
Symmetry-Driven Decision Diagrams
for Knowledge Compilation

Anicet Bart and Frédéric Koriche and Jean-Marie Lagniez and Pierre Marquis1

Abstract. In this paper, symmetries are exploited for achiev-
ing significant space savings in a knowledge compilation per-
spective. More precisely, the languages FBDD and DDG of deci-
sion diagrams are extended to the languages Sym-FBDDX,Y and
Sym-DDGX,Y of symmetry-driven decision diagrams, where X is
a set of ”symmetry-free” variables and Y is a set of ”top” variables.
Both the time efficiency and the space efficiency of Sym-FBDDX,Y
and Sym-DDGX,Y are analyzed, in order to put those languages in
the knowledge compilation map for propositional representations. It
turns out that each of Sym-FBDDX,Y and Sym-DDGX,Y satisfies
CT (the model counting query). We prove that no propositional lan-
guage over a set X ∪ Y of variables, satisfying both CO (the con-
sistency query) and CD (the conditioning transformation), is at least
as succinct as any of Sym-FBDDX,Y and Sym-DDGX,Y unless the
polynomial hierarchy collapses. The price to be paid is that only a
restricted form of conditioning and a restricted form of forgetting
are offered by Sym-FBDDX,Y and Sym-DDGX,Y . Nevertheless, this
proves sufficient for a number of applications, including configura-
tion and planning. We describe a compiler targeting Sym-FBDDX,Y
and Sym-DDGX,Y and give some experimental results on planning
domains, highlighting the practical significance of these languages.

1 INTRODUCTION
It is well-known that many reasoning and optimization problems
exhibit symmetries, and that recognizing and taking advantage of
symmetries is a way to improve the computational time needed to
solve those problems. Actually, much work has been devoted to
this issue for decades. Among other highlights is the fact that the
resolution system, equipped with a global symmetry rule, permits
polynomial-length proofs of several combinatorial principles, includ-
ing the pigeon/hole formulae [9], while such formulae require reso-
lution proofs of exponential length [8, 14].

The main objective of this paper is to show that exploiting sym-
metries also proves valuable for achieving space savings in a knowl-
edge compilation perspective, i.e., to derive more succinct compiled
representations while preserving queries and transformations of in-
terest. In order to reach this goal, we extend the language FBDD of
free binary decision diagrams [7] to the language Sym-FBDDX,Y
of symmetry-driven free binary decision diagrams, containing free
binary decision diagrams equipped with symmetries. X is a (pos-
sibly empty) set of ”symmetry-free” variables, and Y is a (possi-
bly full) set of ”top” variables. We also extend the language DDG
of decomposable decision diagrams [5] (a superset of FBDD where
decomposable ∧-nodes are allowed in the representations) to the lan-
guage Sym-DDG of symmetry-driven decomposable decision dia-

1 CRIL-CNRS, Université d’Artois, France, email: name@cril.fr

grams, where the same conditions on X and Y are considered. We
analyze Sym-FBDDX,Y and Sym-DDGX,Y along the lines of the
knowledge compilation map for propositional representations [4],
by identifying the queries and transformations of interest for which
some polynomial-time algorithms exist when the input is a represen-
tation from one of those languages; we also investigate the space effi-
ciency of Sym-FBDDX,Y and Sym-DDGX,Y . Based on these inves-
tigations, it turns out that each of Sym-FBDDX,Y and Sym-DDGX,Y
satisfies the critical CT query (model counting) which is, for many
languages, hard to satisfy (a #P-complete problem). We prove that
no propositional language over a set X ∪ Y of variables, satis-
fying both CO (the consistency query) and CD (the conditioning
transformation), is at least as succinct as any of Sym-FBDDX,Y
and Sym-DDGX,Y unless the polynomial hierarchy collapses. The
price to be paid is that only restricted forms of conditioning and
of projection are offered by Sym-FBDDX,Y and Sym-DDGX,Y ,
namely conditioning over X and projection on Y . Nevertheless, this
proves sufficient for a number of applications, including configura-
tion and planning. We describe a compiler targeting Sym-FBDDX,Y
and Sym-DDGX,Y and give some experimental results on planning
domains, highlighting the practical significance of these languages.

The paper is organized as follows. After introducing the for-
mal background, the languages Sym-FBDDX,Y and Sym-DDGX,Y
are defined and analyzed. A CNF-to-Sym-DDGX,Y compiler is de-
scribed in the next section. Before concluding, empirical results on
some planning instances are presented, showing that the size of
Sym-DDGX,Y compilations can be significantly smaller than the size
of the state-of-the-art d-DNNF compilations. Proofs are not provided
in the paper due to space limitations, but can be found in an extended
version, available at www.cril.fr/˜marquis/symddg.pdf.

