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Abstract. Minimizing a cost function under a set of combinatorial
constraints is a fundamental, yet challenging problem in AI. Fortu-
nately, in various real-world applications, the set of constraints de-
scribing the problem structure is much less susceptible to change
over time than the cost function capturing user’s preferences. In such
situations, compiling the set of feasible solutions during an offline
step can make sense, especially when the target compilation language
renders computationally easier the generation of optimal solutions
for cost functions supplied “on the fly”, during the online step. In this
paper, the focus is laid on Boolean constraints compiled into DNNF
representations. We study the complexity of the minimization prob-
lem for several families of cost functions subject to DNNF constraints.
Beyond linear minimization which is already known to be tractable
in the DNNF language, we show that both quadratic minimization
and submodular minization are fixed-parameter tractable for vari-
ous subsets of DNNF. In particular, the fixed-parameter tractability of
constrained submodular minimization is established using a natural
parameter capturing the structural dissimilarity between the submod-
ular cost function and the DNNF representation.

1 INTRODUCTION

Constraint optimization is a fundamental problem in computer sci-
ence, which arises in various applications including among others,
configuration softwares, recommender systems, and e-commerce.
For many, if not most, of these applications, the space of feasible
solutions under consideration is of combinatorial nature. In AI, a
generic approach for representing such combinatorial tasks is the val-
ued constraint network framework [5, 26, 29, 34, 37]. Informally, a
valued constraint network consists of a set of discrete variables, a
collection of hard (or crisp) constraints encoding a space of feasible
solutions, and a set of soft constraints (or potentials) specifying pref-
erences over solutions. The problem is to find a feasible solution that
minimizes the sum of potentials. This expressive framework has also
been studied under different names, such as GAI networks [1, 19]
and conditional random fields [25, 31]. However, such expressive-
ness does not come without a price: the minimization problem for
valued constraint networks is NP-hard, which prevents one from en-
suring some reasonable performance guarantees.

Fortunately, in many real-world situations, the set of hard con-
straints representing the problem structure does not often evolve, es-
pecially in comparison with soft constraints, capturing user’s prefer-
ences, which are indeed likely to change with the user. This situation
pattern can be exploited using a knowledge compilation approach
[11]: the set of hard constraints is compiled during an offline phase,
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in order to improve the time needed for the online generation of user-
dependent optimal solutions.

As a matter of example, consider a configurable housing web ser-
vice. Due to its combinatorial nature, the space of customizable resi-
dences is represented implicitly using hard constraints, such as “your
home must include at least two bedrooms”, or “only houses with at
least one large bedroom come with luxury kitchens”. Clearly, the set
of feasible houses does not depend on any user’s requirements like
“I want a luxury kitchen”, or preferences like “I prefer large bed-
rooms to small ones”. Thus, compiling the set of constraints describ-
ing the space of feasible solutions during an offline step is relevant if
this compilation step renders computationally easier the generation
of feasible, yet non-dominated solution, matching the user’s require-
ments and preferences, which are only known at the online step. Ac-
tually, such configuration problems are well-known benchmarks for
knowledge compilation. Especially, the car configurators of Renault
and Toyota take advantage of knowledge compilation techniques for
ensuring guaranteed response times for some key requests.

In this paper, hard constraints are represented as (Boolean) NNF
circuits. Specifically, we focus on constraints compiled into DNNF
circuits [8], the subclass of NNF circuits for which “and-nodes” do
not share any variable. DNNF is one of the most succinct NNF lan-
guages that admits a polynomial time algorithm for the task of de-
termining whether a partial assignment can be extended to a feasible
solution. This key property is preserved by subsets of DNNF such as,
for example, the class DNF of disjunctive normal form formulae, the
class SDNNF of structured DNNF formulae [28], the language SDD of
sentential decision diagrams [10], and the language OBDD of ordered
binary decision diagrams [3]. The choice of DNNF is also motivated
by existing compilers targeting (a subset of) this language, including
c2d [9], sdd [10], and Dsharp [27].

In the following, we consider several families F of (pseudo-
Boolean) cost functions including, in particular, submodular func-
tions which have received a great deal of interest in combinatorial
optimization [16, 30, 21], with numerous applications in AI.2 The
aim of this study is to identify the complexity of the minimization
query MIN: given a hard constraint C represented as a formula in
a subset L of DNNF, and a cost function f expressed as a sum of
potentials from a family F , find (when it exists) a feasible solution
of C that minimizes f . Plugged into the valued constraint network
setting, our goal is to investigate the tractability of constrained opti-
mization problems for which the soft constraints are defined over F ,
and the set of hard constraints has been first compiled into a single
constraint, represented as a formula C in L. For various subsets L
of DNNF and families F of cost functions, we determine whether the
minimization problem, defined over L and F , is in P, or is NP-hard.

2 See e.g., submodularity.org/references.html

Under DNNF Constraints

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1194

1194

submodularity.org/references.html


Furthermore, taking advantage of Downey and Fellows’ param-
eterized complexity framework [13], a fine-grained analysis of the
NP-hard cases is achieved, leading to the identification of fixed-
parameter tractable restrictions. In the theory of parameterized com-
plexity, the efficiency of an algorithm is evaluated by considering
two measurements: the usual size n of the input, and an additional
parameter k. This parameter typically represents a structural dimen-
sion of the input such as, for example, tree-likeness when the in-
put is a graph. Fixed-parameter tractable (FPT) algorithms are those
for which the running time has the form p(k)nO(1) for a function
p which depends only on k. In our setting, MIN is fixed-parameter
tractable with respect to k if for every constraint C in L, every sum f
of potentials in F , and every fixed value of k, the task of minimizing
f subject to C can be solved in time polynomial in the sizes of C
and f , with a polynomial degree independent of k. From a practical
perspective, a fixed-parameter tractability result for the query MIN

indicates that the optimization task can be solved efficiently for small
values of k, even if the sizes of the circuit C and of the representation
of the cost function f are large.

The main tractability result already known for the MIN query con-
cerns linear minimization under DNNF constraints [12]. In this case,
the scope of each potential reduces to a singleton. So, the very pur-
pose of this study is to investigate the complexity of MIN for larger
families F of cost functions. Here, strong negative results in the lit-
erature reveal that the quest of extending tractability to nonlinear
cost functions is far from easy. Indeed, for the family of quadratic
functions, expressed as sums of potentials of arity at most 2, uncon-
strained minimization is NP-hard by an immediate reduction from
MIN-2-SAT [7, 35]. For the class of submodular functions, it is well-
known that the unconstrained version of the minimization is in P
[21, 23]. Yet, its constrained version is generally NP-hard, even in
the very restricted case when the set of feasible solutions are de-
scribed by a single cardinality constraint [32, 33].

