
Pueblo Pseudo-Boolean SAT Solver

Hossein M. Sheini hsheini@umich.edu

Electrical Engineering and Computer Science Department,
University of Michigan, Ann Arbor, MI

1. Introduction

This document is a brief description of the Pueblo Pseudo-Boolean (PB) Solver version
1.5. This solver is developed at the University of Michigan, Ann Arbor, MI by Hossein
Sheini, supervised by Professor Karem A. Sakallah. For details on the algorithms adopted
in Pueblo the reader is referred to [1]. The solver is available for download at

http://www.eecs.umich.edu/∼hsheini/pueblo.
Pueblo is an extension to MiniSAT 1.12 [2]. The implementation details, covered in this

document, should be read together with the MiniSAT description presented in [2]. Note that
Pueblo can solve both PB satisfiability and optimization problems and has the capability
to handle integer coefficients that can be represented with at most 32 bits.

2. Constraints

Exploiting the capability of MiniSAT to handle arbitrary constraints over Boolean variables
through its Constr abstract base class, we added a PseudoBool constraint class in addition
to its existing Clause constraint class. Unique procedures for propagating and calculating
reasons for this class of constraints are presented in Figure 1. Using the base class enables
Pueblo to use all of MiniSAT’s solving procedures independent of the type of constraint
being handled. These PseudoBool constraints are either created at the beginning of the
search or learned through PB learning procedure. Each PseudoBool constraint is created
or learned using the PB new procedure, presented in Figure 2.

3. Accumulator

The accumulator is the PB constraint that contains the resolvent of the cutting plane based
PB learning procedure. The PB learning process starts with the violated constraint consid-
ered as the accumulator and continues by adding it to the implying constraints and saving
it back in itself. In order to avoid searching for variables, the accumulator is implemented
as an array whose size is equal to the number of problem variables. In this scenario, CNF
learning consists of detecting and separately storing the false literals of the accumulator.
Details of the accumulator class are presented in Figure 3.

4. Pueblo Solver

Pueblo major modifications in MiniSAT solving procedure are listed below:

1

Figure 1. Implementation of PseudoBool constraint class in Pueblo
class PseudoBool : public Constr

int rhs
int watchsum
int amax
float activity
bool learnt
Vec<PBTerm> terms - PBTerm comprises of a literal, a coefficient and watched bool.

- terms is sorted based on coefficients
bool propagate(Solver S, lit p)

int p idx = terms.index(p)
terms[p idx].unwatch(this)
- update watchsum
for(int i = 0; i < size() && watchsum < amax + rhs; i++)

Lit lit = terms[i].lit
if(S.value(lit) �= l False && !terms[i].watched()) terms[i].watch(S, this)

- check for conflict
if(watchsum < rhs goal)

terms[p idx].watch(S, this)
return False

- check for satisfiability
if(watchsum ≥ amax + rhs) return True
for(int i = 0; i < size(); i++)

Lit lit = terms[i].lit
int coeff = PBTerms[i].coeff
if(watchsum ≥ coeff + rhs) break
if(S.value(lit) == l Undef)

if(!S.enqueue(lit, this))
terms[p idx].watch(S, this)
return False - conflict in the Solver

return True

void calcReason(Solver S, lit p, vec<lit> out reason)
- all learned constraints are initially active
if (learnt) S.pbBumpActivity(this)
- calculate the multiplier to eliminate p from accumulator
int mul = (p == lit Undef) ? 1 : S.accumulator.coeff(var(p))
S.accumulator.goal += mul * rhs
for (int i = 0; i < size(); i++)

lit = terms[i].lit
if(lit == p)

S.accumulator.goal − = mul*terms[i].coeff
continue

- adds this literal to the accumulator
UpdateAccumulator(S, mul, terms[i].lit, terms[i].coeff)
- saves the false literals for CNF learning
if (S.value(lit) == l False) out reason.push(¬lit)

4.1 Learning

Pueblo adopts the same learning flow as in MiniSAT augmenting it with cutting plane
generation (PB learning) at each step. At each step in the backward traversal of the
implication graph, the CNF or PB constraint involved in that implication is added to the

