PB'10 competition: satisfaction and optimization track: results by benchmark

Results by benchmark for category optimisation, small integers, linear constraints (OPT-SMALLINT-LIN), subcategory Handmade, subsubcategory Routing

This page displays the results of the different solvers for each benchmark for category optimisation, small integers, linear constraints (OPT-SMALLINT-LIN), subcategory Handmade, subsubcategory Routing

REMINDER

Keep in mind that the 'Best result' columns only provide the best result given by one of the solvers. This 'Best result' may be wrong in case of an UNSATISFIABLE or OPTIMUM FOUND answer (because there's no efficient way to check these answers).

Description of a cell contents:

Cell exampleMeaning
AnswerSolver result
f=...value of the objective function for the model reported by the solver
TT=...Total Time (TT): this is the CPU time (in seconds) used by the solver until termination. This time is only meaningful for complete solvers because incomplete solvers will always run until they time out
Remember that CPU time and wall clock time are two very different notions. The CPU time represents the time during which the instructions of the solver were executed by the processor. The wall clock time represents how much time ellapsed on the clock. For a same event, the CPU time may be either smaller or greater than the wall clock time depending on the number of threads of execution and the number of processors.

Meaning of some abbreviations:

AbbreviationMeaning
f=...Value of the objective function
TOTime Out
MOMem. Out (out of memory)

Meaning of the different colors:

ColorMeaning
textthe solver cannot handle this instance
textthe solver gave no answer
textthe solver could give an answer (SAT)
textthe solver gave a definitive answer (OPTIMUM FOUND or UNSAT)
textthe solver performed better than the other ones on that instance (complete solvers point of view)
textthe solver performed better than the other ones on that instance (incomplete solvers point of view)
textthe solver was ended by a signal or other problem
textthe solver gave an incomplete answer
textthe solver gave a wrong answer

For better readability, you may choose to hide some solvers:
bsolo 3.2 Card (complete)
bsolo 3.2 Cl (complete)
pb_cplex 2010-06-29 (complete)
PB/CT 0.1 (complete)
PB/CT 0.1 fixed (complete)
PBPASSolver 2010-06-13 (complete)
SAT4J PB CuttingPlanes 2.2.0 2010-05-26 (complete)
SAT4J PB RES // CP 2.2.0 2010-05-31 (complete)
SAT4J PB Resolution 2.2.0 2010-05-26 (complete)
SCIPclp SCIP 1.2.1.2 with Clp 1.11.1 (Release Version) as LP solver (complete)
SCIPnone SCIP 1.2.1.2 without any LP solver (complete)
SCIPspx SCIP 1.2.1.2 with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)
SCIPspx SCIP 1.2.1.3 with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver (complete)
wbo 1.4b (complete)
wbo 1.4b (fixed) (complete)

Bench nameBest results
on this
instance
bsolo
3.2 Card
(complete)
bsolo
3.2 Cl
(complete)
pb_cplex
2010-06-29
(complete)
PB/CT
0.1
(complete)
PB/CT
0.1 fixed
(complete)
PBPASSolver
2010-06-13
(complete)
SAT4J PB CuttingPlanes
2.2.0 2010-05-26
(complete)
SAT4J PB RES // CP
2.2.0 2010-05-31
(complete)
SAT4J PB Resolution
2.2.0 2010-05-26
(complete)
SCIPclp
SCIP 1.2.1.2 with Clp 1.11.1 (Release Version) as LP solver
(complete)
SCIPnone
SCIP 1.2.1.2 without any LP solver
(complete)
SCIPspx
SCIP 1.2.1.2 with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver
(complete)
SCIPspx
SCIP 1.2.1.3 with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver
(complete)
wbo
1.4b
(complete)
wbo
1.4b (fixed)
(complete)
normalized-PB06/OPT-SMALLINT/
submitted-PB05/manquinho/routing/
normalized-s4-4-3-10pb.opb
OPT
f=70
TT=0.156
T1=0.15
OPT
f=70
TT=0.156
T1=0.15
OPT
f=70
TT=1.89
T1=0.99
OPT
f=70
TT=0.351
T1=0.34
OPT
f=70
TT=4.948
T1=2.89
OPT
f=70
TT=3.267
T1=1.63
? (TO)

TT=1800.02

OPT
f=70
TT=39.174
T1=9.01
OPT
f=70
TT=7.171
T1=3.74
OPT
f=70
TT=3.911
T1=1.85
OPT
f=70
TT=1.495
T1=1.46
OPT
f=70
TT=43.907
T1=30.08
OPT
f=70
TT=0.488
T1=0.46
OPT
f=70
TT=0.201
T1=0.18
OPT
f=70
TT=1.137
T1=0.95
OPT
f=70
TT=1.1
T1=0.96
normalized-PB06/OPT-SMALLINT/
submitted-PB05/manquinho/routing/
normalized-s4-4-3-1pb.opb
OPT
f=62
TT=0.234
T1=0.21
OPT
f=62
TT=0.303
T1=0.29
OPT
f=62
TT=7.674
T1=7.66
OPT
f=62
TT=0.251
T1=0.25
OPT
f=62
TT=1273.38
T1=198.85
SAT (TO)
f=62
TT=1800.06
T1=65.11
? (TO)

