PB'09 competition: solvers results per benchmarks

Result page for benchmark
/OPT-BIGINT-LIN/aries-da_nrp/
normalized-aries-da_network_20_2__17_12__8.opb

Jump to solvers results

General information on the benchmark

Name/OPT-BIGINT-LIN/aries-da_nrp/
normalized-aries-da_network_20_2__17_12__8.opb
MD5SUM8e2f046c838d22d910f7a0a451e0ecd3
Bench CategoryOPT-BIGINT-LIN (optimisation, big integers, linear constraints)
Best result obtained on this benchmarkOPT
Best value of the objective obtained on this benchmark46877
Best CPU time to get the best result obtained on this benchmark0.749885
Has Objective FunctionYES
Satisfiable
(Un)Satisfiability was proved
Best value of the objective function
Optimality of the best value was proved
Number of variables338
Total number of constraints60
Number of constraints which are clauses0
Number of constraints which are cardinality constraints (but not clauses)42
Number of constraints which are nor clauses,nor cardinality constraints18
Minimum length of a constraint8
Maximum length of a constraint65
Number of terms in the objective function 320
Biggest coefficient in the objective function 94409
Number of bits for the biggest coefficient in the objective function 17
Sum of the numbers in the objective function 13956496
Number of bits of the sum of numbers in the objective function 24
Biggest number in a constraint 94409
Number of bits of the biggest number in a constraint 17
Biggest sum of numbers in a constraint 13956496
Number of bits of the biggest sum of numbers24
Number of products (including duplicates)0
Sum of products size (including duplicates)0
Number of different products0
Sum of products size0

Results of the different solvers on this benchmark

Solver NameTraceIDAnswerobjCPU timeWall clock time
SAT4J Pseudo CP 2.1.1 (complete)1859638OPT46877 0.749885 0.567651
SAT4J Pseudo Resolution 2.1.1 (complete)1859639OPT46877 1.04484 0.673459

Additionnal information

This section presents information obtained from the best job displayed in the list (i.e. solvers whose names are not hidden).

obj: 46877
Solution found:
-x1 -x2 -x3 -x4 -x5 -x6 -x7 -x8 -x9 -x10 -x11 -x12 -x13 -x14 -x15 -x16 -x17 -x18 -x19 -x20 -x21 -x22 -x23 -x24 -x25 -x26 -x27 -x28 -x29 -x30
-x31 -x32 -x33 -x34 -x35 -x36 -x37 -x38 -x39 -x40 -x41 -x42 -x43 -x44 -x45 -x46 -x47 -x48 -x49 -x50 -x51 -x52 -x53 -x54 -x55 -x56 -x57 -x58
-x59 -x60 -x61 -x62 -x63 -x64 -x65 -x66 -x67 -x68 -x69 -x70 -x71 -x72 -x73 -x74 -x75 -x76 -x77 -x78 -x79 -x80 -x81 -x82 -x83 -x84 -x85 -x86
-x87 -x88 -x89 -x90 -x91 -x92 -x93 -x94 -x95 -x96 -x97 -x98 -x99 -x100 -x101 -x102 -x103 -x104 -x105 -x106 -x107 -x108 -x109 -x110 -x111
-x112 -x113 -x114 -x115 -x116 -x117 x118 -x119 -x120 -x121 -x122 -x123 -x124 -x125 -x126 -x127 -x128 -x129 -x130 -x131 -x132 -x133 -x134
-x135 -x136 -x137 -x138 -x139 -x140 -x141 -x142 -x143 -x144 -x145 -x146 -x147 -x148 -x149 -x150 -x151 -x152 -x153 -x154 -x155 -x156 -x157
-x158 -x159 -x160 -x161 -x162 -x163 -x164 -x165 -x166 -x167 -x168 -x169 -x170 -x171 -x172 -x173 -x174 -x175 x176 -x177 -x178 -x179 -x180
-x181 -x182 -x183 -x184 -x185 -x186 -x187 -x188 -x189 -x190 -x191 -x192 -x193 -x194 -x195 -x196 -x197 -x198 -x199 -x200 -x201 -x202 -x203
-x204 -x205 -x206 -x207 -x208 -x209 -x210 -x211 -x212 -x213 -x214 -x215 -x216 -x217 -x218 -x219 -x220 -x221 -x222 -x223 -x224 -x225 -x226
-x227 -x228 -x229 -x230 -x231 -x232 -x233 -x234 -x235 -x236 -x237 -x238 -x239 -x240 -x241 -x242 -x243 -x244 -x245 -x246 -x247 -x248 -x249
x250 -x251 -x252 -x253 -x254 -x255 -x256 -x257 -x258 -x259 -x260 -x261 -x262 -x263 -x264 -x265 -x266 -x267 -x268 -x269 -x270 -x271 -x272
-x273 -x274 -x275 -x276 -x277 -x278 -x279 -x280 -x281 -x282 -x283 -x284 -x285 -x286 -x287 -x288 -x289 -x290 -x291 -x292 -x293 -x294 -x295
-x296 -x297 -x298 -x299 -x300 -x301 -x302 -x303 -x304 -x305 -x306 -x307 -x308 -x309 -x310 -x311 -x312 -x313 -x314 -x315 -x316 -x317 -x318
-x319 -x320 -x321 -x322 -x323 -x324 -x325 x326 -x327 -x328 -x329 x330 -x331 -x332 -x333 -x334 -x335 -x336 -x337 -x338