PB'11 competition: satisfaction and optimization track: solvers results per benchmarks

Result page for benchmark
normalized-PB07/OPT-SMALLINT-NLC/submittedPB07/
manquinho/mds/normalized-mds_500_60_1.opb

Jump to solvers results

General information on the benchmark

Namenormalized-PB07/OPT-SMALLINT-NLC/submittedPB07/
manquinho/mds/normalized-mds_500_60_1.opb
MD5SUM7931a71f4daac58a32a56f6c89bc3525
Bench CategoryOPT-SMALLINT-NLC (optimisation, small integers, non linear constraints)
Best result obtained on this benchmarkSAT
Best value of the objective obtained on this benchmark14
Best CPU time to get the best result obtained on this benchmark1797.15
Has Objective FunctionYES
SatisfiableYES
(Un)Satisfiability was provedYES
Best value of the objective function 16
Optimality of the best value was proved NO
Number of variables500
Total number of constraints500
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)0
Number of constraints which are nor clauses,nor cardinality constraints500
Minimum length of a constraint61
Maximum length of a constraint104
Number of terms in the objective function 500
Biggest coefficient in the objective function 1
Number of bits for the biggest coefficient in the objective function 1
Sum of the numbers in the objective function 500
Number of bits of the sum of numbers in the objective function 9
Biggest number in a constraint 1
Number of bits of the biggest number in a constraint 1
Biggest sum of numbers in a constraint 500
Number of bits of the biggest sum of numbers9
Number of products (including duplicates)37366
Sum of products size (including duplicates)74732
Number of different products37366
Sum of products size74732

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjective functionCPU timeWall clock time
SCIP spx E_2 2011-06-10 (fixed) (complete)3488516SAT14 1797.15 1797.12
SCIP spx E SCIP 2.0.1.4b with SoPlex 1.5.0.4 [DEPRECATED] (complete)3450596SAT (TO)14 1800.22 1800.16
SCIP spx 2 2011-06-10 (fixed) (complete)3485074SAT16 1797.36 1797.32
SCIP spx SCIP 2.0.1.4. with SoPlex 1.5.0.4 [DEPRECATED] (complete)3452256SAT (TO)17 1800.1 1800.05
clasp 2.0-R4191 [DEPRECATED] (complete)3469338SAT (TO)18 1800.07 1800.03
clasp 2.0-R4191-patched (fixed) (complete)3491829SAT (TO)18 1800.07 1800.01
Sat4j CuttingPlanes 2.3.0 (complete)3456108SAT (TO)19 1800.23 1793.38
bsolo 3.2 (complete)3462704SAT20 1798.07 1798.03
Sat4j Resolution 2.3.0 (complete)3458300SAT (TO)20 1800.21 1797.19
Sat4j Res//CP 2.3.0 (complete)3453916SAT (TO)20 1800.38 911.49
MinisatID 2.4.8 [DEPRECATED] (complete)3464364? (TO)34 1800.07 1800.03
MinisatID 2.4.8-gmp [DEPRECATED] (complete)3466024? (TO)69 1800.1 1800.13
MinisatID 2.5.2 (fixed) (complete)3490237? (exit code) 0.001998 0.0057379
MinisatID 2.5.2-gmp (fixed) (complete)3496337? (exit code) 0.001999 0.00589307
borg pb-opt-11.04.03 (complete)3481453? (MO) 618.18 612.685

