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Abstract

The practical use of Quantified Boolean Formulas (QBFs) often calls for more
than solving the evaluation problemQBF. For this reason we investigate the corre-
sponding function problemFQBF. We define expected outputs ofFQBF instances
as solution policies. We focus on the representation of policies, considering QBFs
of the form∀X ∃Y Φ. Because the explicit representation of policies for such
QBFs can be of exponential size, descriptions as compact as possible must be
looked for. To address this issue, two approaches based on the decomposition and
the compilation ofΦ are presented.

1 Introduction

1.1 Motivations

A Quantified Boolean Formula(QBF) consists of a classical propositional formula
together with an ordered partition of its variables, corresponding to quantifier alterna-
tions; for instance, ifΦ is a formula built up from the set of propositional variables
{a, b, c, d}, then∃{a} ∀{b, d} ∃{c} (((a ∧ ¬c) → (b ∧ d)) ∧ (b → a)) is a QBF. Any
QBF evaluates to true or false; it evaluates to true if and only if the corresponding state-
ment where quantifiers on variables bear actually on thetruth valuesof these variables,
holds, and in that case the QBF is said to bepositive. Thus, the latter QBF is positive
since there exists an instantiation ofa such that for any instantiation ofb andd there
exists an instantiation ofc such that(((a∧¬c) → (b∧d))∧ (b → a)) is satisfied.QBF

is the decision problem which consists in determining whether a given QBF is positive.
Solving the decision problemQBF has become for a few years an important re-

search area in AI. Several explanations for this can be advanced, including the fact
that many AI problems whose complexity is located inPSPACE can be expressed and
then efficiently solved byQBF solvers [7]. Accordingly, many such solvers have been
developed for the past few years (see mainly [2, 13, 14, 9, 11, 16]).

Interestingly, QBFs can also be used to represent some planning problems under
incomplete knowledge and feedback and some sequential two-player games with com-
plete information. For instance,∃{a}∀{b}∃{c}∀{d}Φ represents a game with two
playersJ∀ andJ∃, playing alternatively by assigning a propositional variable:J∃ starts
by assigning a value toa, thenJ∀ assigns a value tob, etc. The goal ofJ∃ is to have
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Φ satisfied at the end of the game: thus,∃{a}∀{b}∃{c}∀{d}Φ is a positive instance of
QBF if and only if there exists a winning strategy forJ∃. When the game is understood
as a game against nature (or equivalently a planning problem with nondeterministic ac-
tions or exogenous events), instantiations of existentially (resp. universally) quantified
variables correspond to plays by the agent (resp. by nature), and winning strategies are
policies (or conditional plans).

Clearly enough, when QBFs are used to represent such problems, what is expected
is often more than simply solvingQBF. Indeed, solving the decision problem only en-
ables telling whether there exists a winning strategy or a valid plan; in practice, one
would also like to determine such a plan, or, at least, an approximation of it. Therefore,
the aim becomes solving thefunction problemassociated with QBFs, denoted byFQBF.
We are not aware of general definitions for this function problem in the literature. Our
first objective therefore consists in defining formally what an output ofFQBF is. We
call it a solution policy. In order to deal with the case where no solution policy exists,
we show how to approximate them using partial policies. Then we focus on the rep-
resentation of policies, considering QBFs of the form∀X ∃Y Φ. Because the explicit
representation of policies for such QBFs can be of exponential size, descriptions as
compact as possible must be looked for. To address this issue, two approaches based
on the decomposition and the compilation ofΦ are presented.

1.2 Notations and background

PROPPS denotes the propositional language built up from a finite setPS of symbols,
the usual connectives and the boolean constants>,⊥ in the standard way.

~x is an instantiation of variables fromX ⊆ PS (also referred to as anX-instantiation)
and2X is the set of all possibleX-instantiations. Thus, ifX = {a, b, c}, ~x = (a,¬b, c)
is anX-instantiation. IfX andY are two disjoint subsets ofPROPPS , (~x, ~y) is the
concatenation of~x and~y: in this instantiation, each variable ofX (resp.Y ) takes the
value indicated by~x (resp.~y).

