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Abstract This paper is concerned with preprocessing techniques for propositional
model counting. We have considered several elementary preprocessing techniques:
backbone identification, occurrence reduction, vivification, as well as equivalence,
AND and XOR gate identification and replacement. All those techniques have been
implemented in a preprocessor pmc, freely available on the Web. In order to assess
the benefits which can be gained by taking advantage of pmc, we performed many
experiments, based on benchmarks coming from several data sets. More precisely,
we made a differential evaluation of each elementary preprocessing technique in or-
der to evaluate its impact on the number of variables of the instance, its size, as well
as the treewidth of its primal graph. We also considered two combinations of pre-
processings: eq , based on equivalence-preserving techniques only, and #eq , which
additionally exploits techniques preserving only the number of models. Several ap-
proaches to model counting have also been considered downstream in our experi-
ments: ”direct” model counters, including the exact ones Cachet, sharpSAT, and
an approximate one SampleCount, as well as the compilation-based model coun-
ters C2D, Dsharp, SDD and cnf2obdd have been used. The experimental results
we have obtained show that each elementary preprocessing technique is useful, and
that some synergetic effects can be achieved by combining them.
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Lens, France
E-mail: lagniez@cril.univ-artois.fr

Pierre Marquis
CRIL-CNRS and Université d’Artois
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1 Introduction

Preprocessing a propositional formula basically consists in turning it into another
propositional formula, while preserving some property, for instance its satisfiability.
It proves useful when the problem under consideration (e.g., the satisfiability issue)
can be solved more efficiently when the input formula has been first preprocessed
(while taking account for the preprocessing time in the global solving time). Some
preprocessing techniques are nowadays acknowledged as valuable for SAT solving
and QBF solving (see e.g., [5,54,38,21,46,26,27,32,29]), leading to computational
improvements. Let us mention among others the following techniques:

– Vivification (VIV) [46], and a light form of it, that we call
Occurrence Elimination (OE),

– Gate Detection and Replacement (GDR) [5,44,21],
– Pure Literal Elimination (PLE) [17,12],
– Variable Elimination (VE) [18,54],
– Blocked Clause Elimination (BCE) [35],
– Covered Clause Elimination (CCE) [28,30],
– Failed Literal Elimination (FLE) [23],
– Self-Subsuming Resolution (SSR) [21],
– Hidden Literal Elimination (HLE) [29],
– Subsumption Elimination (SE) [12,37,7,21],
– Hidden Subsumption Elimination (HSE) [27],
– Asymmetric Subsumption Elimination (ASE) [27,30],
– Tautology Elimination (TE) [12,37,7,21],
– Hidden Tautology Elimination (HTE) [27]
– Asymmetric Tautology Elimination (ATE) [27,30].

As such, many of those techniques are now embodied in some state-of-the-art SAT
solvers, like Glucose [4] which takes advantage of the SatELite preprocessor
[21], Lingeling [6] which has an internal preprocessor, and Riss [40] which
takes advantage of the Coprocessor preprocessor [39].

In this paper, we focus on preprocessing techniques for propositional model count-
ing, i.e., the problem which consists in determining the number of truth assignments
satisfying a given propositional formula (typically represented into conjunctive nor-
mal form – CNF). Model counting and its direct generalization, weighted model
counting,1 are central to many AI problems including probabilistic inference (see
e.g., [51,13,2]) and forms of planning (see e.g., [45,20]). However, model counting
is a computationally demanding task (it is #P-complete [57] even for monotone 2-
CNF formulae and Horn 2-CNF formulae), and hard to approximate (it is NP-hard
to approximate the number of models of a formula with n variables within 2n

1−ε
for

ε > 0 [48]). Especially, it is harder (both in theory and in practice) than SAT.