2 FORMAL PRELIMINARIES

Let PS be a finite set of propositional variables. A permutation σ
over LPS , the set of all literals over PS , is a bijective mapping from
LPS = PS ∪{¬x | x ∈ PS} to LPS . Any permutation σ can be ex-
tended easily to a morphism associating a propositional formula over
PS with a propositional formula over PS , by stating that for every
propositional connective c of arity k, we have σ(c(α1, . . . , αk)) =
c(σ(α1), . . . , σ(αk)). We also note σ(X) = {σ(x) | x ∈ X} for
any subset X of PS .

Every permutation σ under consideration in this paper is assumed
to satisfy the following stability condition: for any pair of literals
`1, `2, σ(`1) = `2 iff σ(∼`1) = ∼`2 where ∼` is the opposite of `,
i.e.,∼x = ¬x and∼¬x = x. Any permutation σ will be represented
in a simplified cycle notation, i.e., as a product of cycles correspond-
ing to its orbits (with at least two elements), where exactly one of

the two orbits (l1 . . . lk) and (∼ l1 . . . ∼ lk) are represented,
whenever (l1 . . . lk) is an orbit of σ.

For instance, if PS = {x1, . . . , x6}, (x1 ¬x3 x4)(x5x6) denotes
the permutation σ associating x1 with ¬x3, ¬x1 with x3, x3 with
¬x4, ¬x3 with x4, x4 with x1, ¬x4 with ¬x1, x5 with x6, ¬x5
with ¬x6, x6 with x5, and ¬x6 with ¬x5, while x2 and ¬x2 are
left unchanged by σ. The identity permutation is represented by the
empty word using the simplified cycle notation.

By Σ, we denote the set of all bijective mappings from LPS to
LPS satisfying the stability condition. Clearly enough, Σ is closed
by composition: if σ1, σ2 ∈ Σ then σ1 ◦ σ2 ∈ Σ. Since Σ is also
closed for the inverse (if σ ∈ Σ, then σ−1 ∈ Σ) and it contains
the identity element (which is the neutral element for composition),
Σ is a permutation group. Clearly enough, applying a permutation
σ ∈ Σ to a propositional formula α does not change the number of
models of the latter; especially, α is satisfiable (resp. valid) iff σ(α)
is satisfiable (resp. valid).

In the rest of the paper, we focus on subsets of Sym-EDD, the lan-
guage of symmetry-driven extended decision diagrams, where per-
mutations are defined over Σ. Basically, Sym-EDD generalizes the
language of ”extended” decision diagrams (i.e., binary decision di-
agrams in which ∧-nodes are allowed) by associating some permu-
tations to the arcs and to the root node. Diagrams from Sym-EDD
are based on decision nodes, where a decision node N labeled with
x ∈ PS is a node with two children, having the following form:

xN

N1 N2

σ1 σ2

Such a node N is noted ite(x,N1, N2), where ”ite” stands for ”if ...
then ... else ...”.

Definition 1 (Sym-EDD). Sym-EDD is the set of all finite, single-
rooted multi-DAGs 2 (also referred to as ”formulae”) α where:

• each leaf node of α is either the >-node (a node labeled by the
Boolean constant> – always true) or the⊥-node (a node labeled
by the Boolean constant ⊥ – always false)

• each internal node of α is labeled by ∧ and has a finite number
of children (≥ 1), or it is a decision node labeled with a variable
from PS ;

• each arc of α is labeled with a permutation from Σ;
• the root of α is labeled with a permutation from Σ.

The size |α| of a Sym-EDD formula α is the number of nodes, plus
the number of arcs in the DAG, plus the sizes of the permutations
labeling the arcs of α and its root. The set Var(α) of variables of a
Sym-EDD formula α rooted at node N is defined by {σN (x) | x ∈
Var(N)}, where σN is the permutation labeling N , and Var(N) is
defined as follows:

• if N is a leaf node labeled by a Boolean constant,
then Var(N) = ∅;

• if N is a node labeled by ∧ and having k children N1, . . . , Nk
such that ∀i ∈ 1, . . . , k, σi is the label of the arc (N,Ni), then
Var(N) =

⋃k
i=1 σi(Var(Ni));

• if N = ite(x,N1, N2) is a decision node such that σ1 is the label
of the arc (N,N1) and σ2 is the label of the arc (N,N2), then
Var(N) = {x} ∪ σ1(Var(N1)) ∪ σ2(Var(N2)).

2 More than one arc between two nodes is allowed.

Clearly enough, Var(α) can be computed in time linear in |α|.
Note that Var(α) may easily differ from the set of variables occur-
ring in α, when no permutation is taken into account (or equivalently,
when each permutation is equal to the identity permutation).

Let us now define the semantics of Sym-EDD formulae. A simple
way to do so consists in associating with every Sym-EDD formula α
a tree-shaped NNF formula T (α) which is logically equivalent to α.
Formally, T (α) is given by σN (T (N)) where N is the root of α and
T (N) is defined inductively as follows:

• if N is a leaf node labeled by the Boolean constant > (resp. ⊥),
then T (N) = > (resp. ⊥);

• if N is a node labeled by ∧ and having k children N1, . . . , Nk
such that ∀i ∈ 1, . . . , k, σi is the label of the arc (N,Ni), then
T (N) =

∧k
i=1 σi(T (Ni));

• if N = ite(x,N1, N2) is a decision node such that ∀i ∈
1, . . . , 2, σi is the label of the arc (N,Ni), then T (N) = (¬x ∧
σ1(T (N1))) ∨ (x ∧ σ2(T (N2))).