TT=1800.07

OPT
f=62
TT=1716.42
T1=198.09
OPT
f=62
TT=1324.3
T1=22.94
OPT
f=62
TT=934.609
T1=5.98
OPT
f=62
TT=0.645
T1=0.62
? (TO)

TT=1802.16

OPT
f=62
TT=0.978
T1=0.96
OPT
f=62
TT=0.234
T1=0.21
OPT
f=62
TT=184.085
T1=30.1
OPT
f=62
TT=184.211
T1=32.26
normalized-PB06/OPT-SMALLINT/
submitted-PB05/manquinho/routing/
normalized-s4-4-3-2pb.opb
OPT
f=64
TT=0.29
T1=0.28
OPT
f=64
TT=273.326
T1=121.24
SAT
f=64
TT=1798.01
T1=1239.95
OPT
f=64
TT=0.29
T1=0.28
OPT
f=64
TT=825.384
T1=338.35
OPT
f=64
TT=1309.06
T1=89.96
? (TO)

TT=1800.06

SAT (TO)
f=64
TT=1800.29
T1=504.39
OPT
f=64
TT=363.892
T1=136.49
OPT
f=64
TT=164.419
T1=88.85
OPT
f=64
TT=0.681
T1=0.66
SAT (TO)
f=72
TT=1802.14
T1=1485.09
OPT
f=64
TT=1.173
T1=1.15
OPT
f=64
TT=2.548
T1=2.52
OPT
f=64
TT=184.494
T1=88.56
OPT
f=64
TT=184.217
T1=64.57
normalized-PB06/OPT-SMALLINT/
submitted-PB05/manquinho/routing/
normalized-s4-4-3-3pb.opb
OPT
f=62
TT=0.243
T1=0.24
OPT
f=62
TT=174.085
T1=150.34
SAT
f=68
TT=1798.01
T1=845.43
OPT
f=62
TT=0.243
T1=0.24
OPT
f=62
TT=1102.54
T1=435.6
OPT
f=62
TT=1210.17
T1=401.87
? (TO)

TT=1800.06

SAT (TO)
f=62
TT=1800.28
T1=148.73
OPT
f=62
TT=532.437
T1=150.01
OPT
f=62
TT=172.629
T1=135.03
OPT
f=62
TT=0.501
T1=0.48
? (TO)

TT=1802.13

OPT
f=62
TT=0.716
T1=0.69
OPT
f=62
TT=0.514
T1=0.49
OPT
f=62
TT=184.54
T1=94.05
OPT
f=62
TT=184.393
T1=181.44
normalized-PB06/OPT-SMALLINT/
submitted-PB05/manquinho/routing/
normalized-s4-4-3-4pb.opb
OPT
f=60
TT=0.256
T1=0.25
OPT
f=60
TT=0.59
T1=0.58
OPT
f=60
TT=0.426
T1=0.42
OPT
f=60
TT=0.256
T1=0.25
SAT (TO)
f=60
TT=1800.09
T1=1410.45
SAT (TO)
f=60
TT=1800.04
T1=224.81
? (TO)

TT=1800.08

OPT
f=60
TT=1342.12
T1=96.33
OPT
f=60
TT=1723.03
T1=35.92
OPT
f=60
TT=840.341
T1=58.16
OPT
f=60
TT=1.407
T1=1.38
SAT (TO)
f=68
TT=1801.77
T1=612.47
OPT
f=60
TT=1.833
T1=1.8
OPT
f=60
TT=1.173
T1=1.14
OPT
f=60
TT=184.197
T1=159.93
OPT
f=60
TT=184.869
T1=135.59
normalized-PB06/OPT-SMALLINT/
submitted-PB05/manquinho/routing/
normalized-s4-4-3-5pb.opb
OPT
f=60
TT=0.251
T1=0.25
OPT
f=60
TT=23.9
T1=23.9
OPT
f=60
TT=7.96
T1=7.95
OPT
f=60
TT=0.251
T1=0.25
SAT (TO)
f=60
TT=1800.02
T1=1088.86
SAT (TO)
f=60
TT=1800.11
T1=632.8
? (TO)

TT=1800.05

SAT (TO)
f=60
TT=1800.25
T1=283.66
OPT
f=60
TT=619.999
T1=159.85
OPT
f=60
TT=166.479
T1=92.58
OPT
f=60
TT=0.473
T1=0.45
? (TO)

TT=1802.19

OPT
f=60
TT=0.588
T1=0.57
OPT
f=60
TT=0.63
T1=0.61
OPT
f=60
TT=184.343
T1=184.38
OPT
f=60
TT=184.226
T1=184.26
normalized-PB06/OPT-SMALLINT/
submitted-PB05/manquinho/routing/
normalized-s4-4-3-6pb.opb
OPT
f=66
TT=0.26
T1=0.25
OPT
f=66
TT=52.495
T1=10.83
OPT
f=66
TT=669.883
T1=486.84
OPT
f=66
TT=0.26
T1=0.25
OPT
f=66
TT=82.578
T1=34.37
OPT
f=66
TT=134.497
T1=10.95
? (TO)