For Φ ∈ PROPPS and~x ∈ 2X , we denote byΦ~x the formula obtained by con-
ditioning Φ by ~x; this formula is obtained fromΦ by replacing occurrences of each
variablex from X by> (resp.⊥) if x ∈ ~x (resp.¬x ∈ ~x).

Definition 1 (Quantified Boolean Formula) Let k be a positive integer andq ∈ Q.
A Quantified Boolean Formula (QBF)is a (k+3)-upleP = 〈k, q, Xk, ..., X1, Φ〉where
{X1, ..., Xk} is a partition of the setV ar(Φ) of propositional variables occurring in
Φ ∈ PROPPS .

In theory, there is no need to specifyk, since it can be determined from the number
of elements ofP . However, we keep it for the sake of readibility. For similar reasons,
we also denote QBFsP = 〈k, q,Xk, ..., X1, Φ〉 in the following way (as in the previous
subsection):

∃Xk∀Xk−1 . . . ∀X1Φ if q = ∃ andk is even
∃Xk∀Xk−1 . . . ∃X1Φ if q = ∃ andk is odd
∀Xk∃Xk−1 . . . ∃X1Φ if q = ∀ andk is even
∀Xk∃Xk−1 . . . ∀X1Φ if q = ∀ andk is odd

QBFk,q is the set of all QBFs of rankk and first quantifierq. We now define
formally the decision problemQBF through its positive instances:
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Definition 2 (positive instance ofQBF)
P = 〈k, q,Xk, ..., X1, Φ〉 is apositiveinstance ofQBF if and only if one of the follow-
ing conditions is true:

• k = 0 andΦ = >;

• k ≥ 1 and q = ∃ and there exists anXk-instantiation ~xk ∈ 2Xk such that
〈k − 1,∀, Xk−1, ..., X1, Φ ~xk

〉 is a positive instance ofQBFk−1,∀ ;

• k ≥ 1 andq = ∀ and for eachXk-instantiation~xk ∈ 2Xk , 〈k−1,∃, Xk−1, . . . , X1, Φ ~xk
〉

is a positive instance ofQBFk−1,∃ .

In this definition, QBFk,q is the subproblem ofQBF where only formulas from
QBFk,q are considered.

2 The function problem FQBF

As evoked in the introduction, solving planning problems or games represented as
QBFs may require more than just solving the decision problemQBF. Stepping back
to a previous example, knowing that∃{a}∀{b}∃{c}∀{d}Φ is a positive instance of
QBF just tells that there is a truth value fora for which whatever the truth value ofb
there is a truth value forc that makesΦ true, independently of the truth value ofd; it
does not tell at all which truth value must be given toa and which truth value must be
given toc (depending of the truth value ofb) so as to makeΦ true. This requires more
sophisticated outputs than boolean ones, and we call such outputspolicies.

Intuitively, a policy is an application mapping each instantiation of a group of uni-
versally quantified variables into an instantiation of the group of existentially quantified
variables immediately following it. Formally, we start with the notion oftotal policy:

Definition 3 (total policy) The setTP (k, q,Xk, ..., X1) of total policiesfor QBFs
from QBFk,q is defined inductively by:

• TP (0, q) = {λ};
• TP (k,∃, Xk, ..., X1) =
{ ~xk ; πk−1 | πk−1 ∈ TP (k − 1, ∀, Xk−1, ..., X1)};

• TP (k,∀, Xk, ..., X1) =
2Xk → TP (k − 1, ∃, Xk−1, ..., X1)1.

λ represents theempty policy. The operator “;” represents the sequential composi-
tion of policies.π; λ is typically abbreviated asπ. One can check that:

• a policy ofTP (1, ∃, X1) has the form( ~x1;λ), i.e., ~x1 (anX1-instantiation);

• TP (1,∀, X1) is reduced to a unique policy: the constant function which maps
anyX1-instantiation toλ. This policy is also represented by the constantλX1 ;

12Xk → TP (k − 1,∃, Xk−1, ..., X1) denotes the set of all total functions from2Xk to TP (k −
1, ∃, Xk−1, ..., X1).
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• a policy ofTP (2, ∃, X2, X1) has the form( ~x2 ; λX1);

• a policy ofTP (2, ∀, X2, X1) is a total function from2X2 to 2X1 .