1 In weighted model counting (WMC), each literal is associated with a real number, the weight of an
interpretation is the product of the weights of the literals it sets to true, and the weight of a formula is the
sum of the weights of its models. Accordingly, WMC amounts to model counting when each literal has
weight 1.
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Focusing on model counting instead of satisfiability has some important impacts
on the preprocessings which ought to be considered. On the one hand, preserving
satisfiability is not enough for ensuring that the number of models does not change.
Thus, some efficient preprocessing techniques considered for SAT must be let aside;
this includes the pure literal elimination rule (PLE) (removing every clause from the
input CNF formula which contains a pure literal, i.e., a literal appearing with the same
polarity in the whole formula), and more importantly the variable elimination rule
(VE) (replacing in the input CNF formula all the clauses containing a given variable
x by the set of all their resolvents over x), the blocked clause elimination rule (BCE)
[35] (removing every clause containing a literal such that every resolvent obtained by
resolving on it is a valid clause) and more generally the covered clause elimination
rule (CCE) (roughly, removing clauses which are rendered blocked via the addition
of some literals in an equivalence-preserving way) [30]. Indeed, while each of these
preprocessings preserves the satisfiability of the input formula, none of them is guar-
anteed to preserve its number of models. On the other hand, the high complexity of
model counting allows for considering more aggressive, yet time-consuming, pre-
processing techniques than the ones considered when dealing with the satisfiability
issue. For instance, it can prove useful to compute the backbone of the given instance
Σ before counting its models (the backbone of Σ is the set of all literals implied by
Σ); however, while deciding whether Σ |= ` for every literal ` over the variables
of Σ is enough to determine the satisfiability of Σ, it is also more computationally
demanding in practice. Thus it would not make sense to consider backbone detection
as a preprocessing for SAT. Finally, since many elementary preprocessings exist, it
makes sense to study how to combining them. Preprocessings are more or less effi-
cient, where the efficiency of a technique can be defined (for instance) as the relative
ability to reduce the input clauses (hence favoring propagation) or to remove them
(hence reducing the size of the instance). Of course, it makes sense to select only
the most efficient preprocessing techniques. Furthermore, the ordering according to
which elementary preprocessings are combined appears as very relevant.

Another important aspect for the choice of candidate preprocessing techniques is
the nature of the model counter to be used downstream. If a ”direct” model counter
is exploited, then preserving the number of models is enough. Contrastingly, if a
compilation-based approach is used (i.e., the input formula is first turned into an
equivalent compiled form during an off-line phase, and this compiled form supports
efficient conditioning and model counting), preserving equivalence (which is more
demanding than preserving the number of models) is mandatory. Furthermore, when
a compilation-based approach is considered, the compilation time, i.e., the time spent
to compute a compiled form, is not as significant as the size of the compiled form,
provided that it can be balanced by sufficiently many on-line queries. Hence it is
relevant to focus on the impact of the preprocessing on the size of the compiled form
(and not only on the time needed to compute it) when considering a compilation-
based model counter.

In this paper, we have studied the adequacy and the performance of several ele-
mentary preprocessings for model counting: backbone identification (BI) occurrence
elimination (OE), vivification (VIV), as well as equivalence, AND and XOR gate
identification and replacement (GDR). The three former techniques preserve equiv-



4 Jean-Marie Lagniez, Pierre Marquis

alence, and as such they can be used whatever the downstream approach to model
counting (or to weighted model counting); contrastingly, the three latter ones pre-
serve the number of models of the input, but not equivalence in the general case.
We have implemented a preprocessor pmc for model counting which implements all
those techniques. Starting with a CNF formula Σ, it returns a CNF formula pmc(Σ)
which is equivalent or has the same number of models asΣ (depending on the chosen
elementary preprocessings which are used).