2

Figure 2. Implementation for creating and adding new PseudoBool constraints in Pueblo
bool PB new(Solver S, int goal, Vec<lit coef> pbs, PseudoBool out, Clause c, bool learnt)

out = new PseudoBool
out.rhs = goal
for (int i = 0; i < pbs.size(); i++)

out.terms[i].lit = Lit(pbs[i].lit)
if(pbs[i].coef < 0)

out.rhs += abs(pbs[i].coef)
out.terms[i].lit = ¬ out.terms[i].lit

out.terms[i].coeff = abs(pbs[i].coef)
sort(out.terms, size())
if((out.terms[0].coeff == out.rhs && out.terms[size()].coeff == out.rhs) ||

out.rhs == 1) - checking if PB constraint is equal to a CNF clause
bool ret = convertPBtoCNF (S, out, c, learnt) - creates clause with literals in terms of out
xfree(out)
return ret

out.amax = out.terms[0].coeff
out.learnt = learnt
if(out.rhs == 0) return True
for (int i = 0; i < size(); i++) - setting up the watch list

Lit lit = out.terms[i].lit
if (out.watchsum < out.rhs + out.amax) out.terms[i].watch(S, this)
if (out.watchsum ≥ out.rhs + out.amax) break

if(out.watchsum < out.rhs) return False
if(out.watchsum < out.rhs + out.amax)

for(int i = 0; i < size(); i++)
Lit lit = out.terms[i].lit
if(S.value(lit) == l Undef)

if(out.watchsum ≥ out.terms[i].coeff + out.rhs) break
if(!S.enqueue(lit)) return False

if(learnt) S.varBumpActivity(lit, coeff/out.rhs)
return True

accumulator while performing MiniSAT’s calcReason() routine to eliminate the implied
literal. The cutting plane is saved in the accumulator while the learned CNF clause is
stored in the out reason following the learning procedure of MiniSAT (refer to Figure 1).
If an over-satisfaction is detected in the accumulator, the step resulting in over-satisfaction
is undone and replaced by adding the weakened CNF clause to the accumulator. The
learning stops when the first UIP is reached as detected by MiniSAT analyze procedure.
The details of conflict analysis procedure of Pueblo based on the analyze method of MiniSAT
is presented in Figure 4.

4.2 Backtracking and Constraint Recording

In Pueblo, the lowest decision level at which the learned PB constraint is unit is determined
by checking the PB unit invariant [1] at each decision level. If such decision level was
found, the solver backtracks to the minimum level between this level and the backtrack level
computed in MiniSAT’s analyze routine. Otherwise, the highest decision level at which the
learned PB constraint is not violated is determined and the solver backtracks to that level
or the backtrack level, whichever lower. This procedure is demonstrated in Figure 5. Both

3

Figure 3. Implementation of the accumulator class in Pueblo
class accumulator

Vec<lit coef> terms - lit coef is a structure with a literal and an integer coefficient
int goal
- set all literals in terms to undefined
void reset()
- check if satisfied, subtracts pb and adds CNF weakened of pb
void checkOverSatisfaction(PseudoBool pb)
- multiplies all coefficients by mul
void multiplyBy(int mul)
- adds to the coefficient of var(lit)
void updateCoef(Lit lit, int coef)
- returns the coef of var
int coeff(int var)
- return literal having var
Lit lit(int var)
- returns sum of coefficients of false literal at level i
int sumAssignedFalseAtLevel(int i)
- returns the largest coefficient among unvalued literals
int amaxAtLevel(int i)
- constructs a vector of literals with non-zero coefficients
void getLiterals(Vec<Lit> lits)
- converts all coefficients to positive by changing the sign of literals
void normalize()

learned PB and CNF constraints are recorded and their watched literals are properly setup,
as demonstrated in Figure 6.

4.3 Activity Heuristics

The variable activity heuristic of MiniSAT is extended to PB constraints in such a way
that it recognizes the coefficient of each variable in the learned constraint. Therefore, the
activity of each variable that is present in a newly learned PB constraint is increased by
the ratio of its coefficient to the right-hand side of that PB constraint.