Definition 4 (satisfaction by a policy) The satisfaction of an instanceP = 〈k, q,Xk, ..., X1, Φ〉
of QBFk,q by a policyπ of TP (k, q,Xk, ..., X1) is defined inductively as follows;π
satisfiesP (denotedπ |= P ) if and only if one of these conditions is verified:

• k = 0 andπ = λ, andΦ ≡ > ;

• k ≥ 1 andq = ∃ andπ = ( ~xk;π′)
with π′ |= 〈k − 1, ∀, Xk−1, ..., X1,Φ ~xk

〉 ;

• k ≥ 1 andq = ∀ and for all ~xk ∈ 2Xk we have
π( ~xk) |= 〈k − 1,∃, Xk−1, ..., X1, Φ ~xk

〉.

Example 1 There is no policy satisfying〈2, ∀, {a, b}, {c}, (a∨b)∧(a → c)∧(b∨c)〉.

Example 2 〈3, ∃, {a}, {b}, {c, d}, (a → (c ∧ d)) ∧ (b ↔ ¬c)〉 is satisfied byπ =

¬a;
[

(b), 7→ (¬c, d)
(¬b) 7→ (c, d)

]
.

It can be checked thatπ = ~x1 satisfiesP = 〈1, ∃, X1, Φ〉 if and only if ~x1 |= Φ
and thatπ = λX1 satisfiesP = 〈1, ∀, X1,Φ〉 if and only if Φ is valid. More generally,
we have the following result, which shows that total policies satisfyingP are the right
outputs of the function problem associated toP . They are calledsolution policiesfor
P :

Proposition 1 P = 〈k, q,Xk, ..., X1, Φ〉 is a positive instance ofQBFk,q if and only
if there exists a total policyπ ∈ TP (k, q, Xk, ..., X1) such thatπ |= P 2.

This result enables us to define formally the function problemFQBFk,q as follows:

Definition 5 (FQBF: function problem)
Let P = 〈k, q,Xk, ..., X1, Φ〉 be a QBF. Solving the function problemFQBFk,q for P
consists in finding a total policyπ such thatπ |= P , if there exists any.

3 Partial policies

In practice, asking for a solution policy is often too much demanding. Indeed, let
us considerP = 〈2, ∀, {a, b}, {c}, (a → c) ∧ (b → ¬c)〉. P does not have a solution
policy because the instantiation(a, b) makesΦ unsatisfiable: thus, if nature plays(a, b),
the agent cannot do anything leading to the satisfaction ofΦ. On the other hand, if
nature plays anything but(a, b) then the agentcando something satisfactory, namely,
(a,¬b) 7→ c, (¬a, b) 7→ ¬c, (¬a,¬b) 7→ c (or ¬c). These policies are not defined
for all possible instantiations of groups of universally quantified variables, hence their
namepartial policies. Here is a formal definition:

2For space reasons, proofs are typically omitted.
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Definition 6 (partial policy) The setPP (k, q, Xk, ..., X1) of partial policiesfor the
QBFP = 〈k, q, Xk, . . . , X1〉 is defined inductively as follows:

• PP (1, ∃, X1) = 2X1 ∪ {×} ;

• PP (1, ∀, X1) = 2X1 → {λ,×} ;

• PP (k,∃, Xk, ..., X1) =
{ ~xk; πk−1 |πk−1 ∈ PP (k − 1,∀, Xk−1, .., X1) ∪ {×}};

• PP (k,∀, Xk, ..., X1) =
2Xk → PP (k − 1,∃, Xk−1, ..., X1).

× represents failure (i.e., it is not possible to find a solution policy for the considered
QBF). Any partial policy fromPP (k − 1, q,Xk−1, .., X1) used to define a partial
policy π of rankk along the definition above is called aninternal policyof π. It is a
universal internal policywhenq = ∀, and anexistential internal policyotherwise.

