Function problems for Quantified Boolean
Formulas

S. Coste-Marquis, H. Fargier, J. Lang, D. Le Berre and P. Marquis
July 18, 2003

Abstract

The practical use of Quantified Boolean Formulas (QBFs) often calls for more
than solving the evaluation problegsF. For this reason we investigate the corre-
sponding function probleraQer. We define expected outputs BHBF instances
as solution policies. We focus on the representation of policies, considering QBFs
of the formVvVX 3Y ®. Because the explicit representation of policies for such
QBFs can be of exponential size, descriptions as compact as possible must be
looked for. To address this issue, two approaches based on the decomposition and
the compilation ofb are presented.

1 Introduction

1.1 Motivations

A Quantified Boolean Formul§QBF) consists of a classical propositional formula
together with an ordered patrtition of its variables, corresponding to quantifier alterna-
tions; for instance, ifb is a formula built up from the set of propositional variables
{a,b,c,d}, then3{a} V{b,d} FH{c} (((a A—=c) — (bAd)) A (b — a)) is a QBF. Any

QBF evaluates to true or false; it evaluates to true if and only if the corresponding state-
ment where quantifiers on variables bear actually onrtith valuesof these variables,
holds, and in that case the QBF is said tgpositive Thus, the latter QBF is positive
since there exists an instantiationctuch that for any instantiation éfandd there
exists an instantiation efsuch tha{((a A —¢) — (bAd)) A (b — a)) is satisfied QBF

is the decision problem which consists in determining whether a given QBF is positive.

Solving the decision problemBF has become for a few years an important re-
search area in Al. Several explanations for this can be advanced, including the fact
that many Al problems whose complexity is locatedPfBPACE can be expressed and
then efficiently solved byBF solvers [7]. Accordingly, many such solvers have been
developed for the past few years (see mainly [2, 13, 14, 9, 11, 16]).

Interestingly, QBFs can also be used to represent some planning problems under
incomplete knowledge and feedback and some sequential two-player games with com-
plete information. For instancél{a}v{b}3{c}V{d}P represents a game with two
playersJy andJs, playing alternatively by assigning a propositional variablgstarts
by assigning a value te, then Jy assigns a value tb, etc. The goal of/5 is to have

o satisfied at the end of the game: thtéq }v{b}3{c}V{d}® is a positive instance of

QBFif and only if there exists a winning strategy fés. When the game is understood

as a game against nature (or equivalently a planning problem with nondeterministic ac-
tions or exogenous events), instantiations of existentially (resp. universally) quantified
variables correspond to plays by the agent (resp. by nature), and winning strategies are
policies (or conditional plans).

Clearly enough, when QBFs are used to represent such problems, what is expected
is often more than simply solvingsF. Indeed, solving the decision problem only en-
ables telling whether there exists a winning strategy or a valid plan; in practice, one
would also like to determine such a plan, or, at least, an approximation of it. Therefore,
the aim becomes solving tifienction problenassociated with QBFs, denoted byBF.

We are not aware of general definitions for this function problem in the literature. Our
first objective therefore consists in defining formally what an outplr@dF is. We

call it asolution policy In order to deal with the case where no solution policy exists,

we show how to approximate them using partial policies. Then we focus on the rep-
resentation of policies, considering QBFs of the forii 3Y . Because the explicit
representation of policies for such QBFs can be of exponential size, descriptions as
compact as possible must be looked for. To address this issue, two approaches based
on the decomposition and the compilationdoére presented.

1.2 Notations and background

PROPpg denotes the propositional language built up from a finitdsgbf symbols,
the usual connectives and the boolean consftants in the standard way.

Z is an instantiation of variables froii C PS (also referred to as aki-instantiation)
and2¥ is the set of all possibl& -instantiations. Thus, K = {a,b, c}, ¥ = (a, —b, ¢)
is an X -instantiation. IfX andY are two disjoint subsets d? RO Ppg, (Z,7) is the
concatenation of andy in this instantiation, each variable &f (resp.Y’) takes the
value indicated by (resp.y).

