Fifth Pseudo-Boolean Competition
PB10

Vasco MANQUINHO and Olivier ROUSSEL

13th International Conference on
Theory and Applications of Satisfiability Testing,
SAT’10

July 14th, 2010
Outline

- Pseudo-Boolean constraints
- PBS, PBO, WBO
- Judges
- Benchmarks and Solvers
- Evaluation Environment
- Results
A linear pseudo-Boolean (PB) constraint may be defined over Boolean variables by

\[\sum_{i} a_i l_i \geq d \text{ with } a_i, d \in \mathbb{Z}, l_i \in \{x_i, \bar{x}_i\}, x_i \in \mathbb{B} \]

Example: \(3x_1 - 3x_2 + 2\bar{x}_3 + \bar{x}_4 + x_5 \geq 5\)

- Extends both clauses and cardinality constraints
 - cardinalities: all \(a_i = 1\) and \(d > 1\)
 - clauses: all \(a_i = 1\) and \(d = 1\)

- PB constraints are more expressive than clauses (one PB constraint may replace an exponential number of clauses)
- A pseudo-Boolean instance is a conjunction of PB constraints
Non-Linear Pseudo-Boolean Constraints

- A non-linear pseudo-Boolean constraint may be defined over Boolean variables by

\[\sum_i a_i \prod_j l_{i,j} \geq d \] with \(a_i, d \in \mathbb{Z}, l_{i,j} \in \{x_{i,j}, \bar{x}_{i,j}\}, x_{i,j} \in \mathbb{B} \)

Example: \(3x_1 \bar{x}_2 - 3x_2x_4 + 2\bar{x}_3 + \bar{x}_4 + x_5x_6x_7 \geq 5 \)

- A product is a AND

- Compact encoding for several problems (e.g. factoring problem encoded by one constraint)

- Can be easily translated into linear pseudo-Boolean by introducing new variables and constraints such that

\[p \leftrightarrow x_0 \land x_1 \land \ldots \land x_n \]

(requires 2 PB constraints or n+1 clauses)
Different problems: PBS, PBO,…

- **PBS (Pseudo Boolean Satisfaction)**
 decide of the satisfiability of a conjunction of PB constraints

- **PBO (Pseudo Boolean Optimization)**
 find a model of a conjunction of PB constraints which optimizes one objective function

\[
\begin{align*}
\text{minimize} & \quad f = \sum_i c_i x_i \quad \text{with } c_i \in \mathbb{Z}, x_i \in \mathbb{B} \\
\text{subject to} & \quad \text{the conjunction of constraints}
\end{align*}
\]
Different problems: ... and WBO

WBO (Weighted Boolean Optimization)

- new in the competition
- generalization of maximum satisfiability for PB constraints
- hard constraints **must** be satisfied
- soft constraints may be violated, but this has a cost
- the cost of an interpretation is the sum of the costs of violated soft constraints
- as in WCSP, there is a top cost. Interpretations with a cost greater or equal to the top cost are non admissible.
- the goal is to find an admissible interpretation with the smallest cost
- **to avoid any intersection with the Max-SAT competition, at least one constraint must not be a clause.**
Judges

- 2 judges (the same as last year)
 - Heidi Dixon (pbChaff solver)
 - Peter Barth (opbdp solver)
- decided of the selection of instances
- suggested a comparison with CPLEX
- approved the results
Benchmark categories (1)

For PBS/PBO, classification based on the objective function

DEC No objective function to optimize (decision problem). The solver must simply find a solution.

OPT An objective function is present. The solver must find a solution with the best possible value of the objective function.

For WBO, classification based on the existence of hard clauses

SOFT No hard clause at all.

PARTIAL At least one hard clause.
Classification based on the size of coefficients

SMALLINT small integers: no constraint with a sum of coefficients greater than 2^{20} (20 bits): expected to be safe for solvers using 32 bits integers and simple techniques (be careful with learning), but strong limit to the encoding of concrete problems.

BIGINT big integers: at least one constraint with a sum of coefficients greater than 2^{20} (20 bits): requires arbitrary precision.