Definition 7 (sound policy) A partial policyπ ∈ PP (k, q, Xk, ..., X1) is soundfor
P = 〈k, q,Xk, ..., X1, Φ〉 if and only if one of these conditions is satisfied:

1. q = ∃ andπ = × ;

2. (k, q) = (1, ∃), π = ~x1 and ~x1 |= Φ ;

3. (k, q) = (1, ∀) and for any~x1 ∈ 2X1 we have eitherπ( ~x1) = ×, or (π( ~x1) = λ
and ~x1 |= Φ) ;

4. k > 1, q = ∃, π = ~xk;πk−1 andπk−1 is sound for〈k−1, ∀, Xk−1, ..., X1,Φ ~xk
〉 ;

5. k > 1, q = ∀, and for any~xk ∈ 2Xk , π( ~xk) is sound for〈k−1,∃, Xk−1, ..., X1, Φ ~xk
〉.

While there exist QBFs which do not have any solution policy, it is clear that all
QBFs have a sound partial policy.

Example 3 As Example 1 showed, there is no solution policy forP = 〈2, ∀, {a, b}, {c}, (a∨
b) ∧ (a → c) ∧ (b ∨ c)〉. A sound policy forP is

π =




(a, b) 7→ c
(¬a, b) 7→ c
(a,¬b) 7→ c
(¬a,¬b) 7→ ×


.

Intuitively, the best policies among the sound ones are those built up from internal
policies where× is used as less as possible. Formally:

Definition 8 (maximal sound policy) Letπ andπ′ two partial policies ofPP (q, k, Xk, ..., X1).
π is at least as covering asπ′, denoted byπ w π′, if and only if one of the following
conditions is satisfied:

• q = ∃ andπ′ = × ;

• q = ∀, k = 1 and for all ~x1 ∈ 2X1 , we have eitherπ′( ~x1) = × or π( ~x1) = λ ;
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• q = ∃, π = [ ~xk; πk−1], π′ = [ ~x′k;π′k−1],
andπk−1 w π′k−1 ;

• q = ∀, k > 1 and for all ~xk ∈ 2Xk , we haveπ( ~xk) w π′( ~xk).

w is a partial preorder;π is a maximal soundpolicy for a QBFP if and only ifπ is
sound forP and there is no sound policyπ′ for P such thatπ′ w π andπ 6w π′.

Example 4 The QBFP = 〈2, ∀, {a, b}, {c}, (a∨ b)∧ (a → c)∧ (b∨ c)〉 has two max-
imal sound policies. The first one is reported in Example 3, the other one is identical
to it, except that it maps(¬a, b) to¬c.

Clearly enough, every QBFP has a maximal sound policy; furthermore, if a solu-
tion policy forP exists, then solution policies and maximal sound policies coincide.

Definition 9 (SFQBF: second function problem)
LetP = 〈k, q,Xk, ..., X1, Φ〉 be a QBF. Solving the second function problemSFQBFk,q

for P consists in finding a maximal sound policyπ for P .

4 Policy representation

It is essential to make a distinction between the notion of policyπ per seand the
notion of representationσ of a policy. Indeed, policies may admit many different
representations, and two representations of the same policy can easily have different
sizes, and can be processed more or less efficiently (e.g. computing the image of an
instantiation by a given universal internal policy can be more or less computationally
demanding).

A representation schemeS for policies is a finite set of data structures representing
policies. Associated with any representation schemeS is an interpretation functionIS
such that for anyσ ∈ S, π = IS(σ) is the policy represented byσ. The simplest
representation scheme is theexplicit one: the representation of a policy is the policy
itself (so the corresponding interpretation function is identity). Accordingly,π also
denotes the explicit representation of policyπ. Within the explicit representation of a
policy π, every universal internal policyπ′ is represented explicitly as a set of pairs
(this is the representation we used in the examples reported in the previous sections).
Clearly enough, a structured way of envisioning the explicit representation of a policy
π of PP (k, q, Xk, ..., X1) is to consider a tree whose leaves are labelled by×, λ or by
instantiations ofX1, whose intermediate nodes are labelled by instantiations of groups
of existentially quantified variables, and whose branches are labelled by instantiations
of groups of universally quantified variables.

