lambda-1)} \lor p_{1\lambda} \lor p_{2\lambda} \lor \ldots, \lor p_{1(n-3)} \lor p_{2(n-3)} \lor \lnot p_{1(n-2)} \lor p_{2(n-1)}) \in sbp_{\sigma(1,2)}$. We obtain $\eta[p_{1(n-2)}, r_3, s_2] = r_4 = (\mathbf{p}_{1\lambda} \lor, \ldots, \lor \mathbf{p}_{1(n-3)} \lor p_{2(\lambda-1)} \lor, \ldots, \lor p_{2(n-1)})$.
 - Similarly, we eliminate $\{p_{1\lambda}, \dots, p_{1(n-3)}\}$ from r_4 .

$ph\mathcal{P}_n^{\lambda}$ encoding of the cardinality constraint

$$\neg p_{(\lambda-k+1)(i+k-1)} \lor x_{(i+k-1)}, \quad 1 \le i \le n-\lambda+1,$$

$$1 \le k \le \lambda$$
(6)

$$\bigvee_{i=1}^{n-\lambda+1} p_{(\lambda-k+1)(i+k-1)}, \quad 1 \le k \le \lambda \tag{7}$$

$$p_{(\lambda-k+1)k} \vee \cdots \vee p_{(\lambda-k+1)(i+k)} \vee \neg p_{(\lambda-k)(i+k+1)},$$

$$0 \le i \le n-\lambda-1, 1 \le k \le \lambda-1$$
(8)

Soundness and Unit Propagation

Property

If ρ is a model of $ph\mathcal{P}_n^{\lambda}$ then ρ is a model of $\sum_{i=1}^n x_i \geq \lambda$.

Property

If ρ is a model of $\sum_{i=1}^{n} x_i \geq \lambda$, then there exists a model ρ' of $ph\mathcal{P}_n^{\lambda}$ such that for all $i \in \{1, \ldots, n\}$, $\rho(x_i) = \rho'(x_i)$.

Property (Unit propagation)

Let ρ be a model of $ph\mathcal{P}_n^{\lambda}$ assigning 0 to the elements of a set $S = \{x_{i_1}, \dots, x_{i_{n-\lambda}}\}$ of $n-\lambda$ propositional variables included in $X = \{x_1, \dots, x_n\}$. Unit propagation is sufficient to deduce that for all variable $x \in X \setminus S$, $\rho(x) = 1$.

Theoretical Comparison with other encodings

Encoding	#Clauses	# Variables	Decided
Sequential unary counter [Sinz05]	$\mathcal{O}(\lambda \times n)$	$\mathcal{O}(\lambda \times n)$	UP
Parallel binary counter [Sinz05]	$7n - 3\log(n) - 6$	2n – 2	Search
Totalizer [Bailleux03]	$\mathcal{O}(n^2)$	$\mathcal{O}(n \times log_2(n))$	UP
Buttner & Rintanen [Buttner05]	$\mathcal{O}(\lambda^2 \times n)$	$\mathcal{O}(n \times log_2(n))$	UP
Sorting Network [EenS06]	$\mathcal{O}(n \times \log_2^2(n))$	$\mathcal{O}(n \times \log_2^2(n))$	UP
Cardinality Network [AsinNOR11]	$\mathcal{O}(n \times log_2^2(\lambda))$	$\mathcal{O}(n \times \log_2^2(\lambda))$	UP
Warners [Warners96]	8 <i>n</i>	2n	Search
ph $\mathcal{P}^{\lambda}_{n}$	$\mathcal{O}(\lambda \times (n-\lambda))$	$\mathcal{O}(\lambda \times (n-\lambda))$	UP

Table : Comparison of CNF encodings of $\sum_{i=1}^{n} x_i \leq \lambda$

Conclusion & future works

- Pigeon Hole Based formulation of the cardinality constraint
- Competitive with most of the previous encoding
- Erratum to Joost P. Warners formulation [1996 paper]
- A nice methodology: reduction of the encoding modulo symmetry, redundant constraints, resolution...

Future works

- CNF encoding of $\sum_{i=1}^{n} \alpha_i x_i \ge \lambda$ for both $x_i \in \{0, 1\}$ and $x_i \in \{1, \dots, n_i\}$ (done Best encoding)
- Use of the same methodology to encode global constraints to CNF (e.g. allDifferent constraint)