Based on [12], the present contribution provides a wider range of
results for optimization subject to DNNF constraints, especially in the
setting of submodular functions. On the one hand, we show that MIN

is NP-hard for quadratic submodular functions under OBDD con-
straints and general submodular functions under tree-structured (alias
“acyclic”) DNNF constraints. This immediately implies that con-
strained submodular minimization is intractable under DNNF con-
straints. On the other hand, we show that MIN is FPT for various
subsets L of DNNF and families F of submodular functions. Here,
the key complexity parameter ensuring fixed-parameter tractability
is captured by the dissimilarity between the structure of the input
cost function and the structure of the DNNF formula. In a nutshell,
the take-home message of this study is that structural compatibility
between the hard constraint and the cost function plays a key role in
efficient constrained minimization.

2 THE FRAMEWORK

We begin with some basic notations that will be used throughout
the paper. For a positive integer n, we use [n] to denote the set
{1, . . . , n}. We also use Q+ to denote the set of nonnegative ra-
tionals, and define Q+ = Q+ ∪ {∞} with the standard addition
operation extended so that v +∞ = ∞ for all v ∈ Q+.

As usual, propositional representations are defined over a set of
Boolean variables X = {x1, . . . , xp}, the constants � (true) and ⊥
(false), and the connectives ¬ (negation), ∧ (conjunction) and ∨ (dis-
junction). A literal is a variable xi or its negation ¬xi, also denoted
xi. A term (resp. clause) is a conjunction (resp. disjunction) of liter-

als. For a subset Y ⊆ X , a partial assignment y over Y is a vector
in 2|Y |, which can be represented in an equivalent way by a canoni-
cal term over Y , i.e., a consistent term with |Y | literals, each defined
on a variable of Y that appears once in the term. We also use Y to
denote the set of all partial assignments over Y , and X to denote the
set {0, 1}n of all complete assignments, called interpretations.

A Boolean valued constraint network (or VCN, for short) P con-
sists of a set X = {x1, . . . , xp} of Boolean variables, and a set
C = {C1, . . . , Cm} of valued constraints. Each valued constraint
Ci = (Yi, fi) in C is defined by a scope Yi ⊆ X and a cost func-
tion fi : Yi → Q+. The arity of a valued constraint Ci is given
by the cardinality |Yi| of its scope. If the range of fi is {0,∞}, then
Ci is called a hard or crisp constraint. Otherwise, Ci is called a soft
constraint, or potential. We mention in passing that the range of po-
tentials may include ∞, in order to specify users’ requirements. For
a valued constraint Ci and an assignment y ∈ Y, such that Yi ⊆ Y ,
we use Ci(y) to denote the value of fi(yi), where yi is the projec-
tion of y onto Yi. The total cost of any interpretation x in P is given
by P (x) =

∑m
i=1 Ci(x), A feasible solution of P is any interpre-

tation x such that P (x) < ∞, and a minimal solution of P is any
feasible solution with minimum cost. The problem P is called feasi-
ble if it admits at least one feasible solution, and infeasible otherwise.

We shall frequently use two key operations on valued constraints:
conditioning and restriction. For a cost function fi : Yi → Q+ and a
partial assignment z ∈ Z (where Z ⊆ Yi), the conditioning of fi on
z is the function fi|z : Yi → Q+ where (fi|z)(yi) = fi(yi) if yi

is consistent with z, and (fi|z)(yi) = ∞ otherwise. By extension,
the conditioning of a constraint Ci = (Yi, fi) on z is the constraint
denoted Ci|z with scope Yi and function fi|z. For a set of constraints
C = {C1, . . . , Cm} and a set of variables Y ⊆ X , the restriction of
C to Y , denoted CY , is the subset of constraints {Ci ∈ C | Yi ⊆ Y }.

The main motivation of this paper is to analyze the complexity
of minimization problems in which the set of crisp constraints has
been compiled into a single constraint that admits a polynomial-
time algorithm for deciding whether a partial assignment can be ex-
tended to a feasible solution. Specifically, we study the complexity
of Boolean VCNs including a single hard constraint defined over a
propositional language L, and a set of soft constraints defined over
a constraint family F . In this setting, any VCN can be viewed as
a triple (X,C, f) where C is the hard constraint and f is the cost
function, represented by a set {Ci}mi=1 of soft constraints.

Definition 1. MIN[L,F ] is the following optimization problem:

• Input: a valued constraint network P = (X,C, f), where C ∈ L
and f ∈ F ;

• Output: argminx∈X C(x) + f(x), i.e. a minimal solution of P
if P is feasible, and ⊥ if P is infeasible.

3 REPRESENTING HARD CONSTRAINTS

All languages L examined in this study are complete with respect to
propositional logic: any hard constraint C can be represented by a
propositional circuit in L. In the knowledge compilation literature,
such languages have been classified according to their succinctness
and polynomial time support for certain queries and transformations
[11]. Namely, we say that a language L1 is at least as succinct as
a language L2, written L1 ≤s L2, if there is a polynomial p such
that every formula C2 of L2 has an L1 equivalent C1, satisfying
|C1| ≤ p(|C2|), where the size |C| of a constraint C expressed as a
propositional circuit is given by the number of its arcs. We also say
that L1 is (strictly) more succinct than L2, denoted L1 <s L2, if L1
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Figure 1: A vtree T (left) and a DNNFT formula (right).

is as at least as succinct as L2, but the converse is not true. Queries are
used to extract information from a circuit without modifying it, while
transformations are used to generate a new circuit from one or several
circuits. All languages L of interest here satisfy the query CO, which
checks the satisfiability (i.e., the existence of a feasible solution) of
any circuit C ∈ L, and the transformation CD, which maps any
circuit C ∈ L and any partial assignment y to an equivalent in L
of C|y, the conditioning of C on y. By satisfying both properties,
L admits a polynomial-time algorithm for deciding whether a partial
assignment can be extended, or not, to a feasible solution.

Recall that NNF is the set of rooted, directed acyclic graphs
(DAGs) where each leaf node is labeled with ⊥, �, or a literal over
X , and each internal node is labeled with ∧ or ∨. For a node Ni

in the constraint C, we use Var(Ni) to denote the set of variables
labeling the leaf nodes reachable from Ni. We also use Sol(Ni) to
denote the set of all assignments yi ∈ Yi, such that Ci(yi) �= ∞,
where Yi = Var(Ni) and Ci is the NNF circuit rooted at Ni. By
extension, we write Var(C) (resp. Sol(C)) as an abbreviation of
Var(N) (resp. Sol(N)), where N is the root of C.

The language NNF can be refined by adding conditions to the
nodes of the circuits. Of particular interest is the sub-language of
decomposable NNF formulae [8], defined as follows:

Definition 2 (DNNF). An NNF circuit C is called decomposable if
for every and-node N in C with children N1, . . . , Nq , we have
Var(Ni) ∩ Var(Nj) = ∅, for all i, j ∈ [q] with i �= j. The set
of all decomposable NNF formulae is denoted DNNF.