Of course, the size of T (α) is exponentially larger than the size of
α in the general case. Anyway, the models of α are precisely those of
T (α). We denote by ‖α‖ the number of models of α over Var(α).

For space reasons, we assume the reader is familiar with the lan-
guages FBDD, DDG, DNNF [7, 5, 3] which are considered in the fol-
lowing, and with the KC map [4]. The basic queries considered in
the KC map include tests for consistency CO, validity VA, impli-
cates (clausal entailment) CE, implicants IM, sentential entailment
SE, model counting CT, and model enumeration ME. We add to
them the model checking query MC, which is not obvious for the lan-
guages we introduce in the paper. The basic transformations include
conditioning (CD), (possibly bounded) closures under the connec-
tives (∧C, ∧BC, ∨C, ∨BC, ¬C), and forgetting (FO), or dually
projection (PR). We add to them the restricted conditioning trans-
formation, and the restricted projection transformation:

Definition 2 (X-RCD). Let L be a subset of Sym-EDD, and X ⊆
PS . L satisfies X-RCD iff there is a polynomial-time algorithm that
maps every formula α in L and every consistent term γ over some
variables in X to a formula α | γ in L which is logically equiva-
lent to the most general logical consequence β of α ∧ γ, where β is
independent from the variables occurring in γ.

Definition 3 (Y -RPR). Let L be a subset of Sym-EDD, and Y ⊆
PS . L satisfies Y -RPR iff there is a polynomial-time algorithm that
maps every formula α inL and everyZ ⊆ Y to a formula inL which
is logically equivalent to the projection ∃PS \ Z.α of α on Z.3

Clearly enough, X-RCD (resp. Y -RPR) coincides with the usual
conditioning transformation CD (resp. projection transformation
PR) when X = PS (resp. Y = PS).

The relative space efficiency of propositional languages is cap-
tured by a pre-order ≤s, where L1 ≤s L2 means that L1 is at least
as succinct as L2, i.e., there exists a polynomial p such that for every
formula α ∈ L2, there exists an equivalent formula β ∈ L1 where
|β| ≤ p(|α|).
∼s denotes the the symmetric part of ≤s defined by L1 ∼s L2

iff L1 ≤s L2 and L2 ≤s L1. <s denotes the asymmetric part of ≤s
defined by L1 <s L2 iff L1 ≤s L2 and L2 6≤s L1. L1 6≤∗s L2 means
that L1 6≤s L2 unless the polynomial hierarchy PH collapses (which
is considered very unlikely in complexity theory). L1 <

∗
s L2 is a

short for L1 ≤s L2 and L2 6≤∗s L1.

3 Or, in an equivalent way, to the forgetting of every variable in α but those
of Z.

3 SYMMETRY-DRIVEN DIAGRAMS
Sym-EDD does not qualify as an interesting language for knowl-
edge compilation. Especially, it contains BDD (not to be mixed with
OBDD<), as a subset, and BDD is highly intractable [4]. Accordingly,
some restrictions must be put on the symmetry-based decision di-
agrams in order to get languages which are exploitable from the
knowledge compilation point of view. Those two restrictions are for-
mally expressed by two conditions, the read-once condition and the
decomposability condition, which extend the eponymous conditions
on decision graphs to symmetry-driven ones:

Definition 4 (read-once).

• A decision node N labeled with y ∈ PS in a Sym-EDD formula
α is an x-decision node iff there exists a path a1, . . . , am from the
root of α to N , such that the corresponding permutation σ0 ◦σ1 ◦
. . . ◦ σm4 satisfies σ0 ◦ σ1 ◦ . . . ◦ σm(y) = x. N is a X-decision
node where X ⊆ PS if it is a x-decision node for some x ∈ X .

• A Sym-EDD formula α satisfies the read-once property iff for ev-
ery variable x ∈ PS , in every path from the root of α to a leaf, at
most one x-decision node can be encountered.

Definition 5 (decomposability).

• A ∧-node N with children N1, . . . , Nk is decomposable if and
only if for all i, j ∈ 1, . . . , k, if i 6= j, then σi(Var(Ni)) ∩
σj(Var(Nj)) = ∅, where σi (resp. σj) is the permutation la-
beling the arc (N,Ni) (resp. (N,Nj)).

• A Sym-EDD formula α satisfies the decomposability property iff
each ∧-node of it is decomposable.

Definition 6 (Sym-DDG, Sym-FBDD).

• Sym-DDG is the subset of Sym-EDD consisting of formulae α
which are both read-once and decomposable.