In order to evaluate the gain which could be offered by exploiting those prepro-
cessing techniques for model counting, we performed quite intensive experiments on
a huge number of benchmarks, coming from many families. Our evaluation has been
threefold:

– We first evaluated each elementary preprocessing p by focusing on three (ordered)
pairs of scores, intended to measure the ”simplification effect” which results from
applying p. The first coordinate of each pair of scores concerns the input CNF
formula (before the application of p), while the second coordinate concerns the
output CNF formula (once p has been applied). Each score can be considered as a
measure of the ”complexity” of the instance. For each CNF instance Σ, we con-
sidered the number of variables of Σ (measured as #var(Σ), the cardinality of
Var(Σ)), the size of Σ measured as #lit(Σ), the number of literals occurring in
Σ, together with the value of the treewidth tw(Σ) of the primal graph associated
withΣ. For each p, we first considered both the best and the worst case scenarios;
so as to figure out what happens in practice, we also computed the three pairs of
scores for 182 benchmarks (encoded as CNF formulae) coming from 9 data sets.
Then, in order to determine whether synergetic effects may emerge from com-
bining several elementary preprocessings, we also considered two combinations
of them: the first one, eq , gathers equivalence-preserving preprocessing only, and
the second one, #eq , also takes advantage of preprocessings which are only guar-
anteed to preserve the number of models. We evaluated the impact of those two
combinations by considering again how the three scores above evolve when each
combination of preprocessings is applied.

– In a second step, we evaluated the impact of each elementary preprocessing p
by coupling it with a model counter. Several approaches to model counting have
been considered downstream; they consist of ”direct” model counters:

– the exact model counter Cachet (www.cs.rochester.edu/˜kautz/
Cachet/index.htm) [50],

– the exact model counter sharpSAT
(sites.google.com/site/marcthurley/sharpsat) [55],

– the approximate model counter SampleCount (www.cs.cornell.edu/
˜sabhar/#software) [25],

and of compilation-based model counters:
– the top-down C2D compiler targeting the Decision-DNNF language2

(reasoning.cs.ucla.edu/c2d/) [14,15],

2 d-DNNF is the language of deterministic, decomposable negation normal form formulae; this lan-
guage supports the model counting query in polynomial time [14].
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– the top-down Dsharp compiler targeting as well the Decision-DNNF lan-
guage (www.haz.ca/research/dsharp/) [43],

– the bottom-up SDD compiler targeting the SDD language – a subset of d-DNNF
– (reasoning.cs.ucla.edu/sdd/) [16],

– the top-down cnf2obdd compiler targeting the OBDD language – a subset of
Decision-DNNF – (www.sd.is.uec.ac.jp/toda/code/cnf2obdd.
html) [56], following the approach presented in [31].

As explained before, only equivalence-preserving techniques (including the eq
combination) have been exploited when the compilation-based approaches have
been considered. For each pair formed by a preprocessing technique p and a
model counter, we compared the numbers of benchmarks (over 182) solved within
a time limit of 1h per instance, when the preprocessing was used, and when it was
not.

– Finally, we evaluated the benefits offered by the two combinations eq and #eq on
a much larger scale, by considering 1449 CNF instances from 9 data sets. For the
direct model counters, we compared for each instance the time needed to solve
it (i.e., to compute the number of models) when no preprocessing is used, with
the time needed to solve it when eq (resp. #eq) has been applied first (of course,
the preprocessing time is part of the global solving time), and we also compared
eq with #eq . For the compilation-based model counters, we performed a similar
comparison, yet focusing on the compilation times and the sizes of the resulting
compiled forms, computed as the number of arcs in the obtained DAG. We also
computed the total number of instances ”solved” by each approach within a time
limit of 1h per instance.

The run-time code of our preprocessor pmc and some benchmarks considered in
our experiments, are available from www.cril.fr/KC/.

