
AbsconPseudo 2006

Fred Hemery and Christophe Lecoutre

CRIL-CNRS FRE 2499,
Université d’Artois

Lens, France
{hemery, lecoutre}@cril.univ-artois.fr

Abstract. This document succinctly presents the solver AbsconPseudo
submitted to the Pseudo Boolean Evaluation 2006. Knowing that each
pseudo-Boolean instance corresponds to a CSP (Constraint Satisfac-
tion Problem) instance or a COP (Constraint Optimization Problem)
instance when an optimization function is introduced, we used a Con-
straint Programming (CP) approach to write this solver. More precisely,
our solver integrates a specific filtering algorithm (propagator) to en-
force Generalized Arc Consistency (GAC) and a search heuristic com-
bining constraint weighting and coefficients of the objective function. Our
solver suffers, on some series of instances, from the absence of cutting
plane inferences, not introduced due to lack of time.

1 Introduction

A Constraint Network (CN) P is a pair (X ,C ) where X is a finite set of vari-
ables and C a finite set of constraints. Each variable X ∈ X has an associated
domain, denoted dom(X), which contains the set of values allowed for X. Each
constraint C ∈ C involves a subset of variables of X , called the scope of C
and denoted by vars(C), and has an associated relation, denoted rel(C), which
contains the set of tuples allowed for the variables of its scope. We will respec-
tively denote the number of variables and constraints of a CN by n and e. The
arity of a constraint corresponds to the size of its scope. A solution to a CN
is an assignment of values to all the variables such that all the constraints are
satisfied. A CN is said to be satisfiable iff it admits at least one solution.

The Constraint Satisfaction Problem (CSP) is the task to determine whether
or not a given constraint network, also called CSP instance, is satisfiable (i.e.
admits a solution). When, in addition, an objective function is considered, we
face a Constraint Optimization Problem (COP). The aim is then to find a solu-
tion of the underlying constraint network which minimizes (or maximizes) the
objective.

A pseudo-Boolean instance corresponds to either a CSP (when no objective
function is present) or a COP (when an objective function is present) instance.
Each variable of the network is defined on {0, 1} and each constraint is an in-
equality of the form:∑r

i=1 aixi ≥ b



where r denotes the arity of the constraint (i.e. the number of variables involved
by the constraint) and coefficients ai and b are integers. In case of optimisation,
an objective function of the form

∑k
i=1 aixi must be minimized, where k is the

number of variables involved in the objective function.
To solve a pseudo-Boolean instance, we can use a complete CSP/COP solver

based on depth-first search with backtracking. This is the approach we followed
with our solver AbsconPseudo. It has been developed in Java (J2SE 5.0) from
the Constraint Programming platform Abscon [9].

2 Constraint Propagation

Many works in the area of Constraint Programming have focused on inference,
and more precisely, on filtering methods based on properties of constraint net-
works. The idea is to exploit such properties in order to identify some no-goods
where a no-good corresponds to a partial assignment (i.e. a set of variable as-
signments) that can not lead to any solution. Properties that allow identifying
no-goods of size 1 are called domain filtering consistencies [6]. The interest of
exploiting domain filtering consistencies is that it is quite easy to deal with no-
goods of size 1. Indeed, as such no-goods correspond to inconsistent values, it
suffices to remove them from domains of variables.

Generalized Arc consistency (GAC) is one domain filtering consistency which
guarantees that each value admits at least a support in each constraint. GAC
remains a fundamental property of constraint networks as MGAC, i.e. the al-
gorithm which maintains GAC during search (and called MAC [13] when con-
straints are binary), is still considered as one of the most efficient complete
approach to solve CSP instances.

Definition 1. Let P = (X ,C ) be a CN. A pair (X,a), with X ∈ X and
a ∈ dom(X), is Generalized Arc Consistent (GAC) iff ∀C ∈ C |X ∈ vars(C),
there exists a support of (X, a) in C, i.e. a tuple t ∈ rel(C) such that t[X] = a
and t[Y ] ∈ dom(Y )∀Y ∈ vars(C)1. P is GAC iff ∀X ∈ X , dom(X) 6= ∅ and
∀a ∈ dom(X), (X, a) is GAC.

To establish GAC on a given CN, one can uses a generic algorithm or a
specific one. The interest of a generic algorithm such as GAC3 [10], GAC2001
[3] or GAC3.2 [7] is that it can be used in any situation, i.e. for any constraint.
However, the worst-case time complexity of GAC3 and GAC2001/GAC3.2 are
O(er3dr+1) [1] and O(er2dr) [3], respectively. Here, e denotes the number of
constraints, d the size of the greatest domain and r the greatest constraint arity.
It means that they can be exploited in practice only when the arity of the
constraints is small.

Another way to establish GAC is to exploit the semantics of the constraints.
The interest is that it is possible to conceive efficient filtering algorithms (but the
drawback is that we have to develop as many algorithms as types of constraints).

