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1 Introduction

Wildcat is an optimizer designed for thgseudo-boolean optimizatider PBO for
short) problem.PBO problems form a special class of thptimization problems with
boolean combinations of pseudo-boolean constraifts detailed discussions of this
more general type of optimization problem and our algorgtdasigned for these prob-
lems, we refer to the following papers: [1-4].

Informally, an optimization problem consists of an objeetfunction and a set of
constraints. To solve an optimization problem, we need tgimize or minimize the
objective function subject to the set of constraints. Reotd such as finding a minimal
dominating set in a graph are optimization problems.

In our setting, we represent the constraints in an optirigrgtroblem as pseudo-
boolean constraints, a formalism rooted in integer prognamy and operations re-
search. By gseudo-boolean constraifior a PB constraint for short), we mean an
integer programming constraint with only 0-1 variables.

Optimization problems withPB constraints have received much attention during
the past decade. Recently many optimizers that s6l#€ problems have emerged,
including wsat(oip) [5], minisat+ [6], pb2sat + zchaff [7], bsolo [8], pueblo [9],
PBS [10] and so on.

To obtain the optimal solution, the optimizers we list abogty on a series of
queries toPB constraint model generators. A model generator, on thetiopa set
of PB constraints, computes a value assignment that satisfiéisealt B constraints.
Most PB optimizers we listed above use linear search on the valubeobbjective
function. There are two exceptiongsb2sat + zchaff uses a binary search adolo
uses a SAT-based branch and bound method [11].

In the linear search, the optimizer first queries the modeegator for a solution to
the set of thePB constraints, disregarding the objective function. Thexndptimizer
iteratively improves the value of the objective functionibyroducing a newPB con-
straint each time, saying that the value of the objectivection should be less than
the one found in the previous step. When the query to the maatedrgtor finally re-
ceives an "unsatisfiable” answer, the previous value of tijeative function is thus the
optimal one.

The main reason behind the use of linear search instead afybgearch, is that,
deciding a set ofPB constraints is unsatisfiable is harder than deciding a sétif
constraints is satisfiable. The binary search often needsrfieerations than the linear
search before the solutions converge to the optimal onesekier, the binary search
may also need to test unsatisfiability more often than thealirsearch does. Actually,



the linear search only needs to test the unsatisfiabilitye drefore it finds the optimal
solution.

Wildecat computes sub-optimal solutions #fBO problems since it uses a local
searchPB model generator, which specializes the solver propose2]ifrpr the search
component that successively improves on the quality ofatisol, wildcat provides two
options: (1) the linear search (most often used in othendpérs), and (2) a combina-
tion of the linear search with a variant of the binary seafdwe noted above, the linear
search executes exactly one call to the model generator onsatisfiable instance. Our
hybrid method is designed so that to execute the model gemeraan unsatisfiable in-
stances exactly twice, a significant improvement over tregitforward binary search
approach.

2 Preliminaries

A pseudo-boolean (oPB) constraintis an integer inequalifyof the form

Zain‘iZlL

wherea;’s andb are integers and;’s are 0-1 variables. A°B theoryis a finite collec-
tion of PB constraints. A value assignmenthat assign$ or 1 to all variables in the
PB constraintsatisfieqor we sayv is a model of) the constraint if

Z a; X v(xz;) >b
holds. An example of’B constraint is given as follows:
5561 + (76)132 + 2$3 Z 2

We can verify thatr; = 1,25 = 1,23 = 1 is a satisfying value assignment of tRé
constraint. A value assignmesutisfiesa PB theory if it satisfies allPB constraints in
the theory.

A pseudo-boolean optimization problg®BO for short) is a paifO, P), whereO
is an objective function of the foriy_ a; x x;, a;'s are integers;’s are 0-1 variables,
and P is a PB theory. Anoptimal solutionto a PB optimization problem is a value
assignment that minimizes the value of the objective famctivhile satisfying thePB
theory.

3  Wildcat algorithm

To solvePBO problems, we use a method that iteratively improve the guafimodels
of the PBO theory, with respect to the objective function, until nothar improvements
are possible. To be precise, our method consistsidBamodel generator and a search
algorithm. ThePB model generator is able to compute models éfiatheory. Given a

1 \We only use the> operator in defining @B constraint, following the requirement of the
Pseudo-boolean Evaluation 20@@mat.



PBO problem(O, P), we use theé’B model generator to generate a modePpfvhich
we call afeasible solutionas the starting point. Then we use the search algorithm to
iteratively improve the quality of the feasible solutiormifd by the model generator.
In each iteration, the search algorithm produces a R&constraint and adds it t&,
which guarantees that all the feasible solutions of the m#wvtheory are better than
the previously found feasible solutions. Then the seargbrdhm queries the model
generator, asking for another feasible solution.