• Sym-FBDD is the subset of Sym-DDG consisting of formulae α
containing no ∧-node.

Unlike what happens in the FBDD case, a node of α can easily be
an x-decision node for several variables x. For instance, the node N
represented on the figure below is both an x2-decision node and an
x3-decision node.

x1

(x1 x2) (x1 x3)

x1N

⊥ >

Clearly, DDG (resp. FBDD) is the subset of Sym-DDG (resp.
Sym-FBDD) containing formulae where every permutation used in
them is the identity permutation. In order to define the classes of in-
terest in this study, two additional conditions need to be considered:

Definition 7 (symmetry-freeness condition on X). Let X be a sub-
set of PS . A Sym-DDG formula α satisfies the symmetry-freeness
condition on X iff for any x ∈ X and any decision node N in α,
if N is an x-decision node and a y-decision node (y ∈ PS), then
y = x.

4 Here, σ0 is the permutation labeling the root of α and, for all i ∈
{1, · · · ,m}, σi is the permutation labeling ai.

Definition 8 (precedence condition on Y). Let Y be a subset of PS .
A Sym-DDG formula α satisfies the precedence condition on Y iff
for every z-decision node N of α such that z 6∈ Y and for every
y-decision node M with y ∈ Y , there is no path in α from N to M .

Definition 9 (Sym-DDGX,Y , Sym-FBDDX,Y).
Given two subsets X,Y of PS :
• Sym-DDGX,Y is the subset of Sym-DDG containing diagrams

satisfying the symmetry-freeness condition on X and the prece-
dence condition on Y , and

• Sym-FBDDX,Y is the subset of Sym-FBDD containing diagrams
satisfying the symmetry-freeness condition on X and the prece-
dence condition on Y .

Importantly, in the above languages, is it assumed that X and
Y are ”fixed” subsets of PS . In other words, for any formula α in
Sym-DDGX,Y , the X-decision nodes of α and the Y -decision nodes
of α are known, and tagged as such.

Clearly, if X,X ′ are subsets of PS such that X ⊇ X ′ then for
any Y ⊆ PS , we have Sym-DDGX,Y ⊆ Sym-DDGX′,Y . When
Y = PS , i.e., when no precedence condition actually constrains
the diagrams, two extreme cases are reached with X = ∅ and
X = PS , respectively. Sym-DDG∅,PS coincides with Sym-DDG,
while Sym-DDGPS,PS coincides with DDG (of course, similar equal-
ities hold for Sym-FBDD, mutatis mutandis).

By definition, each Sym-FBDDX,Y (resp. Sym-DDGX,Y) for-
mula is a Sym-FBDD (resp. Sym-DDG) formula. Conversely, ev-
ery Sym-FBDD (resp. Sym-DDG) formula α can also be viewed as
a Sym-FBDDX,Y (resp. Sym-DDGX,Y) formula for every X,Y ⊆
PS such that X ∩Var(α) = ∅ and Var(α) ⊆ Y .

In what follows, a family of propositional languages LX,Y param-
eterized by two sets of variables X and Y , is said to satisfy a given
query request R (i.e., a query or a transformation), if R is satisfied
for each language obtained by fixing the values of X and of Y .

Concerning the queries and the transformations, we have obtained
the following results:

Proposition 1. The results in Table 1 and in Table 2 hold.

In the two tables the results concerning DDG and FBDD [7, 5] are
reported as base lines for the comparison matter. One can observe
that Sym-FBDDX,Y (resp. Sym-DDGX,Y) typically offers the same
tractable transformations as FBDD (resp. DDG), but CD, which must
be downsized to X-RCD, and PR, which must be downsized to Y -
RPR. Concerning queries, CT and the related conditions CO and VA
are preserved. Model checking (MC) and model enumeration (ME)
are offered by each of the two languages. Contrastingly, other queries
related to the conditioning transformation (CE, IM) are lost.

Interestingly, the polynomial-time algorithm at work for the CT
query in the DDG case can be extended in a trivial way to the
Sym-DDG case (just ignores the permutations since they do not
change the number of models). This is also the case for the X-RCD
transformation (for each x ∈ X , replace each arc reaching an x-
decision node N by the arc from N to its right child or by the arc
from N to its left child, depending on the polarity of x in the term γ)
and the Y -RPR transformation (determine for each decision nodeN
whether it is a ”last” Y -decision node, i.e., no successor of it in a path
from N to a leaf is a Y -decision node; then replace the arc (N,M)
from each ”last” Y -decision nodeN by an arc towards the>-node if
there is a path from M to the >-node, and replace (N,M) by an arc
towards the ⊥-node otherwise). Things are a bit more tricky for MC
and ME (polynomial-time algorithms for these queries are presented
in the extended version).