Classification based on the linearity of constraints

LIN All constraints are linear

NLC At least one constraint is non linear (contains products of literals)
Categories

- DEC-SMALLINT-LIN (452 instances)
- DEC-SMALLINT-NLC (100 instances)
- DEC-BIGINT-LIN
- DEC-BIGINT-NLC
- OPT-SMALLINT-LIN (699 instances)
- OPT-SMALLINT-NLC (409 instances)
- OPT-BIGINT-LIN (532 instances)
- OPT-BIGINT-NLC
- PARTIAL-SMALLINT-LIN (536 instances)
- PARTIAL-BIGINT-LIN (263 instances)
- SOFT-SMALLINT-LIN (201 instances)
- SOFT-BIGINT-LIN (46 instances)
Submitted solvers: (1)

7 teams, 8 solvers, 30 solver versions

Solvers with only PBS/PBO support

- **borg-pb** Bryan Silverthorn
 a portfolio solver (In Python. Uses clasp, SAT4J and the PB10 versions of bsolo/wbo)

- **bsolo** Vasco Manquinho and José Santos
 a SAT-like solver with lower bound estimation techniques

- **PBPASSolver** Amir Aavani
 written in Pascal

- **PB-wave** Cédric Piette
 a local search solver
Submitted solvers (2)

Solvers with both PBS/PBO and WBO support

PB/CT Anders Franzen, Roberto Bruttomesso
based on OpenSMT

SAT4J Pseudo Daniel Le Berre and Anne Parrain
3 versions: learn clauses, learn PB constraints, run both in // and exchange intermediate values of the objective function

SCIP Stefan Heinz, Marc E. Pfetsch, and Michael Winkler
3 versions: with SoPlex as LP solver, with Clp as LP solver, without any LP solver

wbo Vasco Manquinho, Jordi Planes and João Marques-Silva
an unsatisfiability-based solver; iterates over the identification of unsatisfiable subformulas;
An extra solver: pb_cplex

- a direct interface to CPLEX 12.1, a state of the art linear programming solver
- support for PBS/PBO as well as WBO
- written by Vasco Manquinho after a suggestion of the judges
PBS/PBO Instances submitted this year

- resource-constrained project scheduling problem (A. Oliveras)
 converted from the PSPLib
 6216 submitted instances, (4080 DEC-SMALLINT-LIN, 2040 OPT-SMALLINT-LIN)
 80 instances randomly selected in each category

- dependency of packages in a Linux distribution (D. Le Berre)
 converted from the Mancoosi project
 1 DEC-SMALLINT-LIN, 65 OPT-SMALLINT-LIN, 327 OPT-BIGINT-LIN
 at most 80 instances randomly selected in each category

- Tolerant Algebraic Side-Channel Attack (TASCA) on the Keeloq cipher (Y. Oren)
 4 OPT-SMALLINT-NLC
WBO Instances

- no submission at all !!
- generation of WBO from unsatisfiable PBS/PBO instances by adding a random cost between 1 and 100 to
 - 100% of the constraints (only soft constraints)
 - 66% of the constraints (majority of soft constraints)
 - 33% of the constraints (majority of hard constraints)

No top cost imposed in these instances.

- Conversion of WCSP instances
 - 1 hard equality constraint to encode each variable
 - 1 soft constraint to encode the cost of a tuple
Evaluation environment

kindly provided by the CRIL, University of Artois, France
For PBS/PBO: same hardware as last competitions

- Cluster of bi-Xeon 3 GHz, 2MB cache, 2GB RAM
- Each solver was given a time limit of 30 minutes (1800s) and a memory limit of 1800 MB (to avoid swapping).
- 280 days of CPU time used

For WBO: new hardware

- Cluster of bi-Xeon quad-core 2.66 GHz, 8 MB cache, 32 GB RAM
- Each solver was given a time limit of 30 minutes (1800s) and a memory limit of 3800 MB (to avoid swapping).
- 2 solvers per node (limited interactions because of the 2 CPU and the memory limit)
- 90 days of CPU time used
Verification of results

- The environment performs the following, efficient checks:
 - for SATISFIABLE answers, solvers must output a complete instantiation and the system checks that it satisfies all constraints
 - for UNSATISFIABLE answers, the system only checks that no other solver proved satisfiability
 - for OPTIMUM FOUND answers, solvers must output a complete instantiation; the system checks if all constraints are satisfied and that no other solver found a better solution

- UNSATISFIABLE and OPTIMUM FOUND answers cannot be completely checked efficiently and therefore should be taken with caution.