For® ¢ PROPpg andz € 2%, we denote byp; the formula obtained by con-
ditioning ® by Z; this formula is obtained fron® by replacing occurrences of each
variablex from X by T (resp.l) if z € Z (resp.—x €).

Definition 1 (Quantified Boolean Formula) Letk be a positive integer ang € Q.
A Quantified Boolean Formula (QB®a (k+3)-uple P = (k, ¢, Xk, ..., X1, ®) where
{X1,..., X} } is a partition of the seV ar(®) of propositional variables occurring in
® € PROPpg.

In theory, there is no need to specifysince it can be determined from the number
of elements ofP. However, we keep it for the sake of readibility. For similar reasons,
we also denote QBFB = (k, ¢, X, ..., X1, @) in the following way (as in the previous
subsection):

IXEVXe_1... VX9 if g=3Jandkiseven
IXE VX, 1...3X,® if ¢g=3Fandkis odd
VXX 1...3X1® if g =Vandkis even
VXX, 1... VX1 ® if ¢ =Vandkis odd

QBF 4 is the set of all QBFs of rank and first quantifier;. We now define

formally the decision problem@BF through its positive instances:

Definition 2 (positive instance ofQBF)
P = (k,q, Xy, ..., X1, @) is apositiveinstance ofQBF if and only if one of the follow-
ing conditions is true:

e k=0and® =T;

e £k > 1 andg = 3 and there exists aX,-instantiationzj, € 2%* such that
(k —1,¥, Xp_1,..., X1, Dz) Is a positive instance @fBF;_1 v ;

e k > 1andg = V and for eachX-instantiationzj, € 2%+, (k—1,3, Xj._1,..., X1, P)
is a positive instance @§BF;_1 3 .

In this definition, QBF; , is the subproblem ofBF where only formulas from
QBFy , are considered.

2 The function problem FQBF

As evoked in the introduction, solving planning problems or games represented as
QBFs may require more than just solving the decision probj@n Stepping back
to a previous example, knowing tha{a}V{b}3{c}v{d}® is a positive instance of
QBF just tells that there is a truth value farfor which whatever the truth value of
there is a truth value fof that makesb true, independently of the truth value @f it
does not tell at all which truth value must be giverutand which truth value must be
given toc (depending of the truth value éf so as to mak@ true. This requires more
sophisticated outputs than boolean ones, and we call such optgities

Intuitively, a policy is an application mapping each instantiation of a group of uni-
versally quantified variables into an instantiation of the group of existentially quantified
variables immediately following it. Formally, we start with the notiortatil policy.

Definition 3 (total policy) The setT’'P(k, ¢, Xk, ..., X1) of total policiesfor QBFs
from QBF, , is defined inductively by:

o TP(0,q) ={A};

e TP(k,3, X,..., X1) =
{@k ;-1 | 1 € TP(k — 1,V, Xp—1,..., X1) |

o TP(k,V, Xy, ..., X1) =
2Xk — Tp(k - 1, 37Xk,1, ...,Xl)l.

A represents thempty policy The operator “;” represents the sequential composi-
tion of policies.m; A is typically abbreviated as. One can check that:

e apolicy of TP(1,3, X;) has the form(2; \), i.e., 27 (an X;-instantiation);

e TP(1,V,X;) is reduced to a unique policy: the constant function which maps
any X -instantiation to\. This policy is also represented by the constagt;

12Xk — TP(k — 1,3, X}_1,..., X1) denotes the set of all total functions fraes to TP(k —
173an71"“’X1)'

e apolicy of TP(2,3, X5, X1) has the form(z3 ; Ax,);
e apolicy of TP(2,V, X,, X) is a total function fron2*2 to 21,

Definition 4 (satisfaction by a policy) The satisfaction of an instande= (k, ¢, Xy, ..., X1, ®)
of QBF; , by a policyr of TP(k,q, Xk, ..., X1) is defined inductively as follows;
satisfiesP (denotedr |= P) if and only if one of these conditions is verified:

e k=0andm =\, and® =T ;

e k>1landg=3Jandr = (zj;)
Wlth 7T/ ': <k - 17v7 Xk—la "'aXl?(I>CE_i-,> ;

e k> 1andqg =V and for allz;, € 2X* we have
W(IZ) ': <k — I,H,Xk_l, ...,Xl,q)fk>.