4.4 Constraint Removal

In Pueblo, the number of active PB constraints is periodically reduced to a fixed number
of constraints. This procedure basically removes all PB constraints that are not locked (to
an implication) and are less active than a pre-set threshold limit. This limit is increased at
each restart. Through our experiments on benchmarks used in the PB’05 evaluation [3], we
found that an initial threshold of 50 and a growth rate of 10% produces the best results.

References

[1] H. M. Sheini and K. A. Sakallah, “Pueblo: A hybrid pseudo-boolean sat solver,” Journal
on Satisfiability, Boolean Modeling and Computation (JSAT), vol. 2, p. 61, 2006.

[2] N. Eén and N. Sörensson, “An extensible SAT-solver.” in SAT, 2003, pp. 502–518.

4

Figure 4. Implementation for conflict analysis method in Pueblo
void analyze(Constr confl, Vec<Lit> out learnt, int out btlevel)

Vec<char> seen = analyze seen, seen.growTo(nVars(), 0)
int pathC = 0
Lit p = lit Undef
Vec<Lit> p reason
bool inPB = False
out learnt.push()
out btlevel = 0
do

if(inPB)
- finding the multipliers to generate the cutting plane such that p is removed
int mul = confl.terms.getCoeff [var(p)]
accumulator.multiplyBy(mul)

p reason.clear()
confl.calcReason(this, p, p reason)
- check if accumulator is satisfied and if so undo adding and replace with weakened confl
accumulator.checkOverSatisfaction(confl)
for (int j = 0; j < p reason.size(); j++)

Lit q = p reason[j]
if (!seen[var(q)])

seen[var(q)] = 1
if (level[var(q)] == decisionLevel())

pathC++
else if (level[var(q)] > 0)

out learnt.push(¬q)
out btlevel = ::max(out btlevel, level[var(q)])

- Select next constraint to look at:
do

p = trail.last()
confl = reason[var(p)]
- check if this literal should be removed from the accumulator
inPB = accumulator.coeff(var(p)) �= 0 && (value(accumulator.lit(var(p))) == l False
undoOne()

while(!seen[var(p)])
seen[var(p)] = 0
pathC–

while (pathC > 0)
out learnt[0] = ¬p

[3] Pseudo-Boolean Evaluation PB’05, http://www.cril.univ-artois.fr/PB05/.

5

Figure 5. Implementation of PB backtracking in Pueblo
void undoPB()

accumulator.normalize() - convert all coefficients to positive
int tmp lhs = accumulator.goal
for(int i = root level; i < decisionLevel(); i++)

- subtracts the sum of coefficients in the accumulator became false at level i
tmp lhs − = accumulator.sumAssignedFalseAtLevel(i)
- check if accumulator is unit/conflict at this level
if(tmp lhs < accumulator.goal + accumulator.amaxAtLevel(i))

if(tmp lhs < accumulator.goal) - no unit level exists
bt level = i-1

else bt level = i
break

cancelUntil(::max(bt level, root level))

Figure 6. Implementation of conflict-induced constraint recording method in Pueblo
bool recordPB(Vec<Lit> clause, int backtrack level)

PseudoBool pb
Clause c
Vec<Lit> PBLits - literals in the learned PB constraint
accumulator.getLiterals(PBLits)
undoPB()
if(!PBnew(this, PBLits, pb, c)) return True - learn the PB constraint
if(pb �= NULL)

pb learnts.push(pb)
pbDecayActivity()

if(c �= NULL)
learnts.push(c)
claDecayActivity()

Clause CNFlearnt
bool CNFunit = False
if(decisionLevel() > backtrack level)

cancelUntil(::max(bt, root level)) - backtrack to earlier level
CNFunit = True

check(Clause add(this, clause, CNFlearnt)) - learn the CNF clause
if(CNFunit) check(enqueue(clause[0], CNFlearnt))
if(CNFlearnt �= NULL)

learnts.push(CNFlearnt)
claDecayActivity()

return False

6