The next proposition makes precise the connection between the decision problem
QBF and the function problemFQBF. It shows that explicit representations of total
policies arecertificatesfor QBF, i.e., data structures from which a polytime verification
of the validity of positive instances is possible. To be more precise:

Proposition 2 There is a polytime algorithm whose input is the explicit representation
of a policyπ ∈ TP (k, q, Xk, ..., X1) and a QBFP = 〈k, q,Xk, ..., X1, Φ〉 and which
returns1 if π is a solution policy forP and0 otherwise.
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For every instanceP = 〈1,∃, X1, Φ〉 of QBF1,∃ (i.e., everySAT instance), a solution
policy π for P is represented explicitly by any model ofΦ overX1; obviously, such
representations of policies are certificates forQBF1,∃.

Now, for every instanceP = 〈1, ∀, X1, Φ〉 of QBF1,∀, the solution policyπ for P
is represented explicitly by the set{( ~x1, λ) | ~x1 ∈ 2X1}; again, this representation is a
certificate forQBF1,∀. As evoked previously, the same policyπ can be represented in an
exponentially more succinct way as the constantλX1 ; obviously, such an (non-explicit)
representation ofπ is not a certificate forQBF1,∀, unlessP = NP; furthermore, the ex-
istence of a certificate of polynomial size forQBF1,∀ would lead toNP = coNP, hence
the polynomial hierarchy to collapse at the first level. This example clearly shows
how different representations of the same policy may lead to different computational
behaviours when the purpose is to use the policy.

5 The case ofSFQBF2,∀
We now focus on the practical resolution ofSFQBF2,∀. Why the choice ofk = 2 and
q = ∀? First, it is important, before investigating more complexSFQBFk,q problems,
to focus first the problems of the first levels (which are already complex enough, as we
will see). The casek = 1 has received an enormous attention;SFQBF2,∃ is not really
new either, since it reduces to an abduction problem: indeed, it consists in finding an
instantiation~x1 such thatΦ ~x1 is valid; this problem has been considered many times.
Things are different withSFQBF2,∀, since (i) finding maximal sound policies becomes
here relevant and (ii) the size of the representation of a policy becomes a crucial issue.

5.1 Polynomially compact and tractable schemes

In the case ofSFQBF2,∀, a partial policy forP = 〈2, ∀, X, Y, Φ〉 is any mappingπ from
2X to 2Y ∪{×}. Ideally, we are looking for representation schemes for maximal sound
policies that are both polynomially compact and tractable:

Definition 10 (polynomially compact scheme) A policy representation schemeS
for maximal sound policies for QBF2,∀ is said to bepolynomially compactif and only
if there is a polysize functionRS that associates eachP = 〈2, ∀, X, Y, Φ〉 ∈ QBF2,∀
to a representationσ ∈ S of a maximal sound policyπ for P .

Definition 11 (tractable scheme) A policy representation schemeS for maximal
sound policies for QBF2,∀ is said to betractableif and only if there exists a poly-
time algorithmDS such that for anyσ ∈ S, DS computesπ(~x) = D(σ, ~x) for any
~x ∈ 2X , whereπ = IS(σ).

Clearly, the explicit representation scheme for maximal sound policies is not poly-
nomially compact in the general case. For instance, there exist QBFs of QBF2,∀ for
which any solution policy is injective, as shown by the following example (from [8]):

Example 5 ∀{x1, . . . , xn}∃{y1, . . . , yn}
∧n

i=1(xi ↔ yi)
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However, it is possible to encode the solution policiesπ for the set of QBFs of
Example 5 (withn varying), using data structuresσ of size polynomial inn and from
which π(~x) can be computed in time polynomial inn. See for instance the policy
description schemePD given in the next subsection. This argues towards using implicit
representation schemes for policies, but still, the existence of a polynomially compact
and tractable representation scheme for maximal sound policies cannot be ensured:

Proposition 3 If a polynomially compact and tractable representation schemeS for
maximal sound policies for QBF2,∀ exists, then the polynomial hierarchy collapses at
the second level.