Example 1 There is no policy satisfyin@, V, {a, b}, {c}, (aVb) A(a — c)A(bV).

Example 2 (3,3, {a}, {b},{c,d},(a — (¢ Ad)) A (b < —c)) is satisfied byr =
. (b)v = (_'Cv d)

RGO CY)

It can be checked that = z7 satisfiesP = (1,3, X;,®) if and only if 21 = ®

and thatr = \x, satisfiesP = (1,V, Xy, ®) if and only if @ is valid. More generally,

we have the following result, which shows that total policies satisfyiraye the right

outputs of the function problem associatedio They are calledolution policiesfor

P:

Proposition1 P = (k,q, Xk, ..., X1, ®) is a positive instance a§BF; , if and only
if there exists a total policy € TP(k,q, Xy, ..., X1) such thatr = P2.

This result enables us to define formally the function probterar, , as follows:

Definition 5 (FQBF. function problem)
LetP = (k,q, Xk, ..., X1, ®) be a QBF. Solving the function problemesr; , for P
consists in finding a total policy such thatr = P, if there exists any.

3 Partial policies

In practice, asking for a solution policy is often too much demanding. Indeed, let
us considel® = (2,V,{a,b},{c},(a — ¢) A (b — —c¢)). P does not have a solution
policy because the instantiatiom, b) makesb unsatisfiable: thus, if nature plags, b),

the agent cannot do anything leading to the satisfactiof.ofOn the other hand, if
nature plays anything bit, b) then the agentando something satisfactory, namely,
(a,=b) — ¢, (ma,b) — —c¢, (—a,—b) — ¢ (or —¢). These policies are not defined
for all possible instantiations of groups of universally quantified variables, hence their
namepartial policies Here is a formal definition:

2For space reasons, proofs are typically omitted.

Definition 6 (partial policy) The setPP(k, ¢, Xk, ..., X1) of partial policiesfor the
QBF P = (k,q, X, ..., X1) is defined inductively as follows:

o PP(1,3,X;) =2%1 U {x};
e PP(1,Y,X;) =2% — {\ x};

o PP(k,3, Xy, ., X1) =
{l‘_};;ﬂ'k,l |7Tk,1 S PP(]{? — 1,V, kah ..,Xl) U {X}},

o PP(k,Y, Xy, ..., X1) =
2% PP(k—1,3, Xp_1,..., X1).

x represents failure (i.e., it is not possible to find a solution policy for the considered
QBF). Any partial policy fromPP(k — 1,¢, Xx—_1,.., X1) used to define a partial
policy 7 of rank k£ along the definition above is called amternal policyof =. Itis a
universal internal policywheng = V, and anexistential internal policytherwise.

Definition 7 (sound policy) A partial policyr € PP(k, ¢, Xk, ..., X1) is soundfor
P = (k,q, Xy, ..., X1, @) if and only if one of these conditions is satisfied:

1. ¢=3Jandr = x ;
2. (k,q) = (1,3), 7 = a7 andzi = @

3. (k,q) = (1,V) and for anyz; € 2%+ we have eitherr(z1) = x, or (r(z1) = A
andz) E 9);

4. k>1,q=3, 7= a}; mp—1 andm,_ issound forkk—1,Y, Xy_1, ..., X1, Py) ;
5. k > 1,q =V, and foranysj, € 2%+, 7(2%) is sound fork—1, 3, X} _1, ..., X1, ®).