CO VA CE IM
Sym-DDGX,Y

√ √
◦ ◦

Sym-FBDDX,Y
√ √

◦ ◦
DDG

√ √ √ √

FBDD
√ √ √ √

SE CT ME MC
Sym-DDGX,Y ◦

√ √ √

Sym-FBDDX,Y ◦
√ √ √

DDG ◦
√ √ √

FBDD ◦
√ √ √

Table 1. Sym-DDGX,Y , Sym-FBDDX,Y , and the queries CO, VA, CE,
IM, SE, CT, ME, MC.

√
means “satisfies”, and ◦ means “does not satisfy

unless P = NP”.

CD X-RCD PR Y -RPR
Sym-DDGX,Y ◦

√
◦

√

Sym-FBDDX,Y ◦
√

◦
√

DDG
√ √

◦ ◦
FBDD

√ √
• •

∧C ∧BC ∨C ∨BC ¬C
Sym-DDGX,Y ◦ ◦ ◦ ◦ ?
Sym-FBDDX,Y ◦ ◦ ◦ ◦

√

DDG ◦ ◦ ◦ ◦ ?
FBDD • ◦ • ◦

√

Table 2. Sym-DDGX,Y , Sym-FBDDX,Y , and the transformations CD,
X-RCD, PR, Y -RPR, ∧C, ∧BC, ∨C, ∨BC, ¬C.

√
means “satisfies”, •

means “does not satisfy”, and ◦ means “does not satisfy unless P=NP”.

In a nutshell, it turns out that Sym-FBDDX,Y and Sym-DDGX,Y
exhibit quite non-standard properties as target languages for knowl-
edge compilation. Indeed, CT is typically hard to be satisfied (a
#P-complete problem) while CD is usually obvious. In the same
vein, model checking MC which is a straightforward query for
usual knowledge compilation languages, is far from being easy for
symmetry-driven graph-based languages, due to their ability of en-
coding quantifications in a succinct way. Indeed, assuming that α is
any Sym-EDD formula, the Sym-EDD formula rooted at node N∃
on the figure below is equivalent to ∃x.α while the formula rooted
at node N∀ is equivalent to ∀x.α.5 As a consequence, we get that
Sym-EDD satisfies CD but also that MC for Sym-EDD formulae is
PSPACE-hard!

xN∃

(x ¬x)

α

xN∀

(x ¬x)

α

The non-standard behavior of Sym-DDGX,Y (and its subset
Sym-FBDDX,Y) w.r.t. unrestricted conditioning seems to be the
price to be paid for an improved succinctness power. Indeed,
the next proposition shows that the languages Sym-DDGX,Y and
Sym-FBDDX,Y , are in some sense ”very succinct”:

Proposition 2. Let X,Y be two subsets of PS . No propositional
language L over X ∪ Y satisfying CD and CO is at least as suc-
cinct as Sym-FBDDX,Y unless Σp2 = Πp

2 , i.e., we have L 6≤∗s
Sym-FBDDX,Y .

5 Observe that, due to the read-once condition, none of these two formulae
belongs to Sym-DDG, unless x 6∈ Var(α).

Consider the CNF formula ∆n containing every 3-clause δ (i.e., a
clause of size 3) over Y = {y1, . . . , yn} augmented by an additional
literal xδ which identifies the clause. ∆n is thus a CNF over Y ∪X
containing 8×

(
n
3

)
4-clauses. X contains 8×

(
n
3

)
variables xδ . The

proof of Proposition 2 relies on the fact that ∆n can be represented
by an equivalent Sym-FBDD formula of size linear in the size of ∆n.
However, this statement does not hold for propositional languages
satisfying CO and CD unless the polynomial hierarchy collapses.
Indeed, to every CNF formula α =

∧m
i=1 δi over Y = {y1, . . . , yn},

we can associate a consistent term γα =
∧m
i=1 ¬xδi such that α is

satisfiable iff ∆n∧γα is satisfiable iff ∆n conditioned by γα is satis-
fiable. Suppose now that ∆n has a polynomial-space representation
comp(∆n) in a propositional language L over X ∪ Y , where L sat-
isfies CO and CD. Then in order to check whether a CNF formula
α =

∧m
i=1 δi over {y1, . . . , yn} is satisfiable it would be enough to

compute in polynomial time aL-representation of comp(∆n) condi-
tioned by γα, and to determine in polynomial time whether it is con-
sistent or not. We would therefore get NP⊆ P/poly, hence Σp2 = Πp

2

(see e.g. [13] for details).
As a consequence, state-of-the-art languages for knowledge com-

pilation, like DNNF, are not more succinct than any of the two lan-
guages Sym-FBDD, and Sym-DDG. Especially, due to the obvious
inclusions Sym-DDG⊇ DDG, and Sym-FBDD⊇ FBDD, we have that
Sym-DDG ≤s DDG, and Sym-FBDD ≤s FBDD. This implies that:

Proposition 3. Sym-DDG <∗s DDG and Sym-FBDD <∗s FBDD.

4 A CNF-TO-Sym-DDGX,Y COMPILER

Our compiler symddgX,Y (see Algorithm 1) is essentially a CNF-to-
DDG compiler, enriched with some modules for symmetry handling.

