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1 Introduction

Wildcat is an optimizer designed for thepseudo-boolean optimization(or PBO for
short) problem.PBO problems form a special class of theoptimization problems with
boolean combinations of pseudo-boolean constraints. For detailed discussions of this
more general type of optimization problem and our algorithms designed for these prob-
lems, we refer to the following papers: [1–4].

Informally, an optimization problem consists of an objective function and a set of
constraints. To solve an optimization problem, we need to maximize or minimize the
objective function subject to the set of constraints. Problems such as finding a minimal
dominating set in a graph are optimization problems.

In our setting, we represent the constraints in an optimization problem as pseudo-
boolean constraints, a formalism rooted in integer programming and operations re-
search. By apseudo-boolean constraint(or a PB constraint for short), we mean an
integer programming constraint with only 0-1 variables.

Optimization problems withPB constraints have received much attention during
the past decade. Recently many optimizers that solvePBO problems have emerged,
including wsat(oip) [5], minisat+ [6], pb2sat + zchaff [7], bsolo [8], pueblo [9],
PBS [10] and so on.

To obtain the optimal solution, the optimizers we list aboverely on a series of
queries toPB constraint model generators. A model generator, on the input of a set
of PB constraints, computes a value assignment that satisfies allthe PB constraints.
Most PB optimizers we listed above use linear search on the value of the objective
function. There are two exceptions:pb2sat + zchaff uses a binary search andbsolo
uses a SAT-based branch and bound method [11].

In the linear search, the optimizer first queries the model generator for a solution to
the set of thePB constraints, disregarding the objective function. Then the optimizer
iteratively improves the value of the objective function byintroducing a newPB con-
straint each time, saying that the value of the objective function should be less than
the one found in the previous step. When the query to the model generator finally re-
ceives an ”unsatisfiable” answer, the previous value of the objective function is thus the
optimal one.

The main reason behind the use of linear search instead of binary search, is that,
deciding a set ofPB constraints is unsatisfiable is harder than deciding a set ofPB

constraints is satisfiable. The binary search often needs fewer iterations than the linear
search before the solutions converge to the optimal ones. However, the binary search
may also need to test unsatisfiability more often than the linear search does. Actually,



the linear search only needs to test the unsatisfiability once before it finds the optimal
solution.

Wildcat computes sub-optimal solutions ofPBO problems since it uses a local
searchPB model generator, which specializes the solver proposed in [2]. For the search
component that successively improves on the quality of a solution,wildcat provides two
options: (1) the linear search (most often used in other optimizers), and (2) a combina-
tion of the linear search with a variant of the binary search.As we noted above, the linear
search executes exactly one call to the model generator on anunsatisfiable instance. Our
hybrid method is designed so that to execute the model generator on an unsatisfiable in-
stances exactly twice, a significant improvement over the straightforward binary search
approach.

2 Preliminaries

A pseudo-boolean (orPB ) constraintis an integer inequality1 of the form
∑

ai × xi ≥ b,

whereai’s andb are integers andxi’s are 0-1 variables. APB theoryis a finite collec-
tion of PB constraints. A value assignmentv that assigns0 or 1 to all variables in the
PB constraintsatisfies(or we sayv is a model of) the constraint if

∑
ai × v(xi) ≥ b

holds. An example ofPB constraint is given as follows:

5x1 + (−6)x2 + 2x3 ≥ 2

We can verify thatx1 = 1, x2 = 1, x3 = 1 is a satisfying value assignment of thePB

constraint. A value assignmentsatisfiesaPB theory if it satisfies allPB constraints in
the theory.

A pseudo-boolean optimization problem(PBO for short) is a pair(O,P ), whereO
is an objective function of the form

∑
ai × xi, ai’s are integersxi’s are 0-1 variables,

andP is a PB theory. Anoptimal solutionto a PB optimization problem is a value
assignment that minimizes the value of the objective function while satisfying thePB

theory.