DNNF can, in turn, be refined according to structural restrictions
over its nodes. To this end, we use the standard notion of vtree intro-
duced in [28]. Formally, a vtree is a full, rooted binary tree T whose
leaves are in one-to-one correspondence with the variables in X . For
a node t in a vtree T , we use Var(t) to denote the set of leaves in the
subtree of T rooted at t. We also use tl and tr to denote its left child
and right child, respectively. A vtree node t is called a Shannon node
if its left child is a leaf, and a decomposition node otherwise. A vtree
T is right-linear if all its internal nodes are Shannon nodes.

An internal node Ni of an NNF circuit is said to respect a vtree
T if there is a vtree node t ∈ T , such that Var(Ni) ⊆ Var(tl) or
Var(Ni) ⊆ Var(tr) for all children Ni of N .

Definition 3 (SDNNF). For a vtree T , DNNFT is the set of DNNF cir-
cuits for which all and-nodes respect T . The class SDNNF of struc-
tured DNNF circuits is given by the union of DNNFT languages de-
fined over all vtrees T .

All SDNNF circuits considered in this study are defined over bi-
nary and-nodes. This is not a severe restriction since any SDNNF
formula C can be transformed into an equivalent SDNNF formula of
size linear in |C|, where all and-nodes have exactly two children. By
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Figure 2: An SDDT for housing configuration.

analogy with the terminology used in vtrees, any and-node Ni of C
is called a Shannon node if at most one of its children is an internal
node. Otherwise Ni is called a decomposition node. For example,
the DNNFT circuit of Figure 1 includes one decomposition node (the
root), and two Shannon nodes k1 ∧ k2, and b1 ∧ b2.

Two well-known subclasses of SDNNF are the language SDD of
sentential decision diagrams [10] and the language OBDD of ordered
binary decision diagrams [3]. We use the term box to define any and-
node with exactly two children p and s, respectively called prime
and sub, each labeled by a constant, or a literal, or an or-node. An or-
node N with children N1, . . . , Nm is called a partition node if there
is a partition {Y, Z} of Var(N) such that (i) each child Ni is a box
pi ∧ si with Var(pi) = Y and Var(si) ⊆ Z, (ii) the primes of any
pair of children are mutually exclusive, i.e., Sol(pi) ∩ Sol(pj) = ∅

for any i, j ∈ [m] with i �= j, and (iii) the disjunction of all primes
is valid, i.e., Sol(p1) ∪ · · · ∪ Sol(pm) = Y.

Definition 4 (SDD). For a vtree T , SDDT is the language of DNNFT

circuits rooted at an or-node, such that every and-node is a box re-
specting T , and every or-node is a partition node. SDD is the union
of SDDT languages defined over all vtrees T .

Example 1. In Figure 2 is illustrated an SDDT formula C where
T is the vtree of Figure 1. C represents the hard constraints of a
configurable housing application, where k1 and k2 capture the type
of kitchens (standard or luxury), and b1, b2 and b3 specify the type
of bedrooms (small, medium, or large). Any feasible house includes
only one kitchen and at least two bedrooms; furthermore, only houses
with at least one large bedroom come with luxury kitchens. Formally,
C encodes the constraints k1+k2 = 1, b1+b2+b3 ≥ 2 and k2∨b3.

Based on these notions, OBDDT circuits can be viewed as senten-
tial decision diagrams defined over right-linear vtrees [10].

Definition 5 (OBDD). OBDD is the union of SDDT languages defined
over all right-linear vtrees T .

All aforementioned languages can be further restricted by estab-
lishing conditions on the arcs of the circuit:

Definition 6 (acy-NNF). An NNF circuit is called strongly acyclic
if the undirected graph of its DAG is acyclic. acy-NNF is the class
of all strongly acyclic NNF circuits.

By extension, acy-DNNFT is given by acy-NNF ∩ DNNFT , and
acy-SDNNF is the union of acy-DNNFT languages defined over all
vtrees T . Recall that the class DNF of disjunctive normal form formu-
lae is a complete propositional language. Since any DNF formula can
be represented in linear time as a strongly acyclic DNNFT formula
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defined over any arbitrary vtree T , it follows that acy-DNNFT , and
hence acy-SDNNF, are complete propositional languages.

In light of the above definitions, we can observe that both SDD
and acy-SDNNF are subsets of SDNNF. One might be tempted to
believe that SDD is strictly more succinct than acy-SDNNF, due to
the fact that SDD circuits are DAGs and acy-SDNNF circuits are
trees. But this cannot be the case, unless the polynomial hierarchy
collapses. Indeed, by [10] we know that d-DNNF ≤s SDD, where
d-DNNF is the class of deterministic DNNF formulae. We also know
that acy-DNNFT ≤s DNF since, as indicated above, any DNF for-
mula can be rewritten in linear time as a strongly acyclic DNNFT

circuit (whatever T ). So we cannot have SDD ≤s acy-SDNNF, be-
cause otherwise we would also derive that d-DNNF ≤s DNF, which
is not possible unless the polynomial hierarchy collapses [11].

Thus, from the viewpoint of succinctness, both languages SDD
and acy-SDNNF are relevant for compiling hard constraints. Since
SDD is a superset of OBDD, it can be used, for example, to en-
code in polynomial time cardinality constraints [14]. On the other
hand, acy-SDNNF is a noteworthy fragment of DNNF which cap-
tures SDNNF formulae of bounded depth (by simply unfolding them).
Furthermore, top-down compilation algorithms [9] can be adapted to
directly generate acy-DNNFT circuits (by deselecting the caching
operation). We can also take advantage of bottom-up compilers [28]
for computing such representations, because acy-DNNFT satisfies
the ∨C transformation and the ∧BC transformation.

4 REPRESENTING COST FUNCTIONS

Borrowing the terminology of [4], a valued constraint language is a
set F of Q+-valued cost functions of possibly different arities. In this
study, we use the term valued constraint family for referring to F , in
order to avoid any confusion with the notion of “constraint language”
L already used to describe hard constraints.

We focus on valued constraint families F which are closed under
addition and conditioning, namely, (i) if f and g are two functions in
F , then f + g ∈ F , and (ii) if f : X → Q+ is a function in F , and
z ∈ Z is a partial assignment over Z ⊆ X , then f |z ∈ F .

Various constraint families satisfy these conditions. Notably, let
POLYk be the set of all functions f : {0, 1}j → Q+ of arity j ∈ [k],
and let POLY be the union of all languages POLYk for k ∈ N. Any
subset F of POLY is called a polynomial constraint family. In partic-
ular, POLY1 and POLY2 respectively denote the linear family and the
quadratic family. As usual, soft constraints whose cost function is in
POLYk can be described by weighted polynomials of degree k, that
is, weighted sums of canonical terms. For example, if Yi = {x1, x2}
and fi is given by the table {(00, 1), (01, 2), (10, 3), (11, 0)} then
the valued binary constraint Ci = (Yi, fi) can be represented by the
weighted polynomial (x1 ∧ x2) + 2(x1 ∧ x2) + 3(x1 ∧ x2).