The two base cases are when the input CNF formula ∆ is the
empty set of clauses (line 1) or contains the empty clause (line 2).
In the first case, ∆ is equivalent to > and a Sym-DDGX,Y reduced
to the >-node is returned. In the second case, ∆ is equivalent to ⊥
and a Sym-DDGX,Y reduced to the ⊥-node is returned. Otherwise
the connected components ∆1, · · · ,∆k of the constraint graph of ∆
are looked for (line 3); if ∆ has more than one connected compo-
nent (line 4), then the root node of the resulting Sym-DDGX,Y for-
mula is a ∧-node (generating using function anode) and its children
are obtained by calling symddgX,Y recursively on ∆1, · · · ,∆k.6

Then, using a method findSymmetry for symmetry detection, we
look whether there is an admissible permutation σ w.r.t. ∆ such that
σ(∆) has already been encountered and is in the cache (line 5); if
so, the Sym-DDGX,Y formula associated with σ(∆) is returned, and
σ is associated with the arc which has been followed to reach the
root node of the current formula ∆ or to the root node of the initial
CNF formula at the first call.7 σ is admissible w.r.t. ∆ when all the
requirements imposed by Sym-DDGX,Y are met, i.e., σ satisfies the
stability condition, σ(∆) is read-once and satisfies the precedence
condition on Y , and ∀x ∈ X , σ(x) = x (which is enough for en-
suring that σ(∆) satisfies the symmetry-freeness condition on X).
Finally, in the remaining case (line 6), one chooses a variable from
∆; the root node of the resulting Sym-DDGX,Y formula is a deci-
sion node labeled with x, and its two children are obtained by calling
symddgX,Y recursively on ∆ conditioned by ¬x, and ∆ conditioned

6 Removing lines 3 and 4 in the pseudo-code of symddgX,Y leads to down-
size it as a CNF-to-Sym-FBDDX,Y compiler.

7 For the sake of clarity, this is not detailed in the pseudo-code. Also, though
not explicitly indicated in the algorithm, each time a Sym-DDGX,Y for-
mula is generated, it is added to the cache when it is not already in it.

Algorithm 1: symddgX,Y (∆)

input : a CNF formula ∆, a set X of symmetry-free variables,
and a set Y of top variables

output: a Sym-DDGX,Y formula equivalent to ∆

1 if ∆ is empty then return leaf(>);
2 if ∆ contains an empty clause then return leaf(⊥);
3 let ∆1, · · · ,∆k be the connected components of ∆;
4 if k > 1 then return

anode(symddgX,Y (∆1), · · · , symddgX,Y (∆k));
5 if (σ ← findSymmetry(∆)) such that

(key ← inCache(σ(∆))) 6= nil then return cache(key);
6 choose a variable x of ∆;

return dnode(x, symddgX,Y (∆ |x←0), symddgX,Y (∆ |x←1))

by x. Specifically, x is chosen thanks to the VSADS heuristic func-
tion [12], adapted to ensure that the constraint on top variables Y is
satisfied.

The key issue in the design of our symddgX,Y compiler lies in an
efficient implementation of the findSymmetry method for retrieving
a formula ∆′ in the cache that is equivalent to the input formula
∆, modulo an admissible symmetry σ. To this point, the problem
of determining whether there exists a symmetry between two CNF
formulae ∆ and ∆′ can be reduced to a graph isomorphism problem
for which, unfortunately, no polynomial-time algorithm is known [6].
In the present study, this computational issue is circumvented using
an incomplete method for detecting symmetries.

Specifically, findSymmetry is based on a two-stage filtering tech-
nique followed by a greedy search in the filtered space of permuta-
tions. In order to rapidly explore the cache, the first stage compares
formulae according to their canonical signature. The signature of a
CNF expression ∆ is given by two sorted vectors, which respectively
encode the signature of the variables occurring in ∆ and the signature
of the clauses occurring in ∆. The signature of a variable x is given
by a pair (px, nx) where px (resp. nx) is the number of literals that
occur positively (resp. negatively) in ∆. The signature of a clause δ
is simply given by its size (i.e., its number of literals). Both vectors
are sorted in increasing order of their entries. Based on this encod-
ing, two CNF formulae ∆ and ∆′ with different signatures cannot be
equivalent modulo an admissible symmetry.

During the second stage, the task of identifying an admissible
symmetry between two comparable formulae ∆ and ∆′ is cast as
a constraint satisfaction problem (CSP). The set of variables of the
CSP is given by the collection of variables occurring in ∆, which are
renamed for convenience. The domain of each (renamed) variable x
is formed by the set of all literals ` occurring in ∆′, such that x and
` have the same signature.8 Finally, a binary constraint x 6= y is as-
sociated with each pair of variables x, y occurring in the same clause
δ of ∆. Based on this representation, the space of candidate permu-
tations between ∆ and ∆′ is refined by enforcing arc-consistency in
the CSP. An admissible permutation is searched in a greedy way by
iteratively pruning values from the variable with largest domain, and
propagating these unary constraints in the network.

