
The Pseudo-Boolean Evaluation
Second Edition (PB’06)

Vasco MANQUINHO and Olivier ROUSSEL

Ninth International Conference on
Theory and Applications of Satisfiability Testing,

SAT’06

August, 15th 2006

1 / 20

Outline

I linear pseudo-Boolean constraints and optimization
problem

I advantages of using pseudo-Boolean constraints
I the big integers problem
I benchmarks and solvers
I evaluation environment
I comparing complete and incomplete solvers
I some results

2 / 20

pseudo-Boolean Constraints

I A linear pseudo-Boolean constraint may be defined over
boolean variables by∑

i

ai .li ≥ d with ai , d ∈ Z, li ∈ {xi ,¬xi}, xi ∈ B

Example: 3a− 3b + 2c + d + f ≥ 5
I It extends both clauses and cardinality constraints

I cardinalities: all ai = 1 and d > 1
I clauses: all ai = 1 and d = 1

I PB constraints are more expressive than clauses (one PB
constraint may replace an exponential number of clauses)

I a pseudo-Boolean instance is a conjunction of PB
constraints.

3 / 20

Optimization

I Another difference with SAT is that most PB problems
contain a linear cost function to optimize. For example,

minimize f =
∑

i

ci .xi with ci ∈ Z, xi ∈ B

I Example of pseudo-Boolean Instance
minimize 5x1 + x2 + 8x3 + 2x4 + 3x5
subject to x1 + x̄2 + x3 ≥ 1

x̄1 + x2 + x̄3 + x4 ≥ 3
2x̄1 + 4x2 + 2x3 + x4 + 5x5 ≥ 5
5x1 + 4x2 + 6x3 + x4 + 3x5 ≥ 10

Optimum: 8
x1 = x2 = x4 = 1
x3 = x5 = 0

4 / 20

Easier problem encodings

Some examples:
I Cardinality constraints:

at most one pigeon in a hole is encoded as
p1h1+p2h1+p3h1+...+pNh1≤1

I Adder:
A+B=C (with A,B,C being n-bits registers) is encoded by
one linear contraint∑n−1

i=0 2i .ai +
∑n−1

i=0 2i .bi =
∑n−1

i=0 2i .ci

I Multiplier:
A*B=C (with A,B,C being n-bits registers) is encoded by
one non-linear constraint∑n−1

i=0
∑n−1

j=0 2i+j .ai .bj =
∑n−1

i=0 2i .ci
Introducing new variables pij ⇔ ai ∧ bj gives one linear
constraint and 3n clauses.

5 / 20

More powerful inference rules

I Cutting plane = weighted sum of constraints to eliminate
one or more variables

I A few other inference rules
I The pigeon-hole problem encoded as cardinality

constraints can be solved polynomially by pseudo-Boolean
reasoning.

6 / 20

The Big Integers Problem

Interesting problems will quickly use numbers which are too
large to fit in a usual integer variable (e.g. the multiplier
problem).
Unfortunately, few solvers use arbitrary precision arithmetic

Without arbitrary precision arithmetic, a solver
I cannot solve all instances
I might give wrong answers caused by integer overflows

Multiprecision computations easily solve the problem (even if it
has a cost).

7 / 20

Benchmark categories

Based on the objective function
SATUNSAT No objective function to optimize. The solver must

simply find a solution.
OPT An objective function is present. The solver must

find a solution with the best possible value of the
objective function.

Based on the size of coefficients
SMALLINT small integers: no constraint with a sum of

coefficients greater than 220 (20 bits)
MEDINT medium integers: a constraint with a sum of coeff.

with more than 20 bits but no constraint with a
sum greater than 30 bits

BIGINT big integers: at least one constraint with a sum of
coefficients greater than 230 (30 bits)

Additional categorization into Handmade, Random and
Industrial benchmarks has been made.

8 / 20

Benchmarks

1753 benchmarks (almost 1GB).
I Submitted by contestants to PB05 or PB06
I Found on the web (OPB)
I Found on the web and translated (MPS format from linear

programming)
For each instance with big integers, another instance with
reduced coefficients was created (by dividing all coefficients by
a common number). This doesn’t preserve the semantics but
ensures that we have at least as much instances in the
SMALLINT category as in the BIGINT category.