As emphasized in the introduction of this paper, submodular cost
functions take a key part in nonlinear optimization. Formally, a func-
tion f : X → Q+ is submodular if for all x,y ∈ X we have
f(x∧y)+f(x∨y) ≤ f(x)+f(y), where ∧ and ∨ are respectively
the bitwise-and operator and the bitwise-or operator over Boolean
assignments. It is easy to see that submodularity is preserved under
conditioning. It is also worth to recall that any linear function is sub-
modular but the converse is not true. For example, the weighted dis-
junction f(x) = w(x1 ∨ · · · ∨ xk), where w ∈ Q+, is a submodular
function that cannot be expressed as a linear function. Similarly, the
budget function f(x) = min(r, w1x1+ · · ·+wkxk), where r ∈ Q+

and w ∈ Qk
+, is submodular but not linear. Let SUBk be the subset

of POLYk formed by all submodular functions of arity at most k, and

let SUB be the union of all SUBk for k ∈ N. Any subset F of SUB
is called a submodular constraint family. As before, soft constraints
defined over SUBk can be represented by weighted polynomials. For
potentials Ci = (Yi, fi) defined over the general class SUB, fi is
typically accessed through a value oracle, that is, a polynomial time
algorithm that maps any input yi ∈ Yi to f(yi).

Although it is well-known that all polynomial cost functions are
expressible by sums of potentials from POLY2 [2], it is also known
that arbitrary submodular cost functions are not, in general, express-
ible by SUB2 [38]. Still, the family SUB2 is very attractive from a
computational viewpoint: as quadratic submodular functions can be
encoded by cuts in a directed graph, unconstrained minimization over
SUB2 can be done in O(n3) time, while the current fastest poly-
nomial algorithms for unconstrained minimization over SUB take
O(n5VO + n6) time, where VO is the time to run the value oracle
[23]. Furthermore, several fragments of SUB (e.g., cubic submodular
polynomials), can be expressed by SUB2 [38].

For a valued constraint family F and a cost function f represented
by a set {(Yi, fi)}mi=1 of soft constraints, we say that f belongs to F ,
and write f ∈ F , if fi ∈ F for all i ∈ [m]. The size of f is defined as
|f | = ∑m

i=1 |fi|. For polynomial families F ⊆ POLYk, the size |fi|
of each cost function fi is given by the number of canonical terms in
its weighted polynomial representation.

With each cost function f represented by a set {(Yi, fi)}mi=1 of
soft constraints, we associate a hypergraph Hf capturing the struc-
ture of f . The set of vertices of Hf is Var(f) =

⋃m
i=1 Yi, and the

set of hyperedges of Hf is {Yi}mi=1. The size |Hf | of Hf is given by
the sum of sizes of its hyperedges, that is, |Hf | =

∑m
i=1 |Yi|.

In general, a constraint family F imposes very few restrictions on
the structure of a cost function f ∈ F . For example, if F is the
class SUB2, then Hf can “a priori” be any subgraph of the complete
graph over Var(f). In order to highlight the structural relationships
between the cost function f and the hard constraint C, we need fur-
ther definitions that capture the similarity (or dissimilarity) between
the structure of f and the structure C.

Definition 7 (Structural Compatibility). Let C be an SDNNF cir-
cuit with Var(C) ⊆ X , and let Y be a subset of X . Then,

• Y is compatible with a decomposition (and-)node N = Nl ∧Nr

of C if Y ∩ Var(N) �= ∅ implies that either Y ⊆ Var(Nl) or
Y ⊆ Var(Nr), but not both.

• Y is compatible with an or-node N of C if Y ∩ Var(N) �= ∅

implies Y ⊆ Var(N).

We say that Y is weakly compatible with C, denoted Y ∼ C, if Y
is compatible with every decomposition node of C. Alternatively, Y
is strongly compatible with C, denoted Y ∼∗ C, if Y is compatible
with every decomposition node and every or-node of C. By exten-
sion, a cost function f is weakly (resp. strongly) compatible with C,
if Yi ∼ C (resp. Yi ∼∗ C) for every scope Yi ∈ Hf .

Intuitively, the weak compatibility property states that if the scope
Yi of some potential (Yi, fi) shares variables with a decomposition
node N = Nl ∧Nr , then Yi must be covered by the variables of ex-
actly one child of N . The strong compatibility property additionally
states that if Yi shares variables with an or-node N , then Yi must be
covered by all variables in N . To this point, we can easily see that
if Yi is a singleton set, then it is guaranteed to be strongly compati-
ble with any node of C. Note that these compatibility properties do
not imply any restriction on the Shannon and-nodes of C. The de-
rived dissimilarity measure defined below is thus independent of the
number of Shannon nodes in the hard constraint.
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Example 2. Using again the housing configuration scenario of Ex-
ample 1, consider the cost function f(k,b) = p(k1 ∨ k2) +
min(r, q1b1 + q2b2 + q3b3), such that p, r ∈ Q+ and q ∈ Q3

+

are cost values; the first term of f is a weighted disjunction in-
dicating that the same cost p is assigned to any nonempty set of
kitchens, and the second term of f is a budget potential indicat-
ing that a maximum penalty r is assigned to the prices of bed-
rooms. Based on the above terminology, f is cubic submodular,
and strongly compatible with the acy-DNNFT constraint of Fig-
ure 1. However, f is not strongly compatible with the SDD con-
straint of Figure 2, since the scope {b1, b2, b3} associated with the
second term in f is not compatible with, for instance, the or-node
b1 ∨ b1b2. On the other hand, the quadratic submodular cost function
g(k,b) = p(k1 ∨ k2) + min(r, q1b1 + q2b2) + q3b3 is strongly
compatible with this SDD constraint.

Definition 8 (Structural Dissimilarity). Let C be an SDNNF con-
straint with Var(C) ⊆ X , and let Y be a subset of X . Then,

• the weak (resp. strong) dissimilarity between Y and C, denoted
δ(Y,C) resp. δ∗(Y,C)), is the minimum number of variables that
must be removed from Y in order to yield a subset that is weakly
(resp. strongly) compatible with C:

δ(Y,C) = min
Z⊆Y |Y \Z∼C

|Z| , and δ∗(Y,C) = min
Z⊆Y |Y \Z∼∗C

|Z|

• By extension, the weak (resp. strong) dissimilarity between a cost
function f and C is the sum of the weak (resp. strong) dissimilar-
ities between each of its scopes and C:

δ(f, C) =
∑

Y ∈Hf

δ(Y,C), and δ∗(f, C) =
∑

Y ∈Hf

δ∗(Y,C)

For example, the strong dissimilarity between the cost function
f(k,b) = p(k1∨k2)+min(r, q1b1+ q2b2+ q3b3) and the SDNNF
constraint C of Figure 1 is 1. The proof of the next proposition is left
in Appendix.