5 EXPERIMENTAL RESULTS

We focus on the application of Sym-DDGX,Y to planning, an area
wherein symmetries naturally occur (see e.g. [11]). Given a time

8 In an obvious way, the signature of ` is (px, nx) if ` is the positive literal
x, and (nx, px) if ` is the negative literal ¬x.

horizonN , our objective is to compile a deterministic planning prob-
lem P = (F,O, I,G), where the initial state I and the goal G vary.
Here, F is a finite set of fluents, O is a set of deterministic actions
with possibly conditional effects, I is a complete truth assignment of
initial fluents in F , and G is a partial assignment of final fluents in
F representing the goal situation. A plan π for P is a sequence π of
sets of actions, one per time point between 0 andN −1, which maps
the initial state I to a goal state (i.e., a model of G).

In order to compile P , we first encode a description of P into
a corresponding CNF theory ∆P over the set of variables PS =
(
⋃N
i=0{fi | f ∈ F}) ∪ {ai | a ∈ O, i = 0, . . . , N − 1}. ∆P

can be viewed as a compact representation of the transition model
associated with O. In this encoding, fi is true if and only if flu-
ent f holds at time point i, and ai is true if and only if action a
holds at time point i. Since only deterministic actions are considered
in O, the truth value of every fluent fi (f ∈ F, i ∈ 1, . . . , N) is
fully determined in ∆P as soon as the truth values of the variables
{f0 | f ∈ F} ∪

⋃N−1
i=0 {ai | a ∈ A} are fixed (i.e., as soon as the

initial state and the plan under consideration are specified).
Based on this encoding, the formula ∆P is compiled into a

Sym-DDGX,Y formula where X = {f0 | f ∈ F} ∪ {fN | f ∈ F}
and Y = PS . Thus, the permutation group for the target class is
defined over all action variables and all fluent variables that exclude
initial and goal descriptions. Once this compiled form has been com-
puted, one can take advantage of the set of queries and transforma-
tions offered by Sym-DDGX,Y to address in a computationally effi-
cient way a number of issues which are NP-hard in the general case.
Thus, since Sym-DDGX,Y satisfies both X-RCD and CO, we can
determine in polynomial time whether a plan π exists for any I and
G given on-line; since Sym-DDGX,Y satisfies CT, we can also count
how many π exist in polynomial time.

The instances we selected cover a range of different planning
benchmarks, with varying horizon length. “blocks-n” refers to the
famous blocks-world domain with n blocks. “bomb-m-n” is an-
other popular domain involving m bombs, n toilets, and 2 actions.
“comm-m-n” is an IPC5 problem about communication signals with
m stages, n packets, and 5 actions. “emptyroom-n” is about navigat-
ing a robot in an n×n empty grid. Finally, “safe-n” is about opening
a safe with n possible combinations.

All instances described in PDDL were translated into CNF the-
ories using the DIMACS format, and then compiled according to
three target languages: d-DNNF generated by the standard c2d com-
piler,9 DDG generated by our symddgX,Y compiler without sym-
metry detection, and Sym-DDG targeted by the full power of our
compiler. Our experiments have been conducted on a Xeon E5-2643
(3.30GHz) with 7.6GB of memory. A time-out of one hour per in-
stance has been considered for the compilation phase; for space rea-
sons we do not provide detailed compilation times but it is worth
noting that they remain reasonable: on the instances above, the mean
(resp. maximum) compilation time of symddgX,Y was 22.5 seconds
(resp. 109.42 seconds, obtained for the bomb-20-05 instance).

Table 3 presents the compilation results obtained from instances
for which the horizon N was fixed to 5. ”Nodes” (resp. ”arcs”) refer
to the numbers of nodes (resp. arcs) in the compiled representations.
The last two columns give the percentage of size reduction achieved
by Sym-DDG compared with DDG. Figure 1 plots the size (nodes
+ arcs) of the compiled formula versus the horizon length (from 1
to 10) for three of the test instances. Since the running time of on-
line queries and transformations is governed by the size of the com-
9 c2d, available at reasoning.cs.ucla.edu/c2d/, was run using the

command c2d -in file.cnf -dt count 50 -smooth all

Instance CNF d-DNNF DDG Sym-DDG % reduction
vars clauses nodes arcs nodes arcs nodes arcs nodes arcs

blocks-2 406 1901 4679 37892 7332 15130 6792 14044 7.4 7.2
blocks-3 804 4343 157292 2357558 1208463 2598572 950142 2039622 21.4 21.5

bomb-5-1 564 1086 2745 4639 501 1194 352 896 29.7 25.0
bomb-5-5 1340 2610 6987 12233 1433 4290 984 3392 31.3 20.9
bomb-10-5 4680 9220 15324 28679 3273 12435 2224 10337 32.1 16.9
bomb-10-10 2760 5415 26730 48736 5863 27080 3964 23282 32.4 14.0
bomb-20-05 7100 14025 41469 76308 9203 50100 6204 44102 32.6 12.0

comm-5-2 781 2289 28292 143118 48978 108252 33346 73221 31.9 32.4
comm-6-3 1275 4032 89904 502804 132007 295113 69415 156382 47.4 47.0

emptyroom-4 188 584 731 2017 147 292 143 284 2.7 2.7
emptyroom-8 396 1292 11069 126398 8661 17432 8513 17136 1.7 1.7

safe-5 86 171 433 1061 73 163 35 87 52.1 46.6
safe-10 166 356 869 2927 191 420 40 99 79.1 76.4
safe-30 486 1346 2530 11262 451 1048 100 259 77.8 75.3