- Solvers giving a wrong answer in a category are disqualified in that category.
Ranking of solvers and Virtual Best Solver (VBS)

Ranking based on two criteria:
1. the number of solved instances
2. ties are broken by considering the cumulated time on solved instances

The Virtual Best Solver (VBS)
- is the virtual solver obtained by combining the best results of all submitted solvers.
- could be obtained by running in parallel all submitted solvers.
- represents the current state of the art (SOTA)
- is a reference for the evaluation of the other solvers
Results for DEC-SMALLINT-LIN

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>#solved</th>
<th>Detail</th>
<th>%inst.</th>
<th>%VBS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Virtual Best Solver (VBS)</td>
<td>434</td>
<td>180 S, 254 U</td>
<td>96%</td>
<td>100%</td>
</tr>
<tr>
<td>1</td>
<td>borg-pb</td>
<td>415</td>
<td>179 S, 236 U</td>
<td>92%</td>
<td>96%</td>
</tr>
<tr>
<td>2</td>
<td>SAT4J Res//CP</td>
<td>382</td>
<td>173 S, 209 U</td>
<td>85%</td>
<td>88%</td>
</tr>
<tr>
<td>3</td>
<td>bsolo 3.2 Card</td>
<td>380</td>
<td>172 S, 208 U</td>
<td>84%</td>
<td>88%</td>
</tr>
<tr>
<td>4</td>
<td>wbo 1.4a</td>
<td>378</td>
<td>171 S, 207 U</td>
<td>84%</td>
<td>87%</td>
</tr>
<tr>
<td>5</td>
<td>PB/CT bugfix</td>
<td>369</td>
<td>164 S, 205 U</td>
<td>82%</td>
<td>85%</td>
</tr>
<tr>
<td>6</td>
<td>SAT4J Res.</td>
<td>367</td>
<td>174 S, 193 U</td>
<td>81%</td>
<td>85%</td>
</tr>
<tr>
<td>7</td>
<td>bsolo 3.2 Cl</td>
<td>355</td>
<td>170 S, 185 U</td>
<td>79%</td>
<td>82%</td>
</tr>
<tr>
<td>8</td>
<td>SCIPspx bugfix</td>
<td>351</td>
<td>139 S, 212 U</td>
<td>78%</td>
<td>81%</td>
</tr>
<tr>
<td>9</td>
<td>SCIPspx</td>
<td>351</td>
<td>141 S, 210 U</td>
<td>78%</td>
<td>81%</td>
</tr>
<tr>
<td>10</td>
<td>SCIPclp</td>
<td>344</td>
<td>144 S, 200 U</td>
<td>76%</td>
<td>79%</td>
</tr>
<tr>
<td>11</td>
<td>pb_cplex</td>
<td>337</td>
<td>155 S, 182 U</td>
<td>75%</td>
<td>78%</td>
</tr>
<tr>
<td>12</td>
<td>SCIPnone</td>
<td>288</td>
<td>154 S, 134 U</td>
<td>64%</td>
<td>66%</td>
</tr>
<tr>
<td>13</td>
<td>SAT4J CP</td>
<td>228</td>
<td>106 S, 122 U</td>
<td>50%</td>
<td>53%</td>
</tr>
<tr>
<td>14</td>
<td>PB-wave</td>
<td>66</td>
<td>66 S</td>
<td>15%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Total number of instances: 452
Time to solve an instance
(SAT/UNSAT answers, category DEC-SMALLINT-LIN)
Results for DEC-SMALLINT-NLC