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

objective function: 14
Solution found:
-x500 -x499 -x498 -x497 -x496 -x495 -x494 -x493 -x492 -x491 -x490 -x489 -x488 -x487 -x486 -x485 -x484 -x483 -x482 -x481 -x480 -x479 -x478
-x477 -x476 -x475 -x474 -x473 -x472 -x471 -x470 -x469 -x468 -x467 -x466 -x465 -x464 -x463 -x462 -x461 -x460 -x459 -x458 -x457 -x456 -x455
-x454 -x453 -x452 -x451 -x450 -x449 -x448 -x447 -x446 -x445 -x444 x443 -x442 -x441 -x440 -x439 -x438 -x437 -x436 -x435 -x434 -x433 -x432
-x431 -x430 -x429 -x428 -x427 -x426 -x425 -x424 -x423 -x422 -x421 -x420 -x419 -x418 -x417 -x416 -x415 -x414 -x413 -x412 -x411 -x410 -x409
-x408 -x407 -x406 -x405 -x404 -x403 -x402 -x401 -x400 -x399 -x398 -x397 -x396 -x395 -x394 -x393 -x392 -x391 -x390 -x389 -x388 -x387 -x386
-x385 -x384 -x383 -x382 -x381 -x380 -x379 -x378 -x377 -x376 -x375 -x374 -x373 -x372 -x371 -x370 -x369 -x368 -x367 -x366 -x365 -x364 -x363
-x362 -x361 -x360 -x359 -x358 -x357 -x356 -x355 -x354 -x353 -x352 -x351 -x350 -x349 -x348 -x347 -x346 -x345 -x344 -x343 -x342 -x341 -x340
-x339 -x338 -x337 -x336 -x335 -x334 -x333 -x332 -x331 -x330 -x329 -x328 -x327 -x326 -x325 -x324 -x323 -x322 -x321 -x320 -x319 -x318 -x317
-x316 -x315 -x314 -x313 -x312 -x311 -x310 -x309 -x308 -x307 -x306 -x305 -x304 -x303 -x302 -x301 -x300 -x299 -x298 -x297 -x296 -x295 -x294
-x293 -x292 -x291 -x290 -x289 -x288 -x287 -x286 -x285 -x284 x283 -x282 -x281 -x280 -x279 -x278 -x277 -x276 -x275 -x274 -x273 -x272 -x271
-x270 -x269 -x268 -x267 -x266 -x265 -x264 -x263 -x262 -x261 -x260 -x259 -x258 -x257 -x256 -x255 -x254 -x253 -x252 -x251 -x250 -x249 -x248
-x247 -x246 -x245 -x244 -x243 -x242 -x241 -x240 -x239 -x238 -x237 -x236 -x235 x234 -x233 -x232 -x231 -x230 -x229 -x228 -x227 -x226 -x225
-x224 -x223 -x222 -x221 x220 -x219 -x218 -x217 -x216 -x215 -x214 -x213 -x212 -x211 -x210 -x209 -x208 -x207 -x206 -x205 -x204 -x203 -x202
-x201 -x200 -x199 -x198 -x197 -x196 -x195 -x194 -x193 -x192 -x191 -x190 -x189 -x188 -x187 -x186 x185 -x184 -x183 -x182 -x181 -x180 -x179
-x178 -x177 -x176 -x175 -x174 -x173 -x172 -x171 x170 -x169 -x168 -x167 -x166 -x165 -x164 -x163 -x162 -x161 -x160 -x159 -x158 -x157 x156
-x155 -x154 x153 -x152 -x151 -x150 -x149 -x148 -x147 -x146 -x145 -x144 -x143 -x142 -x141 -x140 -x139 -x138 -x137 -x136 -x135 -x134 -x133
-x132 -x131 -x130 -x129 -x128 -x127 -x126 -x125 -x124 -x123 -x122 -x121 -x120 -x119 -x118 -x117 -x116 -x115 -x114 -x113 -x112 -x111 -x110
-x109 -x108 x107 -x106 -x105 -x104 -x103 -x102 -x101 -x100 -x99 -x98 -x97 -x96 -x95 -x94 x93 -x92 -x91 -x90 -x89 -x88 -x87 -x86 -x85 -x84
-x83 -x82 -x81 -x80 -x79 -x78 -x77 -x76 -x75 -x74 -x73 -x72 -x71 -x70 -x69 -x68 -x67 -x66 -x65 -x64 -x63 -x62 -x61 -x60 -x59 -x58 x57 -x56
-x55 -x54 -x53 -x52 -x51 -x50 -x49 -x48 -x47 -x46 x45 -x44 -x43 -x42 -x41 -x40 -x39 -x38 -x37 -x36 -x35 -x34 -x33 -x32 -x31 -x30 -x29 -x28
-x27 -x26 -x25 -x24 -x23 -x22 -x21 -x20 -x19 -x18 -x17 -x16 x15 -x14 -x13 -x12 x11 -x10 -x9 -x8 -x7 -x6 -x5 -x4 -x3 -x2 -x1