3 Wildcat algorithm

To solvePBO problems, we use a method that iteratively improve the quality of models
of thePBO theory, with respect to the objective function, until no further improvements
are possible. To be precise, our method consists of aPB model generator and a search
algorithm. ThePB model generator is able to compute models of aPB theory. Given a

1 We only use the≥ operator in defining aPB constraint, following the requirement of the
Pseudo-boolean Evaluation 2006format.



PBO problem(O,P ), we use thePB model generator to generate a model ofP , which
we call afeasible solution, as the starting point. Then we use the search algorithm to
iteratively improve the quality of the feasible solutions found by the model generator.
In each iteration, the search algorithm produces a newPB constraint and adds it toP ,
which guarantees that all the feasible solutions of the newPB theory are better than
the previously found feasible solutions. Then the search algorithm queries the model
generator, asking for another feasible solution.

In wildcat , we apply a stochastic local searchPB solver,wsat(plpb), first develop
for a more general setting, which allows disjunctions ofPB constraints [2]. Solver
wsat(plpb) uses awsat-like algorithm. In particular, as inwalksat , wsat(plpb) pro-
ceeds by executing a pre-specified number oftries. Each try starts with a random value
assignment and consists of a sequence of local modification steps calledflips. Each
flip is determined by an atom selected from anunsatisfiedPB constraint.Wsat(plpb)
bases the choice on a measure of how much the corresponding flip changes the de-
gree to which thePB constraints in the theory are violated. In designing such mea-
sures,wsat(plpb) is guided by the concepts of thebreak-countandmake-countused
in walksat , which are defined as the numbers of clauses that become unsatisfied and
satisfied, respectively, as a result of a flip.

Wsat(plpb) uses a finer definition of thebreak-countandmake-count. The intuition
is thatPB constraints are more complex than clauses and breaking (or fixing) a PB

constraint should have more penalty (or reward) than breaking (or fixing) a clause. To
this end,wsat(plpb) exploits the fact thatPB constraints have equivalent representation
by means of propositional theories. LetT be aPB theory and letT ′ be its propositional-
logic equivalent (with allPB constraints “compiled” away).Wsat(plpb) defines the
break-count of an atoma in T as the number of clauses inT ′ that become unsatisfied
after it flipsa. Wsat(plpb) defines the make-count ofa similarly. An important point
is thatwsat(plpb) does not computeT ′ explicitly in order to determine the break-count
and the make-count ofa. Both measures are estimated directly on the basis ofT alone.

Wsat(plpb) has two variants:wsat(plpb)-skc andwsat(plpb)-rnp, which extend
theSKCand theRNovelty+heuristic forwalksat respectively. Therefore, we callwildcat

combined withwsat(plpb)-skc wildcat-skc andwildcat combined withwsat(plpb)-rnp

wildcat-rnp. We note that, becausewsat(plpb) is incomplete,wildcat combined with
wsat(plpb) only finds sub-optimal solutions to aPBO problem.

We now present the search algorithm inwildcat . We provide two options here: the
linear search and a combination of the linear search and a variant of the binary search.

Let us assume(O,P ) is thePBO problem andv is the current feasible solution
found by the model generator. We writev(O) to denote the value ofO under the as-
signmentv andl(O) to denote the smallest valueO can take (the sum of all negative
coefficients inO).

In the linear search, aPB constraint of the following form is added toP in each
iteration:

−O ≥ ⌈−(v(O) − 1)⌉,

where−O is a linear function built fromO by changing the signs of the coefficients in
O to their dual:+ to− and− to +. This constraint ensures that future feasible solutions
will yield a smaller value for the objective function.



The second option of our search algorithm, denoted byLBS , combines the linear
search and the binary search and balances between the numberof iterations and the
CPU time needed during each iteration.LBS starts with a variant of the binary search
algorithm. The binary search phase stops immediately afterit tests one unsatisfiable
case. ThenLBS switches to the linear search phase, starting with the best feasible
solution found by the binary search phase. Our method guarantees that exactly two
unsatisfiable testings are needed to compute an optimal solution.