Proposition 1. Let C be an SDNNF constraint with Var(C) ⊆ X ,
and f be a cost function with Var(f) ⊆ X . Then δ(f, C) and
δ∗(f, C) can both be evaluated in O(|C| |Hf |) time.

5 COMPLEXITY RESULTS

As mentioned in the introduction, the constrained minimization prob-
lem MIN[DNNF,POLY1] is solvable in linear time [12]. Our com-
plexity results can be summarized by three key theorems which es-
tablish the fixed-parameter tractability of the minimization query
MIN[L,F ] for several DNNF languages L and families F of non-
linear cost functions. In what follows, we assume that the input cost
function f is defined over the whole set of variables X . This is not
an important restriction since any f with Var(f) ⊆ X can be ex-
tended to X by adding to f “zero potentials” of the form ({xi}, 0),
for xi ∈ X \ Var(f), where 0 is the zero constant function.

5.1 Quadratic Minimization under DNNF

We start by examining the problem of minimizing quadratic cost
functions under DNNFT constraints. Recall here that the problem of
minimizing any sum of quadratic potentials subject to C = � is NP-
hard [35]. The next result states that quadratic minimization subject
to DNNF is fixed-parameter tractable with respect to the number of
(valued) binary constraints in the cost function.

Theorem 1. MIN[DNNF,POLY2] is FPT with respect to the number
k of binary scopes in Hf .

Proof Given a quadratic cost function f , let Y be the set of variables⋃{Yi ∈ Hf : |Yi| = 2}, and Z = X \ Y . Let g and h denote the
restrictions of f to Y and Z, respectively. We thus have f = g + h,
where g is defined over quadratic (and possibly linear) potentials,
and h is only defined over linear potentials. Now, consider any DNNF
circuit C over X . Recall that C(x) = 0 if x ∈ Sol(C), and C(x) =
∞ otherwise. Furthermore, since {Var(g),Var(h)} is a bipartition
of X , then using Y = Var(g) and Z = Var(h), it follows that

min
x∈X

(
f(x) + C(x)

)
= min

y∈Y
min
z∈Z

[
g(y) + h(z) + C(yz)

]
= min

y∈Y
D(y), where

D(y) = min
z∈Z

[
g(y) + h(z) + (C|y)(z)]

In the last equality, we used the fact that C|y = C(yz), where yz is
the concatenation of y and z.

For any given assignment y ∈ Y, the expression g(y) is constant,
and hence, g(y) + h(z) is linear. Moreover, since the conditioning
operation (CD) can be performed in linear time for the class DNNF
[8], the constraint C can be transformed in O(|C|) time into a DNNF
circuit that is equivalent to C|y. This, together with the fact that lin-
ear minimization under DNNF can be done in linear time [12], implies
that D(y) can be evaluated in O(|C|) time. Finally, since the num-
ber of binary scopes is k, we have |Y | ≤ 2k, and hence, |Y| ≤ 4k.
Therefore, miny∈Y D(y) can be evaluated in O(4k |C|) time, im-
plying that MIN[DNNF,POLY2] is FPT with respect to k. �

5.2 Submodular Minimization under acy-SDNNF

We now focus on submodular cost functions, and begin with a nega-
tive result indicating that even for strongly acyclic (structured) DNNF
constraints, the minimization problem is hard.

Proposition 2. MIN[acy-SDNNF,SUB] is NP-hard.

Proof An instance of the Switching Submodular Function Mini-
mization (SSFM) problem [22] consists of two sets Y = {y1,
. . . , yq} and Y ′ = {y′

1, . . . , y
′
q}, and a submodular cost func-

tion f : 2Y ∪Y ′ → Q+. Let π : 2Y → 2Y
′

be the one-to-one map-
ping defined by π(Z) = {y′

i ∈ Y ′ | yi ∈ Z}. The problem is to
find a bipartition {Z1, Z2} of Y that minimizes f(Z1 ∪ π(Z2)).
Let X = Y ∪ Y ′, p = 2q, and consider the set of constraints
C = {y′

i ↔ yi | i ∈ [q]}. For an assignment x ∈ X, and a subset
V ⊆ X , let SetV (x) be the set of variables in V which are mapped
to 1 in x. Based on this notation, x satisfies all constraints in C if
and only if {SetY (x), π−1(SetY ′(x))} is a bipartition of Y .

Now, observe that C is a decomposable conjunction of DNF for-
mulae of the form (yi ∧ y′

i) ∨ (yi ∧ y′
i). So, C can be encoded into

an acy-DNNFT formula over a vtree T with one Shannon node per
index i ∈ [q], and q− 1 decomposition nodes joining those Shannon
nodes. Finally, since f is submodular, the SSFM instance (Y, Y ′, f)
can be converted in polynomial time into an equivalent instance of
MIN[acy-SDNNF,SUB]. This, together with the fact that SSFM is
NP-hard, yields the result. �

We now show that if the hard constraint C is in acy-DNNFT ,
and if the submodular cost function f is weakly compatible with the
vtree T , then the task of minimizing f under C is in P. In order to
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Algorithm 1: TDM: Top Down Minimization
Input: A submodular cost function f and an SDNNF circuit C

rooted at node N
Output: An assignment x ∈ X that minimizes f if C is con-

sistent, and ⊥ otherwise
1 if N = ⊥ then return ⊥
2 if N = � then return argminy∈Yf(y), where Y = Var(f)

3 if N = � then

4 return argminy∈Yf |�(y), where Y = Var(f)

5 if N = � ∧N ′ is a Shannon node then

6 return TDM(f |�, N ′)

7 if N = N1 ∧N2 is a decomposition node then

8 y0 ← TDM(fVar(f)\Var(N),�)
9 yi ← TDM(fVar(Ni), Ni) for each i ∈ [2]

10 return y0 ∧ y1 ∧ y2

11 if N = N1 ∨ . . . ∨Nq then

12 yi ← TDM(f,Ni) for each i ∈ [q]
13 return argmin{f(yi)}

prove this result, we use a top-down minimization algorithm (TDM),
which iteratively decomposes the cost function f over the nodes of
the acyclic SDNNF constraint C. Recall here that f |� is the condi-
tioning of f by the literal (or unary partial assignment) �, and fY is
the restriction of f to the set of variables Y .