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>#solved</th>
<th>Detail</th>
<th>%inst.</th>
<th>%VBS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Virtual Best Solver (VBS)</td>
<td>70</td>
<td>50 S, 20 U</td>
<td>70%</td>
<td>100%</td>
</tr>
<tr>
<td>1</td>
<td>pb_cplex</td>
<td>70</td>
<td>50 S, 20 U</td>
<td>70%</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>SCIPspx bugfix</td>
<td>70</td>
<td>50 S, 20 U</td>
<td>70%</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>SCIPclp</td>
<td>69</td>
<td>50 S, 19 U</td>
<td>69%</td>
<td>99%</td>
</tr>
<tr>
<td>4</td>
<td>SCIPspx</td>
<td>69</td>
<td>50 S, 19 U</td>
<td>69%</td>
<td>99%</td>
</tr>
<tr>
<td>5</td>
<td>SAT4J Res//CP</td>
<td>65</td>
<td>50 S, 15 U</td>
<td>65%</td>
<td>93%</td>
</tr>
<tr>
<td>6</td>
<td>SAT4J CP</td>
<td>65</td>
<td>50 S, 15 U</td>
<td>65%</td>
<td>93%</td>
</tr>
<tr>
<td>7</td>
<td>PB/CT</td>
<td>65</td>
<td>50 S, 15 U</td>
<td>65%</td>
<td>93%</td>
</tr>
<tr>
<td>8</td>
<td>PB/CT bugfix</td>
<td>63</td>
<td>50 S, 13 U</td>
<td>63%</td>
<td>90%</td>
</tr>
<tr>
<td>9</td>
<td>bsolo 3.2 Card</td>
<td>61</td>
<td>46 S, 15 U</td>
<td>61%</td>
<td>87%</td>
</tr>
<tr>
<td>10</td>
<td>wbo 1.4a</td>
<td>57</td>
<td>42 S, 15 U</td>
<td>57%</td>
<td>81%</td>
</tr>
<tr>
<td>11</td>
<td>SCIPnone</td>
<td>49</td>
<td>39 S, 10 U</td>
<td>49%</td>
<td>70%</td>
</tr>
<tr>
<td>12</td>
<td>borg-pb</td>
<td>27</td>
<td>17 S, 10 U</td>
<td>27%</td>
<td>39%</td>
</tr>
<tr>
<td>13</td>
<td>bsolo 3.2 Cl</td>
<td>26</td>
<td>16 S, 10 U</td>
<td>26%</td>
<td>37%</td>
</tr>
<tr>
<td>14</td>
<td>PB-wave</td>
<td>25</td>
<td>25 S</td>
<td>25%</td>
<td>36%</td>
</tr>
<tr>
<td>15</td>
<td>SAT4J Res.</td>
<td>25</td>
<td>10 S, 15 U</td>
<td>25%</td>
<td>36%</td>
</tr>
</tbody>
</table>

Total number of instances: 100
Results for OPT-SMALLINT-LIN

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>#solved</th>
<th>Detail</th>
<th>%inst.</th>
<th>%VBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pb_cplex</td>
<td>417</td>
<td>384 O, 33 U</td>
<td>60%</td>
<td>87%</td>
</tr>
<tr>
<td>2</td>
<td>SCIPspx bugfix</td>
<td>354</td>
<td>321 O, 33 U</td>
<td>51%</td>
<td>74%</td>
</tr>
<tr>
<td>3</td>
<td>bsolo 3.2 Card</td>
<td>333</td>
<td>300 O, 33 U</td>
<td>48%</td>
<td>69%</td>
</tr>
<tr>
<td>4</td>
<td>bsolo 3.2 Cl</td>
<td>328</td>
<td>295 O, 33 U</td>
<td>47%</td>
<td>68%</td>
</tr>
<tr>
<td>5</td>
<td>SCIPclp</td>
<td>319</td>
<td>286 O, 33 U</td>
<td>46%</td>
<td>66%</td>
</tr>
<tr>
<td>6</td>
<td>SCIPspx</td>
<td>317</td>
<td>284 O, 33 U</td>
<td>45%</td>
<td>66%</td>
</tr>
<tr>
<td>7</td>
<td>SAT4J Res//CP</td>
<td>315</td>
<td>282 O, 33 U</td>
<td>45%</td>
<td>65%</td>
</tr>
<tr>
<td>8</td>
<td>SAT4J Res.</td>
<td>303</td>
<td>270 O, 33 U</td>
<td>43%</td>
<td>63%</td>
</tr>
<tr>
<td>9</td>
<td>PB/CT bugfix</td>
<td>283</td>
<td>251 O, 32 U</td>
<td>40%</td>
<td>59%</td>
</tr>
<tr>
<td>10</td>
<td>SAT4J CP</td>
<td>255</td>
<td>226 O, 29 U</td>
<td>36%</td>
<td>53%</td>
</tr>
<tr>
<td>11</td>
<td>SCIPnone</td>
<td>187</td>
<td>158 O, 29 U</td>
<td>27%</td>
<td>39%</td>
</tr>
</tbody>
</table>