Proof: Suppose that there exists a representation schemeS such that there exists a polysize
functionRS and a polytime algorithmDS such thatRS maps each QBFP = 〈2,∀, X, Y, Φ〉 to
a tractable representationσ = RS(P ) of a maximal sound policyπ = IS(σ) and such thatDS
computesπ(~x) = D(σ, ~x) for any~x ∈ 2X .

Let us now consider the following nondeterministic algorithm for solvingQBF2,∀:
Input: a QBF P = 〈2, ∀, X, Y, Φ〉.
1. guess σ = RS(P );

2. check that π = IS(σ) is a solution policy for P .

Provided thatRS exists, guessingσ in step 1. only requires polynomial time (since its size
must be polynomial in the input size).

Let us recall thatP is a positive instance ofQBF2,∀ if and only if it has a solution policy
(Proposition 1), and that if a solution policy exists, then any maximal sound policy is a solution
policy. Now, provided thatDS exists, when the input isP andσ has been guessed, the problem
of determining whetherπ = IS(σ) is not a solution policy forP is in NP: just guess~x ∈ 2X

and check in polynomial time usingDS thatπ(~x) = DS(σ, ~x) = ×. Accordingly, step 2. can
be achieved using one call to anNP oracle.

Subsequently, the algorithm above shows thatQBF2,∀ is in Σp
2, henceΣp

2 = Πp
2 and the

polynomial hierarchy collapses at the second level. ¥
Therefore we just want to look for representations of policies, which areas concise

as possible, and especially more concise than the explicit representations, provided that
they are tractable:

Definition 12 (tractable representation) A representationσ of a policyπ for a QBF
P = 〈2, ∀, X, Y, Φ〉 ∈ QBF2,∀ is said to betractableif and only if there exists an algo-
rithm Dσ such that for any~x ∈ 2X , Dσ computesπ(~x) = D(~x) in time polynomial in
|σ|+ |~x|.

5.2 The decomposition approach

It is based on two simple observations:

1. It is often needless looking for a specificY -instantiation for eachX-instantiation:
someY -instantiations may cover large sets ofX-instantiations, which can be de-
scribed in a compact way, for instance by a propositional formula.

2. It may be the case that some sets of variables fromY are more or less indepen-
dent givenX w.r.t. Φ and therefore that their assigned values can be computed

8



separately3.

Definition 13 (subdecision) An instantiation ofsome(not necessarily all) variables
of Y (or equivalently, a satisfiable termγY onY ) is called asubdecision. 3Y is the set
of all subdecisions. Any mappingπ : 2X → 3Y assigning a subdecision to eachX-
instantiation is called asubpolicyfor ∀X∃Y Φ. Similarly as for policies, we can also
definepartial subpoliciesthat assign a subdecision to a subset of2X . Themergingof
subdecisions is the commutative and associative internal operator on3Y ∪{×} defined
by:

• γY .λ = λ.γY = γY ;

• γY .× = ×.γY = ×;

• if γY , γ′Y are two terms onY , thenγY .γ′Y =
{

γY ∧ γ′Y if γY ∧ γ′Y is satisfiable
× otherwise

.

Here, the empty decisionλ is assimilated to the empty term. Themergingof two sub-
policiesπ1, π2 is defined by:∀~x ∈ 2X , (π1 ¯ π2)(~x) = π1(~x).π2(~x).

Definition 14 (policy description) Thepolicy description scheme PDis a represen-
tation scheme for maximal sound policies for QBF2,∀, defined inductively as follows:

• λ and× are inPD;

• any satisfiable termγY onY is in PD;

• if ϕX is a propositional formula built onX andσ1, σ2 are inPD, thenif ϕX then σ1 else σ2

is in PD4;

• if σ1 andσ2 are inPD, thenσ1 ¯ σ2 is in PD.

