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Introduction

A pseudo-boolean constraint (PB-constraint) is a linear in-
equality with 0-1 variables and integer coefficients. Search
problems can be modeled as sets of PB-constraints, so that,
solutions to a set of PB-constraints map to solutions of the
search problem. An optimization problem can be modeled
using a set of PB-constraints along with an optimization
statement over a set of 0-1 variables.

Pseudo-boolean solvers (PB-solvers) are programs de-
signed to find solutions to a set of PB-constraints, and hence
can be used to solve search problems. PBS4 (Aloul 2005),
MiniSat+ (Eén & Sörensson 2005), BSOLO (Manquinho &
Marques-Silva 2005) and Pueblo (Sheini & Sakallah 2005)
are recent PB-solvers.

Our contribution is to show that smodels, a solver
originally designed to solve search problems encoded as
logic programs with weight constraints (Niemelä & Simons
1997), can be used as a competitive PB-solver. We call this
PB-solver PB-smodels.

PB-smodels uses a procedure we designed, PB2smodels,
to translate a set of PB-constraints into a logic program that
is accepted by smodels. We show that solutions of a search
problem modeled as a set of PB-constraints T correspond to
stable models of the logic program P (T ) produced from T
by PB2smodels.

We compare the performance of PB-smodels with two
PB-solvers MiniSat+ and Pueblo on search problems en-
coded as sets of PB-constraints. In particular, we com-
pare PB-smodels to MiniSat+ and Pueblo on benchmarks
obtained from PB 2005 competition (Manquinho & Roussel
2006). We also compare the PB-solvers on benchmarks de-
rived from randomly generated instances of problems such
as weighted N-queens, traveling salesperson problem (TSP),
blocked N-queens and weighted dominating set problem.

Pseudo-boolean constraints

A PB-constraint is an expression of the form

w1 ∗ x1 + . . . + wk ∗ xkRc,

where w1, . . . , wk, c are integers, R ∈ {≤,≥} and
x1, . . . , xk are 0-1 variables. Let T be a set of PB-
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constraints. An assignment of 0s and 1s to variables oc-
curring in constraints in T is a solution to T if each PB-
constraint in T holds (as a linear inequality).

A set of PB-constraints T may also contain an optimiza-
tion statement

ST : v1 ∗ y1 + . . . + vl ∗ yl,

where ST ∈ {minimize,maximize}, v1, . . . , vl are 0-1
variables and y1, . . . , yl are integers. An optimal solution is
one that minimizes (maximizes) v1 ∗ y1 + . . . + vl ∗ yl.

Logic Programming

A weight constraint W is an expression of the form

W = l[x1 = w1, . . . , xk = wk]u,

where l, u, w1, . . . , wk are integers and x1, . . . , xk are
propositional atoms. We use l to denote the lower bound,
u to denote the upper bound, and wi to denote the weight
assigned to atom xi.

A logic program accepted by smodels (smodels program
for short) (Niemelä & Simons 1997), is a set of rules, of the
form

r = A0 ← A1, . . . , An,

where n ≥ 0, A0 is either a weight constraint or an atom,
and each Ai, 1 ≤ i ≤ n, is a literal (an expression a or
not(a), where a is an atom) or a weight constraint. An
smodels program may also contain optimization rules of the
form

ST [v1 = y1, . . . , vl = yl],

where ST ∈ {minimize,maximize}, v1, . . . , vl are
atoms and y1, . . . , yl, are integers. We refer the reader to
(Niemelä & Simons 1997) for the definition of the seman-
tics of smodels programs.

Translation procedure from PB-constraints to

an smodels program

We describe now a procedure PB2smodels that takes as in-
put a set of PB-constraints T and translates it to an smodels
program P (T ). In the translation, we identify 0-1 integer
variables with boolean propositional variables. That is, we
view x appearing in T as a 0-1 variable and the same x ap-
pearing in P (T ) as a propositional variable.



Solvers PB’05 Random instances

PB-smodels 144 400
MiniSat+ 184 298

Pueblo 172 380

Figure 1: Total number of instances solved by the solvers

First, for each 0-1 variable x in T , the procedure includes
in P (T ) a choice atom {x} in P (T ) (Niemelä & Simons
1997). Next, for each PB-constraint r ∈ T we do the fol-
lowing.

1. If r is a constraint rule w1 ∗ x1 + . . . + wk ∗ xk ≤ c,
we translate r to an smodels rule
← (c + 1)[x1 = w1, . . . , xk = wk].

2. If r is a constraint rule w1 ∗ x1 + . . . + wk ∗ xk ≥ c,
we translate r to an smodels rule
← [x1 = w1, . . . , xk = wk](c− 1).
As a special case, we translate a PB-constraint 1 ∗ x1 +
. . . + 1 ∗ xk ≥ 1 into an smodels rule
← not(x1), . . . , not(xk).

3. If r is an optimization statement ST : w1 ∗ x1 + . . . +
wk ∗ xk,
we translate r to an smodels optimization rule
ST [x1 = w1, . . . , xk = wk].

Theorem 1 Let T be a set of PB-constraints and let
P (T ) = PB2smodels(T ) be a logic program. An assign-
ment I of 0s and 1s to variables in T is a solution to T if
and only if the set MI = {xi: I(xi) = 1} is a stable model
of P (T ). Moreover, if T contains an optimization statement,
I is an optimal solution to T if and only if MI is an optimal
stable model of P (T ).

Experiment Methodology and Results

We compared the performance of the three pseudo-boolean
solvers PB-smodels, MiniSat+ and Pueblo on instances of
search problems that are modeled as PB-constraints. We
used two sets of benchmarks in our experiments. The first
benchmark consists of 386 instances of optimization prob-
lems used in PB 2005 competition (Manquinho & Rous-
sel 2006). The second benchmark consists of random, sat-
isfiable and unsatisfiable instances of weighted N-queens,
blocked N-queens, traveling salesperson and weighted dom-
inating set problems (Namasivayam 2006).

All three algorithms were executed on the same set of
instances, on the same machine and with 500 second time
limit. We recorded the time taken by each algorithm to find
a solution to decide that there is no solution, or to determine
the optimum value for an optimization instance.

Figure 1 summarizes the results. It shows that PB-
smodels solved (with the 500 second time limit) more ran-
dom instances than other solvers. The run-time distribu-
tion (RTD) graph for instances of the TSP problem (with 11
cities, and a bound on the total length set at 25) shown in Fig-
ure 2, provides an additional evidence for good performance
of PB-smodels on random instances. RTDs at the web-site
(Namasivayam 2006) show similar good performance also

Figure 2: Performance of satisfiable instances of TSP

on the blocked N-queens problem. The other solvers per-
form better on the remaining two problems.

PB-smodels was also able to solve 144 optimization in-
stances out of the total of 386. The other solvers solved
more instances in this category, but neither performed sig-
nificantly better.

The performance of the algorithms on the benchmarks is
available in the web site (Namasivayam 2006).

Conclusion

We developed a PB-solver PB-smodels and demonstrated
that in many cases it outperforms existing PB-solvers such
as MiniSat+ and Pueblo.
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