While there exist QBFs which do not have any solution policy, it is clear that all
QBFs have a sound partial policy.

Example 3 As Example 1 showed, there is no solution policyifee (2,V, {a, b}, {c}, (aV
b) A (a — ¢) A (bV ¢)). A sound policy folP is
(a,b) —c
| (rab) e
= (a,=b) +—c
(ma,—b) +— x

Intuitively, the best policies among the sound ones are those built up from internal
policies wherex is used as less as possible. Formally:

Definition 8 (maximal sound policy) Lets and=’ two partial policies ofPP(q, k, X, ..., X1).
w is at least as covering as, denoted byr 3 #/, if and only if one of the following
conditions is satisfied:

e g=dJandn’ = x;

e ¢ =V, k=1andforallz; € 2%, we have either’(z7) = x or 7(21) = A ;

o q=3, 7= [Th; T], 7 = 2],
andm,_1 Jm,_q;

e ¢ =V, k> 1andforallzj, € 2%, we haver () I 7' (7).

_is a partial preorder; is a maximal soungolicy for a QBF P if and only if 7 is
sound forP and there is no sound policy for P such thatt’ 3 = andw 2 «'.

Example 4 The QBFP = (2,V, {a, b}, {c}, (aVb) A(a — ¢) A(bV ¢)) has two max-
imal sound policies. The first one is reported in Example 3, the other one is identical
to it, except that it mapé-a, b) to —c.

Clearly enough, every QBP has a maximal sound policy; furthermore, if a solu-
tion policy for P exists, then solution policies and maximal sound policies coincide.

Definition 9 (SFQBFE second function problem)
LetP = (k,q, Xk, ..., X1, ®) be a QBF. Solving the second function probleroBF, ,
for P consists in finding a maximal sound policyor P.

4 Policy representation

It is essential to make a distinction between the notion of potigger seand the
notion of representatiorr of a policy. Indeed, policies may admit many different
representations, and two representations of the same policy can easily have different
sizes, and can be processed more or less efficiently (e.g. computing the image of an
instantiation by a given universal internal policy can be more or less computationally
demanding).

A representation schengfor policies is a finite set of data structures representing
policies. Associated with any representation schénigean interpretation functiofs
such that for any € S, 7 = Is(o) is the policy represented by. The simplest
representation scheme is thgplicit one: the representation of a policy is the policy
itself (so the corresponding interpretation function is identity). Accordinglglso
denotes the explicit representation of poliey Within the explicit representation of a
policy 7, every universal internal policy’ is represented explicitly as a set of pairs
(this is the representation we used in the examples reported in the previous sections).
Clearly enough, a structured way of envisioning the explicit representation of a policy
m of PP(k, q, Xk, ..., X1) is to consider a tree whose leaves are labellec ¥ or by
instantiations ofX;, whose intermediate nodes are labelled by instantiations of groups
of existentially quantified variables, and whose branches are labelled by instantiations
of groups of universally quantified variables.

The next proposition makes precise the connection between the decision problem
QBF and the function problerrQBF. It shows that explicit representations of total
policies arecertificatedor QBF, i.e., data structures from which a polytime verification
of the validity of positive instances is possible. To be more precise:

Proposition 2 There is a polytime algorithm whose input is the explicit representation
of a policyr € TP(k, q, X, ..., X1) and a QBFP = (k, q, X, ..., X1, ®) and which
returns1 if 7 is a solution policy forP and0 otherwise.

For every instanc® = (1,3, X, ®) of QBF; 3 (i.e., everysAT instance), a solution
policy 7 for P is represented explicitly by any model @fover X; obviously, such
representations of policies are certificatesdair; 5.