Table 3. Results for instances with horizon N = 5. Reduction gains above 10% are shown in boldface.

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10

Sym-DDG
DDG

d-DNNF
0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10

Sym-DDG
DDG

d-DNNF

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10

Sym-DDG
DDG

d-DNNF

Figure 1. Results for Bomb-10-10 (left), Emptyroom-4 (middle), and Safe-30 (right) with varying horizon length.

piled representations, we can observe that both DDG and Sym-DDG,
targeted by our compiler, are competitive with respect to d-DNNF,
compiled using c2d. Furthermore, the experiments revealed that for
many instances, a significant reduction of size in resulting diagrams
is achieved by exploiting symmetries.

6 CONCLUSION

In this paper, we have shown how symmetries can be exploited for
achieving significant space savings in a knowledge compilation per-
spective. We introduced two new languages Sym-FBDDX,Y and
Sym-DDGX,Y which generalize respectively the languages FBDD
and DDG of decision diagrams. We have analyzed Sym-FBDDX,Y
and Sym-DDGX,Y both from a theoretical standpoint (following the
lines of the knowledge compilation map) and from a practical stand-
point (by compiling some planning benchmarks into them). The ob-
tained results show Sym-FBDDX,Y and Sym-DDGX,Y as attractive;
indeed, both languages offer sufficiently many queries and transfor-
mations for enabling efficient on-line reasoning for a number appli-
cations; furthermore, they achieve a high level of succinctness.

This work calls for many perspectives. One of them consists in
taking advantage of complete methods for detecting symmetries,
such as nauty [10, 1] and saucy [2]. While such methods are likely
to lead to much longer off-line compilation times than our incom-
plete findSymmetry procedure, they are susceptible to explore the
full symmetry group Σ, hence to provide smaller representations.
Another perspective consists in studying the connections between
Sym-DDGX,Y and the language of first-order NNF circuits.

REFERENCES
[1] F. Aloul, K. Sakallah, and I. Markov, ‘Efficient symmetry breaking for

boolean satisfiability’, in Proc. of IJCAI’03, pp. 271–276, (2003).
[2] P. Darga, M. Liffiton, K. Sakallah, and I. Markov, ‘Exploiting structure

in symmetry detection for CNF’, in Proc. of DAC’04, pp. 530–534,
(2004).

[3] A. Darwiche, ‘Decomposable negation normal form’, Journal of the
ACM, 48(4), 608–647, (2001).

[4] A. Darwiche and P. Marquis, ‘A knowledge compilation map’, Journal
of Artificial Intelligence Research, 17, 229–264, (2002).

[5] H. Fargier and P. Marquis, ‘On the use of partially ordered decision
graphs in knowledge compilation and quantified Boolean formulae’, in
Proc. of AAAI’06, pp. 42–47, (2006).

[6] M.R. Garey and D.S. Johnson, Computers and intractability: a guide
to the theory of NP -completeness, Freeman, 1979.

[7] J. Gergov and C. Meinel, ‘Efficient analysis and manipulation of OB-
DDs can be extended to FBDDs’, IEEE Transactions on Computers,
43(10), 1197–1209, (1994).

[8] A. Haken, ‘The intractability of resolution’, Theoretical Computer Sci-
ence, 39, 297–308, (1985).

[9] B. Krishnamurthy, ‘Short proofs for tricky formulas’, Acta Informatica,
22, 253–275, (1985).

[10] B. D. McKay, ‘Practical graph isomorphism’, Congressus Numeran-
tium, 30, 45–57, (1981).

[11] H. Palacios, B. Bonet, A. Darwiche, and H. Geffner, ‘Pruning confor-
mant plans by counting models on compiled d-DNNF representations’,
in Proc. of ICAPS’05, pp. 141–150, (2005).

[12] T. Sang, P. Beame, and H. Kautz, ‘Heuristics for fast exact model count-
ing’, in Proc. of the 8th International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT’05), pp. 226–240, (2005).

[13] B. Selman and H.A. Kautz, ‘Knowledge compilation and theory ap-
proximation’, Journal of the ACM, 43, 193–224, (1996).

[14] A. Urquhart, ‘The symmetry rule in propositional logic’, Discrete Ap-
plied Mathematics, 96/97, 177–193, (1999).