1 t[X] denotes the value assigned to X in t



For a pseudo-Boolean instance, it is possible to conceive a filtering algorithm
(that establishes GAC) whose worst-case time complexity is O(er). Indeed, for
each constraint, it is possible to deal with each involved variable only once, in
order to determine if a value can be removed. It simply requires that variables of
the constraint scope are initially ordered according to their respective coefficients
and that, at any time, the maximum sum be known (it can be incrementally
updated). Either this sum is less than the limit b of the constraint, and then
the current network is unsatisfiable, or it is used to make some inferences (value
removals). We can always resume the inference process from the last checked
involved variable. This is what we included in AbsconPseudo.

3 Search Heuristics

The order in which variables are assigned by a backtracking search algorithm
such as MGAC has been recognized as a key issue for a long time. Using different
variable ordering heuristics to solve a CSP/COP can lead to drastically different
results in terms of efficiency. Traditional dynamic variable ordering heuristics
benefit from information about the current state of the search such as current
domain sizes and current variable degrees. For instance, dom/ddeg [2] involves
selecting first the variable with the smallest ratio current domain size to current
dynamic degree. One limitation of this approach is that no information about
previous states of the search is exploited.

In [4], inspired from [12, 14, 11, 15, 5], it is proposed to record such information
by associating a counter with any constraint of the problem. These counters are
used as constraint weighting. Whenever a constraint is shown to be unsatisfied
(during the constraint propagation process), its weight is incremented by 1.
Using these counters, it is possible to define a new variable ordering heuristic,
denoted wdeg, that gives an evaluation called weighted degree of any variable.
The weighted degree of a variable V corresponds to the sum of the weights of the
constraints involving V and at least another uninstantiated variable. In order to
benefit, at the beginning of the search, from relevant information about current
variable degrees, all counters are initially set to 1. Finally, combining weighted
degrees and domain sizes yields dom/wdeg, an heuristic that selects first the
variable with the smallest ratio current domain size to current weighted degree.
The experimental results of [4, 8] show that MAC-wdeg and MAC-dom/wdeg,
i.e., MAC combined with wdeg or dom/wdeg (called conflict-directed heuristics),
is a generic backtracking approach which is quite stable to solve static constraint
networks.

The search heuristic that we have used in AbsconPseudo is defined as follows.
Variables involved in the objective function (if present) are selected in priority in
decreasing order according to the absolute value of their respective coefficients.
For such variables, the value (0 or 1) is selected in order to minimize the objective
function. When there are no more unassigned variables involved in the objective
function, variables are selected according to wdeg.



4 Conclusion

In this paper, we have succinctly presented the solver AbsconPseudo, developed
in Java, that we have submitted to the Pseudo Boolean Evaluation 2006. On
some series of instances, this solver has a good behaviour. For example, for the
instance normalized−fast0507, AbsconPseudo finds a solution with a cost equal
to 235 in less than 10 seconds whereas the best solution found by a solver (within
1200 minutes) submitted to the Pseudo Boolean Evaluation 2005 was only 251.
On some other series (e.g. the chnl series), AbsconPseudo is subject to thrashing
(the fact of always rediscovering the same inconsistencies) as, unfortunately due
to lack of time, no cutting planes technique has been introduced.

References

1. C. Bessiere. Constraint propagation. Technical report, LIRMM, Montpellier, 2006.
2. C. Bessière and J. Régin. MAC and combined heuristics: two reasons to forsake

FC (and CBJ?) on hard problems. In Proceedings of CP’96, pages 61–75, 1996.
3. C. Bessière, J.C. Régin, R.H.C. Yap, and Y. Zhang. An optimal coarse-grained arc

consistency algorithm. Artificial Intelligence, 165(2):165–185, 2005.
4. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search

by weighting constraints. In Proceedings of ECAI’04, pages 146–150, 2004.
5. R. Bruni and A. Sassano. Detecting minimaly unsatisfiable subformulae in un-

satisfiable SAT instances by means of adaptative core search. In Proceedings of
SAT’00, 2000.

6. R. Debruyne and C. Bessière. Domain filtering consistencies. Journal of Artificial
Intelligence Research, 14:205–230, 2001.

7. C. Lecoutre, F. Boussemart, and F. Hemery. Exploiting multidirectionality in
coarse-grained arc consistency algorithms. In Proceedings of CP’03, pages 480–
494, 2003.

8. C. Lecoutre, F. Boussemart, and F. Hemery. Backjump-based techniques versus
conflict-directed heuristics. In Proceedings of ICTAI’04, pages 549–557, 2004.

9. C. Lecoutre, F. Boussemart, and F. Hemery. Abscon 2005. In Proceedings of
CPAI’05, volume II, pages 67–72, 2005.

10. A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99–118, 1977.

11. B. Mazure, L. Sais, and E. Gregoire. Boosting complete techniques thanks to local
search methods. Annals of Mathematics and Artificial Intelligence, 22:319–331,
1998.

12. P. Morris. The breakout method for escaping from local minima. In Proceedings
of AAAI’93, pages 40–45, 1993.

13. D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satis-
faction. In Proceedings of CP’94, pages 10–20, 1994.

14. B. Selman and H. Kautz. Domain-independent extensions to GSAT: solving large
structured satisfiability problems. In Proceedings of IJCAI’93, pages 290–295, 1993.

15. J.R. Thornton. Constraint weighting local search for constraint satisfaction. PhD
thesis, Griffith University, Australia, 2000.