Total number of instances: 699
Time to solve an instance
(UNSAT/OPT answers, category OPT-SMALLINT-LIN)

CPU time (s) vs. number of solved instances

- bsole 3.2 Card
- bsole 3.2 Cl
- pb_cplex 2010-06-29
- PB/CT 0.1 fixed
- SAT4J PB CuttingPlan
- SAT4J PB RES // CP 2
- SAT4J PB Resolution
- SCIPclp SCIP 1.2.1.2
- SCIPnone SCIP 1.2.1.
- SCIPspx SCIP 1.2.1.2
- SCIPspx SCIP 1.2.1.3
Results for OPT-SMALLINT-NLC

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>#solved</th>
<th>Detail</th>
<th>%inst.</th>
<th>%VBS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Virtual Best Solver (VBS)</td>
<td>289</td>
<td>289 O</td>
<td>71%</td>
<td>100%</td>
</tr>
<tr>
<td>1</td>
<td>SCIPspx bugfix</td>
<td>288</td>
<td>288 O</td>
<td>70%</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>SAT4J Res</td>
<td>271</td>
<td>271 O</td>
<td>66%</td>
<td>94%</td>
</tr>
<tr>
<td>3</td>
<td>SCIPnone</td>
<td>260</td>
<td>260 O</td>
<td>64%</td>
<td>90%</td>
</tr>
<tr>
<td>4</td>
<td>SAT4J Res//CP</td>
<td>250</td>
<td>250 O</td>
<td>61%</td>
<td>87%</td>
</tr>
<tr>
<td>5</td>
<td>bsolo 3.2 Cl</td>
<td>230</td>
<td>230 O</td>
<td>56%</td>
<td>80%</td>
</tr>
<tr>
<td>6</td>
<td>bsolo 3.2 Card</td>
<td>217</td>
<td>217 O</td>
<td>53%</td>
<td>75%</td>
</tr>
<tr>
<td>7</td>
<td>PB/CT</td>
<td>194</td>
<td>194 O</td>
<td>47%</td>
<td>67%</td>
</tr>
<tr>
<td>8</td>
<td>PB/CT bugfix</td>
<td>186</td>
<td>186 O</td>
<td>45%</td>
<td>64%</td>
</tr>
<tr>
<td>9</td>
<td>SAT4J CP</td>
<td>117</td>
<td>117 O</td>
<td>29%</td>
<td>40%</td>
</tr>
</tbody>
</table>

Total number of instances: 409
Time to solve an instance
(UNSAT/OPT answers, category OPT-SMALLINT-NLC)
Results for OPT-BIGINT-LIN

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>#solved</th>
<th>Detail</th>
<th>%inst.</th>
<th>%VBS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Virtual Best Solver (VBS)</td>
<td>211</td>
<td>152 O, 59 U</td>
<td>40%</td>
<td>100%</td>
</tr>
<tr>
<td>1</td>
<td>SAT4J Res//CP</td>
<td>205</td>
<td>146 O, 59 U</td>
<td>39%</td>
<td>97%</td>
</tr>
<tr>
<td>2</td>
<td>SAT4J Res</td>
<td>198</td>
<td>141 O, 57 U</td>
<td>37%</td>
<td>94%</td>
</tr>
<tr>
<td>3</td>
<td>SAT4J CP</td>
<td>168</td>
<td>110 O, 58 U</td>
<td>32%</td>
<td>80%</td>
</tr>
<tr>
<td>4</td>
<td>PB/CT bugfix</td>
<td>87</td>
<td>53 O, 34 U</td>
<td>16%</td>
<td>41%</td>
</tr>
</tbody>
</table>

Total number of instances: 532
Time to solve an instance
(UNSAT/OPT answers, category OPT-BIGINT-LIN)