9 / 20

Submitted solvers (1/2)

9 submitted solvers (and a few more versions)
absconPseudo Fred Hemery & Christophe Lecoutre

a CSP based solver
bsolo J. Marques-Silva & V. Manquinho

integrates SAT-based techniques with estimation
procedures on the value of the cost function

glpPB Hossein Sheini & K. Sakallah
simple use of an integer linear programming toolkit

minisat+ Niklas Een & Niklas Sörensson
translates PB constraints to SAT

PB-smodels Gayathri Namasivayam
translates pseudo-Boolean constraints into a logic
program accepted by smodels that solves search
problems encoded as logic programs

10 / 20

Submitted solvers (2/2)

PBS Bashar AlRawi & Fadi Aloul
an extension of the zchaff 2004 SAT solver to handle
pseudo-Boolean constraints

Pueblo Hossein Sheini & K. Sakallah
an extension of the minisat SAT solver to handle
pseudo-Boolean constraints; uses a general
pseudo-Boolean learning mechanism

SAT4JPSEUDO Daniel Le Berre & Anne Parrain
a Galena like CDCL (Constraint Driven Constraint
Learning) solver written in Java

wildcat-* Lengning Liu & Miroslaw Truszczynski
local search solver based on wsat generalized for
pseudo-Boolean constraints

Only 3 solvers have support for big integers (bsolo, minisat+,
SAT4JPSEUDO).

11 / 20

Evaluation environment

I Solvers must answer OPTIMUM FOUND, SATISFIABLE,
UNSATISFIABLE or UNKNOWN. When answering
OPTIMUM FOUND or SATISFIABLE solvers must output a
certificate that is checked offline.

I Solvers were encouraged to output a line each time they
found a better solution. These lines were timestamped and
give information on the progression toward the best
solution.

I On timeout, a solver receives a signal and can output the
best solution it found. This year, we had a good way to
stop multi-processes solvers on timeout.

I A preliminary test phase to detect bugs and other
problems. In the final phase, buggy solvers were
eliminated. No solver was found incorrect in the final phase
(but OPTIMUM and UNSATISFIABLE answers cannot be
completely verified for efficiency reasons)

12 / 20

Evaluation environment

I Cluster of bi-Xeon 3 GHz, 2MB cache, 2GB RAM (but all
solvers were run in 32 bits mode)
kindly provided by the CRIL, University of Artois, France

I Each solver was given a time limit of 30 minutes (1800s)
and a memory limit of 1800 MB (to avoid swapping).

I 237 days of CPU time used in the final phase

13 / 20

Complete and incomplete solvers

I Complete solvers are able to prove unsatisfiability (and
therefore are able to prove optimality).

I Incomplete solvers can’t prove unsatisfiability because
they never stop (they don’t know if they have gone through
all the search space).

I TT (Total Time) is the CPU time used by a solver until
completion. Useful to compare complete solvers. Useless
for incomplete solvers (TT=timeout).

I T1 is the time needed by the solver to find its best solution.
TT-T1 is the time needed to prove optimality (when the
solver doesn’t time out). For efficiency reasons, T1 is
currently wall clock time and not CPU time. T1 is used to
compare both incomplete and complete solvers (from an
incomplete solver point of view)

14 / 20

Complete and incomplete solvers

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

va
lu

e
of

 th
e

ob
je

ct
ive

 fu
nc

tio
n

time (wall clock seconds)

Value of the objective function during the search

TT: total runtime of the solver (CPU time)

T1: time for the solver to find its best solution (wall clock time)

optimality
time to prove

15 / 20

Comparing the solvers

Several ways with different point of views
I number of instances they solve completely (UNSAT or

OPT answers)
I number of instances they solve partially (timeout, but a

solution found)
I number of best solutions found
I number of times they are the fastest to give the best

solution
I comparison of execution time
I ...

16 / 20

#instances solved in a given amount of time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250

C
P

U
 ti

m
e

instance number

Time to solve an instance
(UNSAT answers, category SATUNSAT-SMALLINT)

absconPseudo 1
PB-smodels 1.28
PB-smodels 1.31

SAT4JPSEUDO 2006.2
SAT4JPSEUDO 2006.2 Heuristics

minisat+ 1.14

Pueblo 1.4
Pueblo 1.3

bsolo 2006/05
PBS 4.1L
glpPB 0.2

17 / 20

Top solvers

A first approach on the number of solved instances

Category UNSAT SAT/OPT Both
answers answers answers

SATUNSAT- Pueblo 1.4 wildcat-skc Pueblo 1.4
SMALLINT PBS 4.1L wildcat-rnp PBS 4.1L

OPT- SAT4J Heur. bsolo bsolo
SMALLINT SAT4J minisat+ minisat+

OPT- SAT4J SAT4J Heur. (*) SAT4J Heur. (*)
BIGINT minisat+ minisat+ minisat+

(*) On a number of instances in these categories, it is known
that the solver first tried to falsify variables and was therefore
immediately very close to the best solution.

18 / 20

See the results by yourself

I See the poster to get a sample of the results !
I All the results are publicly available at

http://www.cril.univ-artois.fr/PB06
I Experimentations are over but a more complete analysis of

the results should be available in a few months.

19 / 20

Directions for next evaluation

I larger benchmark set (please contribute !) with trivial
instances removed

I more solvers (write you own right now!)
I more tools to compare solvers
I merge the MEDIUM INTEGER category with BIG

INTEGER
I possible extension to non-linear pseudo-Boolean

constraints

20 / 20

