Packing Consequtive Squares into a Sqaure

Takehide Soh

Kobe University, Japan,
soh@lion.kobe-u.ac. jp

1 Overview and History

Consecutive square packing is a problem that finds a packing (placement) of consecu-
tive squares 1 X 1,2 x2,..., N x N into a given container square without overlap. The
following figure shows a solution when N = 15 and the size of the container square
is 36 which is the minimum size that can contain all 15 consecutive squares without
overlap.

14 15

13 12 11

4 8 S

2] |3

This problem gets popular when Martin Gardner introduced it in Scientific American
in 1966 [1]. In addition, he introduced an open instance that asks: Can pack consecutive
squares 1 x 1,2 x 2,...,24 x 24 into the container square sized 70? This problem is
solved negatively in 2004 by Richard Korf [2]. Following that, There have been several
studies to compute the minimum sized container square [2, 5, 3, 4].

So far, until N = 56, the minimum sized container squares are reported except N =
38,40,42,48, 52,53, 55. Those results are summarized in the web page of A005842 of
OEIS!.

10

! https://oeis.org/A005842



2 Constraint Model

The constraint model for this problem is simple—it uses two kinds of integer variables
and one kind of constraint.

Integer variables x; and y; that denote the position of lower left coordinates of the
i-th square to be packed. The domain of both x; and y; are {d e N |0 < d < S — i}
where S denotes the size of a given container square.

No-overlap constraints for ¢-th square and j-th square are introduced as follows:

(i+i<z)V(r;+ji<zi)V+i<y)V(y +Jj<w)

where i and jrange 1 <i < j < N.

The following represents the above constraint model by MCSP3? where n and
size represent the number of consecutive squares N and the size of the container
square S.

public void model () {
Var[] x =
array ("x size(n), 1 —-> dom(range(size - 1i)),
"x[1i] 1s x coordinate of the i-th square");

n
4

Varl[] y =
array ("y", size(n), i -> dom(range(size - 1)),
"y[i] is y coordinate of the i-th square");
forall (range (n) .range(n), (i, J) —-> {
if (1 < 3J)
intension(or(le(add(x[i]l, i + 1), x[J1),
le (add(x[3]1, 3 + 1), xI[i]),
le(add(y[i]l, 1 + 1), yvI[3l),
le(add(y[3], 3 + 1), y[i])));

References

1. Gardner, M.: Scientific American, vol. 215, chap. Mathematical ames: the problem of Mrs.
Perkins’ quilt, and answers to last month’s puzzles, pp. 264-272 (September 1966)

2. Korf, R.E.: Optimal rectangle packing: New results. In: Proceedings of the Fourteenth Inter-
national Conference on Automated Planning and Scheduling (ICAPS 2004), June 3-7 2004,
Whistler, British Columbia, Canada. pp. 142-149 (2004)

3. Korf, R.E., Moffitt, M.D., Pollack, M.E.: Optimal rectangle packing. Annals OR 179(1), 261—
295 (2010)

4. Martello, S., Monaci, M.: Models and algorithms for packing rectangles into the smallest
square. Computers & OR 63, 161-171 (2015)

5. Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Principles and Prac-
tice of Constraint Programming, 14th International Conference, CP 2008, Sydney, Australia,
September 14-18, 2008. Proceedings. pp. 52-66 (2008)

2 https://github.com/xcsp3team/XCSP3-Java-Tools