The rest of the paper is organized as follows. Section 2 gives some formal pre-
liminaries. Section 3 presents all the elementary preprocessing techniques we have
considered, as well as the two combinations eq and #eq . For each technique p, the
way the values of the #var measure, the #lit measure, and the tw measure evolve
when p is applied is investigated, both from the theory side and from the practical
side. Section 4 discusses the benefits which can be gained by taking advantage of p
for the family of model counters presented above. Section 5 focuses on the two com-
binations eq and #eq and reports experimental results showing their impact on the
time needed to count models (for the ”direct” model counters), and on both the com-
pilation times and the sizes of the compiled forms (for the compilation-based model
counters). We also investigate the possible correlations between the reductions of the
input instances in term of #var, #lit and tw achieved by any of those two combi-
nations, and the subsequent benefits obtained in terms of the times needed for model
counting (and both the compilation times and the sizes of the compiled representa-
tions for compilation-based model counters). Section 6 discusses other related work;
especially, we show that the clause reduction techniques listed at the beginning of this
introductive section, but not implemented in our preprocessor pmc, are less efficient
than occurrence elimination w.r.t. clause reduction, or less efficient than vivification
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w.r.t. clause elimination. This explains why all those techniques have not been incor-
porated into pmc. Finally, Section 7 concludes the paper.

2 Formal Preliminaries

We consider a propositional language PROPPS defined in the usual way from a finite
set PS of propositional symbols and a set of connectives including negation, conjunc-
tion, disjunction, equivalence and XOR. Formulae from PROPPS are denoted using
Greek letters and Latin letters are used for denoting variables and literals. For every
literal `, var(`) denotes the variable x of ` (i.e., var(x) = x and var(¬x) = x), and
∼` denotes the complementary literal of ` (i.e., for every variable x, ∼x = ¬x and
∼¬x = x).

Var(Σ) is the set of propositional variables occurring in Σ. |Σ| denotes the size
of Σ. A CNF formula Σ is a conjunction of clauses, where a clause is a disjunction
of literals. Every CNF is viewed as a set of clauses, and every clause is viewed as a
set of literals. For any clause α, ∼α denotes the term (also viewed as a set of literals)
whose literals are the complementary literals of the literals of α. Lit(Σ) denotes the
set of all literals occurring in a CNF formula Σ.

The primal graph of a CNF formula Σ is the (undirected) graph (V,E) where
V = Var(Σ) and {vi, vj} ∈ E iff there exists a clause α of Σ such that {vi, vj} ⊆
Var(α).

The treewidth of a graph (V,E) [47] is the size (minus 1) of the largest vertex set
in a tree decomposition of (V,E). It is also equal to the size (minus 1) of the largest
clique in a chordal completion of the graph.

PROPPS is interpreted in a classical way. Every interpretation I (i.e., a mapping
from PS to {0, 1}) is also viewed as a (conjunctively interpreted) set of literals.
‖Σ‖ denotes the number of models of Σ over Var(Σ). The model counting problem
consists in computing ‖Σ‖ given Σ.

Generally speaking, a propositional preprocessing is an algorithm pmapping any
formula Σ from PROPPS to a formula p(Σ) from PROPPS . In the following we
focus on preprocessings mapping CNF formulae to CNF formulae.

We also make use of the following notations in the rest of the paper:

– solve(Σ) returns ∅ if the CNF formula Σ is unsatisfiable, and solve(Σ) re-
turns a model of Σ otherwise.

– bcp denotes a Boolean Constraint Propagator [58], which is a key component
of many preprocessors. bcp(Σ) returns {∅} if there exists a unit refutation from
the clauses of the CNF formula Σ, and it returns the set of literals (unit clauses)
which are derived fromΣ using unit propagation in the remaining case. Its worst-
case time complexity is linear in the input size but quadratic when the set of
clauses under consideration is implemented using watched literals [58,42]. As
a side effect, bcp ”virtually” simplifies Σ by canceling every clause containing
a literal ` derived using unit propagation, and shortens every clause containing
a complementary literal ∼`. For efficiency reasons, such a simplification is not
”physically” performed on the CNF (instead the set of literals derived using unit
propagation is maintained).
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– Σ[`← Φ] denotes the CNF formula obtained by first replacing in the CNF formula
Σ every occurrence of ` (resp. ∼`) by Φ (resp. ¬Φ), then turning the resulting
formula into an equivalent CNF one by removing every connective different from
¬, ∧, ∨, using distribution laws, removing in every clause every occurrence of
a multi-occurrent literal but one, and finally removing the valid clauses which
could be generated.