Now, for every instancé® = (1,V, X;, ®) of QBF, v, the solution policyr for P
is represented explicitly by the sgtzi, \) | 1 € 2%1}; again, this representation is a
certificate forQBF, v. As evoked previously, the same policgan be represented in an
exponentially more succinct way as the constaaf; obviously, such an (non-explicit)
representation of is not a certificate fopBF; v, unlessP = NP; furthermore, the ex-
istence of a certificate of polynomial size f@BF; v would lead td\NP = coNP, hence
the polynomial hierarchy to collapse at the first level. This example clearly shows
how different representations of the same policy may lead to different computational
behaviours when the purpose is to use the policy.

5 The case oSFQBR.y

We now focus on the practical resolution$¥QBF, v. Why the choice ok = 2 and

g = V? First, it is important, before investigating more compd®QBF; , problems,

to focus first the problems of the first levels (which are already complex enough, as we
will see). The casé = 1 has received an enormous attentiSRRBF, 5 is not really

new either, since it reduces to an abduction problem: indeed, it consists in finding an
instantiationz; such that® is valid; this problem has been considered many times.
Things are different witlsFQBF, v, since (i) finding maximal sound policies becomes
here relevant and (ii) the size of the representation of a policy becomes a crucial issue.

5.1 Polynomially compact and tractable schemes

In the case 06FQBFR, v, a partial policy forP = (2,V, X, Y, ®) is any mappingr from
2% to2Y U{x}. Ideally, we are looking for representation schemes for maximal sound
policies that are both polynomially compact and tractable:

Definition 10 (polynomially compact scheme) A policy representation schente
for maximal sound policies for QBF is said to bepolynomially compacif and only
if there is a polysize functioRs that associates each = (2,V, X, Y, ®) € QBR v
to a representatiom € S of a maximal sound policy for P.

Definition 11 (tractable scheme) A policy representation scheng for maximal
sound policies for QBfy is said to betractableif and only if there exists a poly-
time algorithmDgs such that for any € S, Ds computesr(Z) = D(o, &) for any
¥ € 2%, wherer = Is(o).

Clearly, the explicit representation scheme for maximal sound policies is not poly-
nomially compact in the general case. For instance, there exist QBFs of QBF
which any solution policy is injective, as shown by the following example (from [8]):

Example 5 V{x1,..., 2, }3{y1,. .., yn} /\?:1(% = Y;)

However, it is possible to encode the solution policiefor the set of QBFs of
Example 5 (withn varying), using data structuresof size polynomial inn and from
which 7 (Z) can be computed in time polynomial in See for instance the policy
description scheméD given in the next subsection. This argues towards using implicit
representation schemes for policies, but still, the existence of a polynomially compact
and tractable representation scheme for maximal sound policies cannot be ensured:

Proposition 3 If a polynomially compact and tractable representation schénfier
maximal sound policies for QBF exists, then the polynomial hierarchy collapses at
the second level.

Proof: Suppose that there exists a representation schemgch that there exists a polysize
function Rs and a polytime algorithnDs such thatRs maps each QBP = (2,V, X, Y, ®) to
a tractable representation= Rs(P) of a maximal sound policyt = Is(o) and such thaDs
computesr () = D(o, Z) for any® € 2.
Let us now consider the following nondeterministic algorithm for soh@mgr: v:
Input: a QBF P =(2,V,X,Y, ®).
1. guess o = Rs(P);
2. check that m = Is(o) is a solution policy for P.

Provided thatRs exists, guessing in step 1. only requires polynomial time (since its size
must be polynomial in the input size).

Let us recall thatP is a positive instance afBF. v if and only if it has a solution policy
(Proposition 1), and that if a solution policy exists, then any maximal sound policy is a solution
policy. Now, provided thaDs exists, when the input i® ando has been guessed, the problem
of determining whether = Is(o) is nota solution policy forP is in NP: just guesst € 2%
and check in polynomial time usinBs thatw (%) = Ds(o,) = x. Accordingly, step 2. can
be achieved using one call to &P oracle.