Now, the partial subpolicyπ = IPD(σ) induced by a descriptionσ ∈ PD is defined
inductively as follows; for every~x ∈ 2X :

• IPD(λ)(~x) = λ andIPD(×)(~x) = ×;

• IPD(γY )(~x) = γY ;

• IPD(if ϕX then σ1 else σ2)(~x) ={
IPD(σ1)(~x) if ~x |= ϕX

IPD(σ2)(~x) if ~x |= ¬ϕX

• IPD(σ1 ¯ σ2)(~x) = IPD(σ1(~x)).IPD(σ2(~x)).

3As briefly evoked in [12] (Section 6), such independence properties can also prove helpful in the practical
solving of instances ofQBF.

4To simplify notations, (if ϕ then σ else ×) is abbreviated intoif ϕ then σ and (if ϕ1

then σ1 else...else if ϕn then σn) into (Case ϕ1: σ1; . . .; ϕn: σn End).

9



Example 6 Letσ1 = if x1 ↔ x2 then y1 else ¬y1, σ2 = if x1 then ¬y2,
andσ = σ1 ¯ σ2. The corresponding policies are given by

IPD(σ1) IPD(σ2) IPD(σ)
(x1, x2) y1 ¬y2 (y1,¬y2)

(x1,¬x2) ¬y1 ¬y2 (¬y1,¬y2)
(¬x1, x2) ¬y1 × ×

(¬x1,¬x2) y1 × ×

Proposition 4 PD is a tractable representation scheme for maximal sound policies for
QBF2,∀.

Example 7 A tractable representation inPDof the solution policy for the QBF∀{x1, . . . , xn}∃{y1, . . . , yn}
∧n

i=1(xi ↔
yi) considered in Example 5 is

σ = ¯n
i=1((if xi then yi)¯ (if ¬xi then ¬yi))

Proposition 5 LetP = 〈2,∀, X, Y, Φ〉 and let{ϕX
1 , ϕY

1 , . . . , ϕX
p , ϕY

p } be2p formu-
las such that

Φ ≡ (ϕX
1 ∧ ϕY

1 ) ∨ . . . ∨ (ϕX
p ∧ ϕY

p ).
Let J = {j | ϕY

j is satisfiable} = {j1, . . . , jq} and for everyj ∈ J , let ~yj |= ϕY
j .

Then the policyπ represented by the description
σ = Case ϕX

j1
: ~yj1 ; . . . ; ϕX

jq
: ~yjq End

is a maximal sound policy forP .

The interest of Proposition 5 is that onceΦ has been decomposed in such a way,
the resolution of the instance ofSFQBFgiven byP = ∀X∃Y Φ comes down to solving
p instances ofSAT. Furthermore, it is always possible to find such a decomposition –
just take all instantiations ofX: Φ ≡ ∨

~x∈2X (~x ∧ Φ~x).
Of course, such a decomposition is interesting only if it is not too large, i.e., if

it leads to a reasonable number ofSAT instances to solve. LetN(Φ) the minimal
number of pairs of such a decomposition: the best case isN(Φ) = 1 and the worst is
N(Φ) = 2min(|X|,|Y |). Finding a good decomposition actually amounts to break the
links betweenX andY in Φ, the ideal case being when there are no links between
them, i.e., whenΦ ≡ ϕX ∧ϕY (or equivalently,X andY are marginally conditionally
independent with respect toΦ [3, 10]).

Furthermore, Proposition 5 immediately tells how to compute a maximal sound
policy in polynomial time for∀X∃Y Φ whenΦ is in DNF. Interestingly, the problem
of computing of maximal sound policy (i.e., a solution policy when the∀X∃Y Φ is
positive) iseasierthan the decision problem of deciding whether∀X∃Y Φ is positive
(coNP-complete whenΦ is a DNF formula).

The next decomposition result makes possible to compute subpolicies indepen-
dently on disjoints subsets ofY , and then merge these subpolicies.