TT=1800.04

OPT
f=66
TT=177.156
T1=16.69
OPT
f=66
TT=51.766
T1=9.82
OPT
f=66
TT=28.137
T1=14.24
OPT
f=66
TT=2.117
T1=2.09
SAT (TO)
f=72
TT=1802.17
T1=1539.92
OPT
f=66
TT=0.82
T1=0.3
OPT
f=66
TT=0.8
T1=0.3
OPT
f=66
TT=42.579
T1=23.92
OPT
f=66
TT=44.289
T1=23.87
normalized-PB06/OPT-SMALLINT/
submitted-PB05/manquinho/routing/
normalized-s4-4-3-7pb.opb
OPT
f=64
TT=0.245
T1=0.24
OPT
f=64
TT=23.486
T1=15.79
OPT
f=64
TT=67.785
T1=67.13
OPT
f=64
TT=0.245
T1=0.24
OPT
f=64
TT=74.575
T1=43.48
OPT
f=64
TT=162.381
T1=112.81
? (TO)

TT=1800.03

OPT
f=64
TT=56.124
T1=22.26
OPT
f=64
TT=27.765
T1=10.81
OPT
f=64
TT=20.673
T1=15.48
OPT
f=64
TT=0.723
T1=0.7
? (TO)

TT=1802.01

OPT
f=64
TT=0.761
T1=0.74
OPT
f=64
TT=0.63
T1=0.61
OPT
f=64
TT=42.066
T1=30.07
OPT
f=64
TT=86.656
T1=69.26
normalized-PB06/OPT-SMALLINT/
submitted-PB05/manquinho/routing/
normalized-s4-4-3-8pb.opb
OPT
f=36
TT=0.126
T1=0.11
OPT
f=36
TT=18.126
T1=18.12
OPT
f=36
TT=5.03
T1=5.02
OPT
f=36
TT=0.126
T1=0.12
SAT (TO)
f=36
TT=1800.09
T1=346.29
SAT (TO)
f=40
TT=1800.02
T1=951.1
? (TO)

TT=1800.03

OPT
f=36
TT=180.255
T1=37.91
OPT
f=36
TT=371.242
T1=42.16
OPT
f=36
TT=269.703
T1=81.55
OPT
f=36
TT=0.389
T1=0.37
? (TO)

TT=1802.15

OPT
f=36
TT=0.332
T1=0.31
OPT
f=36
TT=0.132
T1=0.11
OPT
f=36
TT=184.477
T1=184.5
OPT
f=36
TT=184.462
T1=184.49
normalized-PB06/OPT-SMALLINT/
submitted-PB05/manquinho/routing/
normalized-s4-4-3-9pb.opb
OPT
f=68
TT=0.351
T1=0.34
OPT
f=68
TT=3.214
T1=3.17
OPT
f=68
TT=111.294
T1=35.12
OPT
f=68
TT=0.351
T1=0.34
OPT
f=68
TT=89.458
T1=65.77
OPT
f=68
TT=49.151
T1=33.43
? (TO)

TT=1800.09

OPT
f=68
TT=173.17
T1=34.77
OPT
f=68
TT=26.414
T1=10.18
OPT
f=68
TT=10.168
T1=4.49
OPT
f=68
TT=0.552
T1=0.53
? (TO)

TT=1801.5

OPT
f=68
TT=1.314
T1=1.29
OPT
f=68
TT=0.981
T1=0.95
OPT
f=68
TT=5.998
T1=3.02
OPT
f=68
TT=8.091
T1=2.9



Statisticsbsolo
3.2 Card
(complete)
bsolo
3.2 Cl
(complete)
pb_cplex
2010-06-29
(complete)
PB/CT
0.1
(complete)
PB/CT
0.1 fixed
(complete)
PBPASSolver
2010-06-13
(complete)
SAT4J PB CuttingPlanes
2.2.0 2010-05-26
(complete)
SAT4J PB RES // CP
2.2.0 2010-05-31
(complete)
SAT4J PB Resolution
2.2.0 2010-05-26
(complete)
SCIPclp
SCIP 1.2.1.2 with Clp 1.11.1 (Release Version) as LP solver
(complete)
SCIPnone
SCIP 1.2.1.2 without any LP solver
(complete)
SCIPspx
SCIP 1.2.1.2 with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver
(complete)
SCIPspx
SCIP 1.2.1.3 with SoPlex 1.4.2 (CVS Version 30.5.2010) as LP solver
(complete)
wbo
1.4b
(complete)
wbo
1.4b (fixed)
(complete)
Number of times the solver is able to give the best known answer1081006071010101101000
Number of times the solver is the best solver from a complete solver point of view
(i.e. best known answer and best TT time)
108000000000100