Subsequently, the algorithm above shows that, v is in X8, henceX} = II; and the
polynomial hierarchy collapses at the second level. |

Therefore we just want to look for representations of policies, whiclagweoncise
as possibleand especially more concise than the explicit representations, provided that
they are tractable:

Definition 12 (tractable representation) A representatiow of a policyr for a QBF
P={(2,¥X,Y,®) € QBF,y is said to beractablef and only if there exists an algo-
rithm D,, such that for any? € 2%, D, computesr(Z) = D(Z) in time polynomial in
lo| + 1.

5.2 The decomposition approach

It is based on two simple observations:

1. ltis often needless looking for a specifieinstantiation for eaclX -instantiation:
someY -instantiations may cover large sets¥finstantiations, which can be de-
scribed in a compact way, for instance by a propositional formula.

2. It may be the case that some sets of variables froare more or less indepen-
dent givenX w.r.t. ® and therefore that their assigned values can be computed

separatel§.

Definition 13 (subdecision) An instantiation osome(not necessarily all) variables
of Y (or equivalently, a satisfiable term onY) is called asubdecision3” is the set
of all subdecisions. Any mapping: 2¥ — 3" assigning a subdecision to eadh
instantiation is called ssubpolicyfor VX3Y ®. Similarly as for policies, we can also
definepartial subpolicieshat assign a subdecision to a subse2df Themergingof
subdecisions is the commutative and associative internal operat®¥ o x } defined
by:

® Wy A=Ay =y,

o Vy.X = X. Yy = X;

vy AYy if vy A% is satis fiable

o if vy, 74 are two terms o, thenryy .44 = { 9 otherwise

Here, the empty decisiokis assimilated to the empty term. Timergingof two sub-
policiesy, 2 is defined byVz € 2%, (711 ® m2)(F) = m1(F).m2(T).

Definition 14 (policy description) Thepolicy description scheme PIB a represen-
tation scheme for maximal sound policies for QBfdefined inductively as follows:

e Mandx are inPD;
e any satisfiable termy onY is in PD;

o if px is a propositional formula built oX andoy, o5 are inPD, thenif ¢x then o; else
is in PD*;
e if o andoy are inPD, theno; ® o3 is in PD.

Now, the partial subpolicyr = Ipp (o) induced by a description € PD is defined
inductively as follows; for every ¢ 2X:

[IPD()\)(f) =)\andeD(x)(:E’) = X,
e Ipp(w)(T) =v;

e Ipp(if ¢x then oy else o3)(%) =
{ Ipp(o1)(Z) if T} ¢x
Ipp(02)(@) if &k —px

° IPD(UI ® O'Q)(f) = IPD(O'l(f)).IpD(O'Q(f)).

3As briefly evoked in [12] (Section 6), such independence properties can also prove helpful in the practical
solving of instances ofBF.

4To simplify notations, if ¢ then o else x) is abbreviated intéf ¢ then o and {f 1
then o) else...else if pn then o) into (Case pi1: 01;...; on: on End).

g2

Example 6 Leto; =if x; < x5 then 1y else -—wp,00 =if x; then -y,
ando = 01 ® 02. The corresponding policies are given by

Ipp(o1) | Ipp(o2) | Ipp(o)
(9617 5132) Y1 Y2 (yh ﬁyz)
(z1,~22) Y1 —y2 | (2y1, ~y2)
(ﬁ[L‘l,{L‘Q) Y1 X X
(—\xl, _|I2) Y1 X X

Proposition 4 PDis a tractable representation scheme for maximal sound policies for
QBFRv.

Example 7 Atractable representation iRD of the solution policy for the QB#x 1, ..., 2, }3{y1, ...

y;) considered in Example 5 is
o= @7:1((“ xz; then yz) ® (lf -z; then _‘yl))

Proposition5 LetP = (2,V,X,Y,®) and let{o1, o ..., ¢,) } be2p formu-
las such that

b= (cp{(/\gp%/)\/...\/(goff /\<p2;).
LetJ = {j | ¢) is satisfiabl¢ = {ji,...,j,} and for everyj € J, lety; = o} .
Then the policyr represented by the description

o =Case ¢} ;.5 ¥} ¥j, End
is a maximal sound policy faP.