Proposition 6 Let {Y1, Y2} be a partition ofY such thatY1 and Y2 are condi-
tionally independent givenX with respect toΦ, which means that there exist two
formulasϕX,Y1 and ϕX,Y2 of respectivelyPROPX∪Y1 and PROPX∪Y2 such that
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Φ ≡ ϕX,Y1 ∧ϕX,Y2 . Thenπ is a maximal sound policy for∀X∃Y Φ if and only if there
exist two subpoliciesπ1, π2, which are maximal and sound for∀X∃Y ϕX,Y1 and for
∀X∃Y ϕX,Y2 respectively, such thatπ = π1 ¯ π2.

Proposition 6 can be used efficiently to reduce an instance ofSFQBF2,∀ into two (or
several, when iterated) instances ofSFQBF2,∀ with smaller setsY . Ideally,Φ is already
on the desired form (i.e., there exists a partition that works); however, in general this
is not the case and we have then to find a candidate partition{Y1, Y2} which isalmost
independent w.r.t.Φ given X, and then break the links betweenY1 andY2 through
case-analysis on a set of variables fromY , which must be chosen as small as possible
(for efficiency reasons). The good point is that we can take advantage of existing
decomposition techniques to achieve that goal, especially those based on the notion of
decomposition tree (see e.g. [4]).

5.3 The compilation approach

It consists in generating first acompiled formσ of Φ using any knowledge compilation
algorithm.

Proposition 7 Let P = ∀X ∃Y Φ be a QBF and letσ be a propositional formula
equivalent toΦ and which belongs to a propositional fragmentF enabling polytime
clausal query answering, polytime conditioning and polytime model finding (see [6]).
σ is a tractable representation of a maximal sound policy forP .

Proof: Given an instantiation~x ∈ 2X , the model ofσ~x computed in polytime by the algorithm
(whose existence is postulated above) is (if it exists) an instantiation~y ∈ 2Y . Now, we can show
that~y |= σ~x holds if and only if(∃Y σ)~x is valid (indeed, a central property of conditioning is
that an instantiation~x is an implicant of a formulaΨ if and only if the conditioningΨ~x is valid).
Now, (∃Y σ)~x is valid if and only if∃Y (σ~x) is valid (sinceX ∩ Y = ∅). Lastly, remark that
∃Y (σ~x) is valid if and only ifσ~x is satisfiable. ¥

Note that there is no policy representation scheme here. Actually, within this
compilation-based approach,σ alone does not represent any policy forP but a spe-
cific maximal sound policy forP is fully characterized by the way a model ofσ~x is
computed for each~x.

Among the target fragmentsF of interest are all polynomial CNF classes forSAT

problem, which are stable by conditioning (i.e., conditioning always leads to a CNF
formula belonging to the class). Indeed, for every formula from such a class, polytime
model enumeration is possible (see e.g. [6]). Among the acceptable classes are the
Krom one, the Horn CNF one, and more generally the renamable Horn CNF one.
Several other propositional fragments can be considered, including the DNF one, the
OBDD one and more generally the DNNF one since each of them satisfies the three
requirements imposed in Proposition 7.

Even if there is no guarantee that for everyΦ, the correspondingσ is polysize
(unless the polynomial hierarchy collapses at the second level), many experiments re-
ported in [15, 1, 5] showed the practical interest of knowledge compilation techniques
for clausal entailment; clearly, such a conclusion can be drawn as well when the pur-
pose is the representation of tractable policies for QBFs from QBF2,∀.
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6 Conclusion

In this paper we provided theoretical ground for resolution of function problems asso-
ciated with QBFs, as well as some algorithmic techniques for solving (and representing
solutions) of formulas∀X ∃ Φ from QBF2,∀.

A next step would consist in determining from the practical side the performances
of several representation schemes for maximal sound policies. We plan to make some
experiments to measure how the size of the representation of policies varies with vari-
ous parameters (e.g., the numbers of clauses and of variables in a CNF ofΦ, the ratio
|X|

|X|+|Y | ), and to compare it with the coverage of the corresponding policy (i.e., how

many~x ∈ 2X are not mapped to×).
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