PB/CT 0.1 fixed
SAT4J PB CuttingPlan
SAT4J PB RES // CP 2
SAT4J PB Resolution

CPU time (s)
number of solved instances
<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>#solved</th>
<th>Detail</th>
<th>%inst.</th>
<th>%VBS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Virtual Best Solver (VBS)</td>
<td>532</td>
<td>531 O, 1 U</td>
<td>99%</td>
<td>100%</td>
</tr>
<tr>
<td>1</td>
<td>SAT4J Res. bugfix</td>
<td>446</td>
<td>445 O, 1 U</td>
<td>83%</td>
<td>84%</td>
</tr>
<tr>
<td>2</td>
<td>pb_cplex</td>
<td>428</td>
<td>428 O</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>3</td>
<td>PB/CT bugfix</td>
<td>375</td>
<td>374 O, 1 U</td>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td>4</td>
<td>wbo 1.4a</td>
<td>373</td>
<td>372 O, 1 U</td>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td>5</td>
<td>SCIPclp</td>
<td>297</td>
<td>296 O, 1 U</td>
<td>55%</td>
<td>56%</td>
</tr>
<tr>
<td>6</td>
<td>SCIPclp</td>
<td>282</td>
<td>281 O, 1 U</td>
<td>53%</td>
<td>53%</td>
</tr>
<tr>
<td>7</td>
<td>SCIPspx</td>
<td>269</td>
<td>268 O, 1 U</td>
<td>50%</td>
<td>51%</td>
</tr>
<tr>
<td>8</td>
<td>SCIPnone</td>
<td>146</td>
<td>145 O, 1 U</td>
<td>27%</td>
<td>27%</td>
</tr>
</tbody>
</table>

Total number of instances: 536
Time to solve an instance
(UNSAT/ MOPT answers, category PARTIAL-SMALLINT-LIN)
Results for SOFT-SMALLINT-LIN

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>#solved</th>
<th>Detail</th>
<th>%inst.</th>
<th>%VBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>wbo 1.4a</td>
<td>161</td>
<td>161 O</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>2</td>
<td>pb_cplex</td>
<td>160</td>
<td>160 O</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>3</td>
<td>SAT4J Res. bugfix</td>
<td>160</td>
<td>160 O</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>4</td>
<td>PB/CT bugfix</td>
<td>138</td>
<td>138 O</td>
<td>69%</td>
<td>69%</td>
</tr>
<tr>
<td>5</td>
<td>SCIPclp</td>
<td>113</td>
<td>113 O</td>
<td>56%</td>
<td>56%</td>
</tr>
<tr>
<td>6</td>
<td>SCIPspx</td>
<td>113</td>
<td>113 O</td>
<td>56%</td>
<td>56%</td>
</tr>
<tr>
<td>7</td>
<td>SCIPclp</td>
<td>113</td>
<td>113 O</td>
<td>56%</td>
<td>56%</td>
</tr>
<tr>
<td>8</td>
<td>SCIPnone</td>
<td>22</td>
<td>22 O</td>
<td>11%</td>
<td>11%</td>
</tr>
</tbody>
</table>

Total number of instances: 201
Time to solve an instance
(UNSAT/MOPT answers, category SOFT-SMALLINT-LIN)
Results for PARTIAL-BIGINT-LIN

Total number of instances: 263

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solver</th>
<th>#solved</th>
<th>Detail</th>
<th>%inst.</th>
<th>%VBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Virtual Best Solver (VBS)</td>
<td>135</td>
<td>117 O, 18 U</td>
<td>51%</td>
<td>100%</td>
</tr>
<tr>
<td>1</td>
<td>SAT4J Res. bugfix</td>
<td>113</td>
<td>113 O</td>
<td>43%</td>
<td>84%</td>
</tr>
<tr>
<td>2</td>
<td>PB/CT bugfix</td>
<td>78</td>
<td>78 O</td>
<td>30%</td>
<td>58%</td>
</tr>
</tbody>
</table>
Time to solve an instance
(UNSAT/MOPT answers, category PARTIAL-BIGINT-LIN)

CPU time (s)
number of solved instances

PB/CT 0.1 fixed
SAT4J PB Resolution
A word of warning...

- Keep in mind that the competition only takes a snapshot from a given angle.
- The rankings represent a user point of view, on a specific set of instances. This is only one small part of the picture.
- There are more points of view which are also relevant: innovation, robustness...
Some lessons

- A portfolio approach is valuable
- CPLEX outperforms all other solvers in OPT-SMALLINT-LIN and DEC-SMALLINT-NLC but is not so strong in other categories
- Linear programming techniques can help
- Learning PB constraints has a cost. Alternative approaches are valuable.
More information

- All details are on the web site
 http://www.cril.univ-artois.fr/PB10
- Get your solvers ready for PB11!
- Thanks to all participants!