The interest of Proposition 5 is that on@ehas been decomposed in such a way,
the resolution of the instance 8FQBFgiven by P = VX 3Y & comes down to solving
p instances oBAT. Furthermore, it is always possible to find such a decomposition —
just take all instantiations oX: ® = \/._,x (Z A ®z).

Of course, such a decomposition is interesting only if it is not too large, i.e., if
it leads to a reasonable number AT instances to solve. LeW(®) the minimal
number of pairs of such a decomposition: the best cad&#) = 1 and the worst is
N(®) = 2=in(XLIYD " Finding a good decomposition actually amounts to break the
links betweenX andY in ®, the ideal case being when there are no links between
them, i.e., whem® = px A py (Or equivalentlyX andY are marginally conditionally
independent with respect [3, 10]).

Furthermore, Proposition 5 immediately tells how to compute a maximal sound
policy in polynomial time fotv.X3Y ® when® is in DNF. Interestingly, the problem
of computing of maximal sound policy (i.e., a solution policy when ¥e3Y @ is
positive) iseasierthan the decision problem of deciding wheth€ 3Y ® is positive
(coNP-complete wherb is a DNF formula).

The next decomposition result makes possible to compute subpolicies indepen-
dently on disjoints subsets &f, and then merge these subpolicies.

Proposition 6 Let {Y7,Y>} be a partition ofY such thatY; and Y, are condi-
tionally independent giverX with respect to®, which means that there exist two
formulasyx y, and ¢x y, of respectivelyP ROPxyy, and PROPxyy, such that

10

s Yn} /\?:1(3”

® = px v; ANpx,y,. Thenr is a maximal sound policy forX 3Y @ if and only if there
exist two subpolicies, 72, which are maximal and sound fotX3Y ¢ x y; and for
VX 3Y ¢x v, respectively, such that = m; © ms.

Proposition 6 can be used efficiently to reduce an instans€@BF, v into two (or
several, when iterated) instancesseiQBR, v with smaller sety”. Ideally, ® is already
on the desired form (i.e., there exists a partition that works); however, in general this
is not the case and we have then to find a candidate par{itiprt> } which isalmost
independent w.r.t.® given X, and then break the links betwe&h andY, through
case-analysis on a set of variables fréimwhich must be chosen as small as possible
(for efficiency reasons). The good point is that we can take advantage of existing
decomposition techniques to achieve that goal, especially those based on the notion of
decomposition tree (see e.g. [4]).

5.3 The compilation approach

It consists in generating first@mpiled forms of ® using any knowledge compilation
algorithm.

Proposition 7 Let P = VX 3Y ® be a QBF and let be a propositional formula
equivalent tod and which belongs to a propositional fragmeftenabling polytime
clausal query answering, polytime conditioning and polytime model finding (see [6]).
o is a tractable representation of a maximal sound policyfor

Proof. Given an instantiatiort € 2%, the model ofr; computed in polytime by the algorithm
(whose existence is postulated above) is (if it exists) an instantigtior2¥ . Now, we can show
thaty |= oz holds if and only if(3Y o)z is valid (indeed, a central property of conditioning is
that an instantiatio®¥ is an implicant of a formulal if and only if the conditioning? z is valid).
Now, (3Y o)z is valid if and only if 3Y (o z) is valid (sinceX N'Y =). Lastly, remark that
3Y (oz) is valid if and only ifo is satisfiable. [|

Note that there is no policy representation scheme here. Actually, within this
compilation-based approach,alone does not represent any policy #rbut a spe-
cific maximal sound policy forP is fully characterized by the way a model &f is
computed for eacls.