Example 3. To illustrate the behavior of the TDM algorithm, con-
sider the strongly acyclic DNNFT constraint C given in Figure 1,
together with f(k,b) = p(k1 ∨ k2) + min(r, q1b1 + q2b2 + q3b3),
where q3 < r < q1 < q2. As mentioned in Example 2, we know
that f is weakly compatible with C. Since the root node N of C is a
decomposition node (Line 7), the procedure recursively calls TDM
on fl(k) = p(k1 ∨ k2) on the left child Nl = k1 ∨ (k1 ∧ k2),
and fr(b) = min(r, q1b1 + q2b2 + q3b3) on the right child Nr =
b3 ∨ (b1 ∧ b2). For the left child Nl, which is an or-node (Line 11),
the procedure recursively calls TDM on fl(k) subject to k1, and
fl(k) subject to (k1 ∧ k2). Now, according to Line 3, the minimizer
of (fl(k))|k1

is any term in {k1k2, k1k2} with cost p. According to
Line 7, the minimizer of fl(k) subject to (k1 ∧ k2) is k1k2 with cost
p. To sum up, the partial assignment returned by TDM on fl(k) on
Nl is any term in {k1k2, k1k2, k1k2}. Using similar operations, the
minimizer returned by TDM on fr(b) subject to the constraint of the
right child Nr is b1b2b3 with cost q3.

Proposition 3. MIN[acy-SDNNF,SUB] is in P if the cost function
f is weakly compatible with the hard constraint C.

Proof Let C be an SDNNF constraint and f = {Ci}mi=1 be a sum of
submodular potentials which are weakly compatible with C.

We first prove that TDM(f, C) returns a minimizer of f subject to
C, if the minimization problem is feasible, and returns ⊥ otherwise.
To this end, we proceed by induction over the structure of the root
node N of C. The base cases are straightforward. Namely, if N = ⊥
(Line 1), then the problem is not feasible, and hence, there is no so-
lution for f under C. If N = �, then the problem is unconstrained,
and hence, the solution returned at Line 2 is an unconstrained mini-
mizer of f . If N = � is a literal, then any minimizer of f subject to �
is a minimizer of f|�, which is the solution returned at Line 3.

Now, if N = � ∧ N ′ is a Shannon node, let C′ be the constraint
rooted at N ′. Any minimizer of f subject to �∧C′ is a minimizer of

f|� under C′, which is the solution returned at Line 5. For the case
when N = N1 ∧ N2, since all potentials in f are compatible with
N , they can be partitioned into three groups, defined over Var(N1),
Var(N2), and Var(f)\Var(N). It follows that f is the sum of three
variable-disjoint functions fVar(N1)+fVar(N2)+fVar(f)\Var(N), for
which the minimization can be done as at Line 7. Finally, for the case
when N is an or-node N1 ∨ . . . ∨ Nq , let Di be the hard constraint
rooted at Ni, and D be the disjunction D1 ∨ . . . ∨ Dq . Since the
minimum of f(x) subject to D(x) �= ∞ is equal to

min

(
min

D1(x)�=∞
f(x), · · · , min

Dq(x)�=∞
f(x)

)

it follows that f can be minimized as done at Line 11.
Since acy-SDNNFs are rooted trees, the number of paths in C is

bounded by |C|. So, TDM(f, C) runs polynomially many times an
unconstrained minimization procedure, which is in P for SUB. �

Corollary 1. MIN[DNF,SUB] is in P.

Proof Follows from Proposition 3, using the fact that any DNF con-
straint can be transformed in linear time into an acy-SDNNF for-
mula in which every and-node is a Shannon node. �

To summarize, we know that submodular minimization under
acy-SDNNF is NP-hard in general, but tractable if the cost func-
tion is weakly compatible with the hard constraint. We are now in
position to provide a tractable restriction of the general intractability
result stated by Proposition 2, using the notion of weak dissimilarity.

Theorem 2. MIN[acy-SDNNF,SUB] is FPT with respect to δ.

Proof Let C be a hard constraint in acy-SDNNF, and f = {Ci}mi=1

be a cost function in SUB. For each scope Yi ∈ Hf , let Zi be any
minimal subset of Yi such that Yi \Zi is weakly compatible with C.
Let Z =

⋃m
i=1 Zi and Y = X \ Z. By conditioning both C and f

with partial assignments over Z, we have

min
x∈X

f(x) + C(x) = min
z∈Z

(
min
y∈Y

(f |z)(y) + (C|z)(y)
)

(1)

Since C|z can be constructed in time linear in O(|C|), the task of
minimizing f |z subject to C|z can be solved in polynomial time.
Furthermore, since |Z| ≤ δ(f, C), it follows that |Z| ≤ 2δ(f,C).
Therefore, Eq. 1 can be solved using 2δ(f,C) calls to TDM, which by
Proposition 3, takes polynomial time. �

Corollary 2. MIN[SDNNF,SUB] is FPT with respect to d+δ, where
d is the depth of the SDNNF constraint.

Proof Follows from Theorem 2 and the fact that any SDNNF circuit
C of depth d can be transformed into an acy-SDNNF circuit of size
2d |C| by simply unfolding C. �

5.3 Submodular Minimization under SDD

The final part of this study is related to submodular minimization
under SDD constraints. Again, we begin with a strong negative re-
sult indicating that constrained quadratic submodular minimization
is NP-hard, even if the hard constraint is given as an OBDD.

Proposition 4. MIN[OBDD,SUB2] is NP-hard.

F. Koriche et al. / Fixed-Parameter Tractable Optimization Under DNNF Constraints 1199



Algorithm 2: BUM: Bottom Up Minimization
Input: A submodular cost function f and an SDD circuit C

rooted at node N
Output: An assignment x ∈ X that minimizes f if C is con-

sistent, and ⊥ otherwise
1 foreach node N of C in reverse topological order do

2 if N = ⊥ then fN ← {(∅,∞)}
3 if N = � then fN ← ∅

4 if N = � then

5 fN ← {(Yi, fi|�) | (Yi, fi) ∈ f and Y ∩Var(�) �= ∅}
6 if N = N1 ∧N2 then fN ← fN1 ∪ fN2

7 if N = N1 ∨ . . . ∨Nq then

8 yi ← argminy∈Y fNi(y) for all i ∈ [q]

9 fN ← (Y, {(y, f(y))}), where y = argminq
i=1 f(yi)

10 return argminx∈X fN (x) + f
(x)

Proof In the minimum graph bisection (MGB) problem, we are given
an edge-weighted graph G = (X,E,w), with an even number p
of nodes in a set X . The cut function f : 2X → N maps any
subset Y ⊆ X into the sum of weights of edges with one end
point in Y and one in X \ Y . The task is to find a subset Y of
size p/2 that minimizes f . This problem, which is known to be NP-
hard [17] even when all weights are equal to 1, can be reduced
in polynomial time to MIN[OBDD,SUB2]. Indeed, the cut function
f is submodular, and can be encoded using the set of potentials
({xi, xj}, (xi ∧ xj) + (xi ∧ xj)) for each {xi, xj} ∈ E. Further-
more, any cardinality constraint (