In wildcat, we apply a stochastic local sear® solver,wsat(plpb), first develop
for a more general setting, which allows disjunctionsit® constraints [2]. Solver
wsat(plpb) uses awsat-like algorithm. In particular, as imnalksat, wsat(plpb) pro-
ceeds by executing a pre-specified numberiet. Each try starts with a random value
assignment and consists of a sequence of local modificateps alledflips. Each
flip is determined by an atom selected fromuwarsatisfiedPB constraint.Wsat (plpb)
bases the choice on a measure of how much the correspondginchfinges the de-
gree to which thePB constraints in the theory are violated. In designing sucla-me
sures,wsat(plpb) is guided by the concepts of theeak-countand make-counused
in walksat, which are defined as the numbers of clauses that becomediiesaand
satisfied, respectively, as a result of a flip.

Wsat(plpb) uses a finer definition of thereak-counandmake-countThe intuition
is that PB constraints are more complex than clauses and breakingx{ng¥ia PB
constraint should have more penalty (or reward) than brepfar fixing) a clause. To
this endwsat(plpb) exploits the fact thaPB constraints have equivalent representation
by means of propositional theories. [ebe aPB theory and lef” be its propositional-
logic equivalent (with allPB constraints “compiled” away)Wsat(plpb) defines the
break-count of an atom in T' as the number of clauses T that become unsatisfied
after it flips a. Wsat(plpb) defines the make-count afsimilarly. An important point
is thatwsat (plpb) does not computé” explicitly in order to determine the break-count
and the make-count af. Both measures are estimated directly on the basisalbne.

Wsat(plpd) has two variantswsat (plpb)-ske and wsat(plpb)-rnp, which extend
theSKCand theRNovelty+heuristic forwalksat respectively. Therefore, we callildcat
combined withwsat (plpb)-skc wildcat-ske andwildcat combined withwsat (plpb)-rnp
wildeat-rnp. We note that, becausesat(plpb) is incomplete wildcat combined with
wsat(plpb) only finds sub-optimal solutions toABO problem.

We now present the search algorithmitidcat. We provide two options here: the
linear search and a combination of the linear search andiantarf the binary search.

Let us assume¢O, P) is the PBO problem andv is the current feasible solution
found by the model generator. We writéO) to denote the value ad under the as-
signmentv and(O) to denote the smallest vald@ can take (the sum of all negative
coefficients in0O).

In the linear search, £B constraint of the following form is added t8 in each
iteration:

-0 = [=(w(0) -1,

where—OQ is a linear function built fronO by changing the signs of the coefficients in
O to their dual:+ to — and— to +. This constraint ensures that future feasible solutions
will yield a smaller value for the objective function.



The second option of our search algorithm, denoted B\, combines the linear
search and the binary search and balances between the nofmbesmations and the
CPU time needed during each iteratid3S starts with a variant of the binary search
algorithm. The binary search phase stops immediately &ftests one unsatisfiable
case. ThenLBS switches to the linear search phase, starting with the leestilfle
solution found by the binary search phase. Our method gtegarthat exactly two
unsatisfiable testings are needed to compute an optimaiaulu

We expect that.BS will outperform the linear search when the range of the ob-
jective function is large and the quality improvement inteéeration is small. On the
other hand, when the range of the objective function is soratie improvement of the
quality of the feasible solutions is large, the linear skar@my outperformZBS. Our
still preliminary and non-comprehensive experiments supihis expectation.

The pseudo code diBS is given in Figure 1.

Algorithm 1 LBS

INPUT: P -aPB theory
O - an objective function
S - a PB model generator
OUTPUT: v - a value assignment that optimizésubject tol’
BEGIN
Call S with P; If S fails, return “unsatisfiable”;
While S returns a value assignment
Letm bel(O) + ¢ x (v(0) — 1(0));
LetP' bePU{-0 > [-m]};
Call S with P’;
End While
Letwv be the last value assignmesireturns;
Do
Letm bev(O) — 1;
10. LetP' bePU{-0 > [m]};
11. CallS with P’;
12. While S returns a value assignmeunt
13. return the last value assignméhteturns;
END
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Line 1 says whery fails the optimizer will halt and report the set 863 constraints
alone is unsatisfiable. In the case wheis an incomplete solver, as is in our imple-
mentation, this message meatidails to find a model given the amount of resource
allocated toS. It may be the case th&t is indeed satisfiable. This limitation comes
from the fact thatS is incomplete.

From line 2 to line 6, we first perform a variant of the binargssh with the constant
value c set between 0 and 1. In practice, we &&b 2/3. From line 8 to line 12, we
perform a linear search, starting with the valuefdbund from the binary search step.
It is clear thatL BS search needs to test exactly two unsatisfiable instancesatothe
end of the binary search and the other at the end of the lirzacks.



For thePseudo-boolean Evaluation 200@e submitted the two versions @fldcat,

wildcat-ske andwildcat-rnp, with the LBS search only.
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