Among the target fragmentg of interest are all polynomial CNF classes &xT
problem, which are stable by conditioning (i.e., conditioning always leads to a CNF
formula belonging to the class). Indeed, for every formula from such a class, polytime
model enumeration is possible (see e.g. [6]). Among the acceptable classes are the
Krom one, the Horn CNF one, and more generally the renamable Horn CNF one.
Several other propositional fragments can be considered, including the DNF one, the
OBDD one and more generally the DNNF one since each of them satisfies the three
requirements imposed in Proposition 7.

Even if there is no guarantee that for eveby the corresponding is polysize
(unless the polynomial hierarchy collapses at the second level), many experiments re-
ported in [15, 1, 5] showed the practical interest of knowledge compilation techniques
for clausal entailment; clearly, such a conclusion can be drawn as well when the pur-
pose is the representation of tractable policies for QBFs fromQBF

11

6 Conclusion

In this paper we provided theoretical ground for resolution of function problems asso-
ciated with QBFs, as well as some algorithmic techniques for solving (and representing
solutions) of formulag X 3 ® from QBFR, v.

A next step would consist in determining from the practical side the performances
of several representation schemes for maximal sound policies. We plan to make some
experiments to measure how the size of the representation of policies varies with vari-
ous parameters (e.g., the numbers of clauses and of variables in a GNEhefratio
%), and to compare it with the coverage of the corresponding policy (i.e., how
manyz € 2% are not mapped ta).

References

[1] Y. Boufkhad, E. Gegoire, P. Marquis, B. Mazure, and L.iSa Tractable cover
compilations. INJCAI'97, pages 122-127, 1997.

[2] Marco Cadoli, Andrea Giovanardi, and Marco Schaerf. An algorithm to evaluate
quantified boolean formulae. WAAI'98, pages 262—-267, 1998.

[3] A. Darwiche. A logical notion of conditional independance : properties and ap-
plications. Artificial Intelligence 97(1-2):45-82, 1997.

[4] A. Darwiche. Decomposable negation normal fordournal of the Association
for Computing Machinery48(4):608-647, 2001.

[5] A. Darwiche. A compiler for deterministic decomposable negation normal form.
In AAAI'02, pages 627—634, 2002.

[6] A. Darwiche and P. Marquis. A perspective on knowledge compilationlJ4n
CAI'01, pages 175-182, 2001.

[7] U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving advanced reasoning tasks
using quantified boolean formulas. ARAI'00, pages 417—-422, 2000.

[8] H. Fargier, J. Lang, and P. Marquis. Propositional logic and one-stage decision
making. InNKR’00, pages 445-456, 2000.

[9] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Backjumping
for quantified boolean logic satisfiability. IICAI'01, pages 275-281, 2001.

[10] J.Lang, P. Liberatore, and P. Marquis. Conditional independence in propositional
logic. Atrtificial Intelligence 141(1-2):75-121, 2002.

[11] Reinhold Letz. Advances in decision procedures for quantified boolean formulas.
In QBF Workshop at IJCAR'QPpages 55-64, 2001.

[12] J. Rintanen. Constructing conditional plans by a theorem-proveurnal of
Artificial Intelligence Researghi0:323—-352, 1999.

12

[13] J. Rintanen. Improvements to the evaluation of Quantified Boolean Formulae. In
IJCAI'99, pages 1192-1197, 1999.

[14] J. Rintanen. Partial implicit unfolding in the Davis-Putnam procedure for Quan-
tified Boolean Formulae. IQBF Workshop at IJCAR’Qbages 84-93, 2001.

[15] R. Schrag. Compilation for critically constrained knowledge basesAAlI'96,
pages 510-515, 1996.

[16] L. Zhang and S. Malik. Towards a syymetric treatment of satisfaction and con-
flicts in quantified boolean formula evaluation. @#’02, pages 200-215, 2002.

13