∑p
i=1 xi ≥ k) can be encoded in

polynomial time into an OBDD< circuit (for any ordering <), using
the technique of [14]. Finally, since OBDD< satisfies the ¬C transfor-
mation and the ∧BC transformation [11], the constraint C given by∑p

i=1 xi = p/2 can be encoded into an OBDD< circuit, using the fact
that C is equivalent to (

∑p
i=1 xi ≥ p/2)∧¬(∑p

i=1 xi ≥ p/2+1).�

On the other hand, we can show that submodular minimization
subject to SDD is in P, provided that the cost function is strongly
compatible with the SDD constraint. This result is is established using
a bottom-up minimization algorithm (BUM), which first computes a
reverse topological order of the input SDD constraint C, and then
iteratively simplifies and collects the potentials of f whose scope is
covered by the current node N . We use here fN as an abbreviation
of fVar(N), and use (∅,∞) to denote the infeasible potential, where
∞ is viewed as a constant function. Since Var(C) can be a strict
subset of X , f (which by assumption is defined over Var(f) =
X) can include variables which are not present in C. Thus, a last
minimization step is performed over the unconstrained sub-function
f
 = fVar(f)\Var(N), where N is the root of C.

Proposition 5. MIN[SDD,SUB] is in P if the input cost function f
is strongly compatible with the hard constraint C.

Proof Let C be an SDD constraint and f be a set of quadratic sub-
modular potentials which are strongly compatible with C. We begin
to show that BUM(f, C) returns a minimizer of f subject to C if C
is consistent, and returns ⊥ otherwise.

Let (N1, · · · , Nr) of C be a reverse topological ordering of the
nodes of C, where Nr = N is the root. For any Ni (i ∈ [r]), let Ci

be the constraint rooted at Ni. We prove by induction on each Ni of
the ordering (N1, · · · , Nr) that

min
y∈Y

(fY (y) + Ci(y)) = min
y∈Y

fNi(y) where Y = Var(Ci) (2)

Note that the left-hand side of Eq. 2 is a constrained minimization
task, while its right-hand side is an unconstrained minimization task.
The base cases where Ni = ⊥, Ni = �, and Ni = � are straightfor-
ward. Let Ni = Nj ∧ Nk be a Shannon node, where the constraint
of Nj is a literal �. Using g = fVar(Ck) and h = fY \ g, we have

min
y∈Y

fY (y) + Ci(y) = min
y∈Y

h|�(y) + g|�(y) + Ck(y)

= min
y∈Y

h|�(y) + (g(y) + Ck(y)) = min
y∈Y

fNj (y) + fNk (y)

where the second equality uses the fact that g|� = g (since for
any and-node we must have Var(l) ∩ Var(Ck) = ∅), and the
last equality follows from Line 4 and induction hypothesis (IH).
Using Line 6, the last expression is equal to miny fN (y). Alter-
natively, suppose that Ni = Nj ∧ Nk is a decomposition node,
and let g = fVar(Cj) and h = fVar(Ck). By the weak compatibil-
ity property, {Var(Cj),Var(Ck)} is a bipartition of Var(Ci). So,
f = g ∪ h. By IH, it follows that

min
y∈Y

fY (y) + Ci(y) = min
y∈Y

(g(y) + Cj(y)) + (h(y) + Ck(y))

= min
y∈Y

fNj (y) + fNk (y)

which is again equal to miny fN (y). Finally, let Ni be an or-node of
the form Ni1 ∨ · · · ∨Niq . Then, miny∈Y fY (y)+Ci(y) is equal to

min

(
min
y∈Y

(
fy∈Y(y) + Ci1(y)

)
, · · · ,min

y∈Y

(
fy∈Y(y) + Ciq (y)

))

Suppose w.l.o.g. that the first p nodes of Ni are Shannon nodes. By
the strong compatibility property, we know that for each j ∈ [p], the
scopes in fNij

(Line 4) are covered by Var(Ni). So, by IH, we must
have miny∈Y fy∈Y(y)+Cij (y) = miny∈Y fNij

(y). By the weak
compatibility property, we know that for each j ∈ {p + 1, · · · , q},
the scopes in fNij

(Line 6) are covered by Var(Cij ) ⊆ Var(Ci).
Again, we get that miny∈Y fy∈Y(y)+Cij (y) = miny∈Y fNij

(y).
To sum up, it follows that

min
y∈Y

fY (y) + Ci(y) = min

(
min
y∈Y

fNi1
(y), · · · ,min

y∈Y
fNiq

(y)

)

which by Line 7 is equal to miny fN (y).
Thus, according to Eq. 2, BUM performs (at most) q unconstrained

submodular minimization tasks for each or-node of the constraint
C. The number of these optimization tasks is therefore bounded by
|C|+1, by taking into account the last step over f
 (Line 10). Since
unconstrained submodular minimization is in P, the result follows.�

Example 4. Let us consider the SDD circuit at Figure 2 together with
the cost function g(k,b) = p(k1∨k2)+min (r, q1b1 + q2b2)+q3b3,
with q3 < q2 < r < q1 and r < q2 + q3 to illustrate the algo-
rithm BUM. The cost function associated with the box b1 ∧ � rep-
resented at last “line” of the figure is the set consisting of the two
potentials associated with its children b1 and �, that is respectively
({b1, b2},min (r, q1b1 + q2b2) | q1) and ∅. Concerning the second
box ¬b1∧b2 of the last line, the associated function is the set consist-
ing of the two potentials ({b1, b2},min (r, q1b1 + q2b2) | b̄1) and
({b1, b2},min (r, q1b1 + q2b2) | b2). Thus, the function gN associ-
ated with the ∨ node which is the father of the two boxes is built up
from the partial assignment of the variables of {b1, b2} which min-
imizes min(min (r, q1b1 + q2b2) | q1, (min (r, q1b1 + q2b2) | b̄1)
+ (min (r, q1b1 + q2b2) | b2))), that is b̄1∧ b2 (remember that q2 <
q1). Thus, we have gN = ({b1, b2},min (r, q1b1 + q2b2) | b̄1b2).
Applying this algorithm from the leaves to the root of the SDD circuit
leads to the minimal value p+r for the solution k1∧k̄2∧b1∧b2∧ b̄3.
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SDNNF acy-SDNNF SDD OBDD DNF

POLY2 k k k k k
SUB d+ δ δ δ∗ δ∗ −

Table 1: Complexity parameters used in FPT results. Here, k is the
number of binary scopes in the cost function, d is the depth of the
hard constraint, and − indicates that the problem is in P.

Theorem 3. MIN[SDD,SUB] is FPT with respect to δ∗.