We expect thatLBS will outperform the linear search when the range of the ob-
jective function is large and the quality improvement in each iteration is small. On the
other hand, when the range of the objective function is smallor the improvement of the
quality of the feasible solutions is large, the linear search may outperformLBS . Our
still preliminary and non-comprehensive experiments support this expectation.

The pseudo code ofLBS is given in Figure 1.

Algorithm 1 LBS

INPUT: P - aPB theory
O - an objective function
S - aPB model generator

OUTPUT: v - a value assignment that optimizesf subject toT
BEGIN
1. CallS with P ; If S fails, return “unsatisfiable”;
2. While S returns a value assignmentv;
3. Letm bel(O) + c × (v(O) − l(O));
4. LetP ′ beP ∪ {−O ≥ ⌈−m⌉};
5. CallS with P ′;
6. End While
7. Letv be the last value assignmentS returns;
8. Do
9. Letm bev(O) − 1;
10. LetP ′ beP ∪ {−O ≥ ⌈m⌉};
11. CallS with P ′;
12. While S returns a value assignmentv;
13. return the last value assignmentS returns;
END

Line 1 says whenS fails the optimizer will halt and report the set ofPB constraints
alone is unsatisfiable. In the case whenS is an incomplete solver, as is in our imple-
mentation, this message meansS fails to find a model given the amount of resource
allocated toS. It may be the case thatT is indeed satisfiable. This limitation comes
from the fact thatS is incomplete.

From line 2 to line 6, we first perform a variant of the binary search with the constant
valuec set between 0 and 1. In practice, we setc to 2/3. From line 8 to line 12, we
perform a linear search, starting with the value off found from the binary search step.
It is clear thatLBS search needs to test exactly two unsatisfiable instances: one at the
end of the binary search and the other at the end of the linear search.



For thePseudo-boolean Evaluation 2006, we submitted the two versions ofwildcat ,
wildcat-skc andwildcat-rnp, with theLBS search only.
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3. Liu, L., Truszczýnski, M.: Solving optimization problems with boolean combinations
of pseudo-boolean constraints (a preliminary report).http://www.cs.uky.edu/
∼lliu1/papers/opt.pdf (2006)

4. Liu, L.: Computational tools for solving hard search problems. PhD the-
sis, University of Kentucky (2006)http://www.cs.uky.edu/∼lliu1/papers/
LiuDissertation.pdf.

5. Walser, J.: Solving linear pseudo-boolean constraints with local search. In: Proceedings
of the 11th National Conference on Artificial Intelligence (AAAI-97), AAAI Press (1997)
269–274

6. Eén, N., S̈orensson, N.: Translating pseudo-boolean constraints into sat. Journal on Satisfi-
ability, Boolean Modeling and Computation2 (2006) 1–25

7. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo boolean constraints to sat.
Journal on Satisfiability, Boolean Modeling and Computation2 (2006) 191–200

8. Manquinho, V., Marques-Silva, J.: Effective lowerbounding techniques for pseudo-boolean
optimization. In: Proceedings of the Design and Test in Europe Conference. (2005) 660–665

9. Sheini, H., Sakallah, K.: Pueblo: a modern pseudo-boolean sat solver. In: Proceedings of the
Design and Test in Europe Conference. (2005) 684–685

10. Aloul, F., Ramani, A., Markov, I., Sakallah, K.: PBS v0.2, incremental pseudo-boolean
backtrack search SAT solver and optimizer (2003)http://www.eecs.umich.edu/
∼faloul/Tools/pbs/.

11. Manquinho, V., Roussel, O.: Pseudo boolean evaluation 2005 (2005) http://www.
cril.univ-artois.fr/PB05/.