Proof The result follows by mimicking the proof of Theorem 2. Us-
ing Eq. 1, where C is replaced by a hard constraint in SDD, and f
by a cost function in SUB, we have |Z| ≤ δ∗(f, C), which in turn
implies that |Z| ≤ 2δ

∗(f,C). So, Eq. 1 can be solved using 2δ
∗(f,C)

calls to BUM, which by Proposition 5, takes polynomial time. �

6 DISCUSSION

In this paper, we have examined the complexity of minimizing
quadratic functions and submodular functions, subject to DNNF con-
straints. The fixed parameter tractable results for these constrained
optimization problems are summarized in Table 1. From a practical
viewpoint, submodular minimization under SDNNFs (and all subsets
of this language) can be efficiently solved if the depth d of the con-
straint C and the weak dissimilarity of the input query f (with re-
spect to C) are relatively small. On the other hand, submodular min-
imization under SDD (and hence OBDD) constraints can be efficiently
solved if the strong dissimilarity between f and C is small. The re-
sult holds here for SDD circuits of arbitrary depth. For quadratic sub-
modular minimization, the query MIN[SDD,SUB2] can be solved in
O(|C|n32δ(f,C)) time using the BUM algorithm.

Related Work. Considerable effort has been made in identifying
families of VCNs for which optimization is tractable. Most of the
work in this research area has focused on three main approaches, de-
pending on the type of restrictions advocated for deriving tractable
cases. The first approach is to identify structural properties of VCNs
which ensure tractability. For example, the minimization problem is
in P if the macro-structure of the network has bounded (hyper)tree-
width [20]. In a similar context, several knowledge compilation
languages have been defined for compiling the micro-structure of
a VCN into a (valued) circuit, from which optimization can be
achieved in polynomial time [36, 15, 24]. It is important to empha-
size that our work departs from this approach, where both hard con-
straints and soft constraints are compiled during the offline step. In
our framework, soft constraints are known only at the online step and
may vary with the user. The online performance guarantees which
are sought prevent one from performing a computationally expensive
compilation step each time a new cost function is considered.

The second approach is to identify algebraic properties of valued
constraints which are sufficiently restrictive to ensure tractability, no
matter how constraints are combined in the network. A complete
complexity classification of valued constraint languages has been
established for Boolean VCNs [4], indicating that the optimization
queries are tractable only for very restricted fragments.

Our work is related to the third, hybrid approach which concerns
both structural and language restrictions. Here, strong negative re-
sults in constrained submodular minimization indicate that structural
restrictions and language restrictions cannot, in general, be consid-
ered separately. Indeed, even if hard constraints are described by a
matroid for which linear optimization is in P, and the cost func-
tion is submodular, then the corresponding minimization problem

is NP-hard and generally not approximable within a constant fac-
tor [18, 33]. Tractable classes have been obtained by Cooper and
Zivny [5, 6], by appropriately combining restrictions over the net-
work micro-structure and language restrictions over cost functions.
Our results also exploit such forms of hybrid restriction, but cover a
larger set of hard constraints which are compiled into DNNF circuits.

Perspectives. In light of the present results, an important direction
of research is to consider the problem of maximizing submodular
functions subject to DNNF constraints. While maximization and min-
imization are equivalent problems for valued constraint languages
closed under additive inverse (−), especially for the language of lin-
ear cost functions, this is not the case for submodular languages in
general. Notably, the problem of (monotone) submodular maximiza-
tion is NP-hard, but approximable within a constant ratio in the un-
constrained case. A key open question is to determine whether such
good approximation bounds are preserved under DNNF constraints.

APPENDIX

Proof (of Proposition 1) We first consider δ∗(f, C). Let Y be an
arbitrary subset of X , and let (N1, · · · , Nr) be a reverse topological
order of the nodes of C. With each Ni in the ordering, we associate
a blocking set B(Ni) ⊆ Y , recursively defined as follows:

1. if Ni is a leaf, then B(Ni) = ∅;
2. if Ni = � ∧Nj is a Shannon node, then B(Ni) = B(Nj);
3. if Ni = Nj ∧ Nk is a decomposition node, then B(Ni) =

B(Nj) ∪ B(Nk) ∪ U , where U is any set of minimal size taken
from {Y ∩Var(Nj), Y ∩Var(Nk)} if Y is not compatible with
Ni, and U = ∅ otherwise;

4. if Ni =
∨q

j=1 Nij is an or-node, then B(Ni) =
⋃q

j=1 B(Nij ) ∪
U , where U = Y \ B(Ni) if Y is not compatible with Ni, and
U = ∅ otherwise.

Obviously, the final set B(Nr) can be obtained in O(|C| |Y |) time.
Now, we show by induction on the ordering (N1, · · · , Nr) that
|B(Ni)| = δ∗(Y,Ci), where Ci is the hard constraint rooted at Ni.

• If Ni is a leaf, then Y is always compatible with Ni, and hence
|B(Ni)| = 0 = δ∗(Y,Ci).

• Similarly, if Ni = � ∧ Nj is a Shannon node, then by induction
hypothesis (IH) we know that B(Nj) is a blocking set of mini-
mal size for Nj . Since Y is compatible with Ni, it follows that
|B(Ni)| = |B(Nj)| = δ∗(Y,Ci).

• If Ni = Nj ∧Nk is a decomposition node, then we known by IH
that B(Nj) (resp. B(Nk)) is a blocking set of minimal size for Nj

(resp. Nk). If Y is compatible with Ni, then by taking B(Ni) =
B(Nj) ∪ B(Nk), it follows that |B(Ni)| = δ∗(Y,Ci), because
Y \B(Ni) is the largest subset of Y strongly compatible with Ni.
If Y is not compatible with Ni, we must remove from Y exactly
one set between Uj = Y ∩ Var(Nj) and Uk = Y ∩ Var(Nk).
Suppose w.l.o.g. that |Uj | ≤ |Uk|. By taking B(Ni) = B(Nj) ∪
B(Nk)∪Uj , we also have |B(Ni)| = δ∗(Y,Ci), since Y \B(Ni)
is a largest subset of Y that is compatible with Ci.

• If Ni =
∨q

j=1 Nij is an or-node, let V =
⋃q

j=1 B(Nij ). We
know that Y must be compatible with all children of Ni. So, if Y
is compatible with Ni, then by IH |B(Ni)| = |V | = δ∗(Y,Ci).
If Y is not compatible with Ni, then we must remove U = Y \
Var(Ni) from Y . Therefore, |B(Ni)| = |U ∪ V | = δ∗(Y,Ci).

By summing over all Yi ∈ Hf , we get the desired result. The case
for δ(f, C) is similar by simply replacing Rule 4 by B(Ni) =⋃q

j=1 B(Nij ), since f is always weakly compatible with or-nodes.�
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