Example 1 As a matter of illustration, let Σ be the CNF formula consisting of the
following clauses:

¬a,
¬a ∨ b,
a ∨ c,

¬c ∨ d,
¬c ∨ e ∨ f ,
f ∨ ¬g.

Here bcp(Σ) = {¬a, c, d}. The side effect of the unit propagation is that the
clauses ¬a, ¬a∨ b, a∨ c, ¬c∨d are cancelled, while ¬c∨e∨f is simplified as e∨f .

On the other hand, let Ψ be the CNF formula consisting of the three clauses below
on the left, and let Φ = ¬a ∧ d ∧ ¬e. Ψ [c ← Φ] coincides with Ψ except that the
clauses hereafter on the left are replaced by the clauses on the right:

a ∨ c,
¬c ∨ d,
¬c ∨ e ∨ f ,

a ∨ d,
a ∨ ¬e,
a ∨ ¬d ∨ e ∨ f .

Going into more details, the replacement of c by ¬a ∧ d ∧ ¬e in a ∨ c leads to
the generation of three clauses: a ∨ ¬a, which is removed since it is valid, a ∨ d, and
a ∨ ¬e; the replacement of c by ¬a ∧ d ∧ ¬e in ¬c ∨ d leads to the generation of
a∨¬d∨e∨d, which is removed since it is valid; the replacement of c by ¬a∧d∧¬e
in ¬c ∨ e ∨ f leads to the generation of a ∨ ¬d ∨ e ∨ e ∨ f , which is simplified as
a ∨ ¬d ∨ e ∨ f .

3 Preprocessings for Model Counting

We have studied and evaluated the following elementary preprocessing techniques
for model counting: backbone detection, occurrence reduction, vivification, as well
as literal equivalence, AND, and XOR gate identification and replacement. We also
investigated two combinations of elementary preprocessings, eq and #eq .

Each elementary preprocessing technique under consideration p preserves the
number of models of the input CNF formulaΣ, but some of them are even equivalence-
preserving. Beyond equivalence-preservation, other properties of interest can be con-
sidered for p, especially the fact that p is confluent or not (which expresses whether
or not p(Σ) is sensitive w.r.t. the way clauses and literals in them are listed in Σ) and
the fact that p is projective or not (which amounts to determining whether p(p(Σ)) =
p(Σ), and is useful to decide whether iterating p can prove useful or not).

In order to determine how much each technique p leads to ”simplify” the input
CNF formula Σ, we considered three measures of the ”simplicity” of Σ: #var(Σ),
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the number of variables of Σ, #lit(Σ), the number of literals occurring in Σ, and
tw(Σ), the treewidth of the primal graph associated with Σ. We thus compared for
each p #var(Σ) with #var(p(Σ)), #lit(Σ) with #lit(p(Σ)), and tw(Σ) with
tw(p(Σ)). Empirically, the results are presented on scatter plots, where each point
corresponds to an instance Σ, its x-coordinate corresponds to the value measured on
Σ, while its y-coordinate corresponds to the value measured on p(Σ). The scales
used for both coordinates are logarithmic ones.

The rationale for considering the number of variables and the number of literals
of a CNF formula Σ (i.e., the size of the input up to a constant factor) is that the com-
plexity of counting the number of models of Σ depends on both of them: the smaller
the better. However, the nature of the instance also has a tremendous impact on the
complexity of the algorithm: small instances can prove much more difficult to solve
than much bigger ones. Stated otherwise, preprocessing does not mean compressing.
Clearly, it would be inadequate to restrict the family of admissible preprocessing tech-
niques to those for which no space increase is guaranteed. Indeed, adding some re-
dundant information can be a way to enhance the instance solving since the pieces of
information which are added can lead to an improved propagation power of the solver
(see e.g., [11,36]). Especially, some approaches to knowledge compilation consists in
adding redundant clauses to the input CNF formula in order to make it unit-refutation
complete [19,9,8]. This is the reason why we also considered the treewidth measure.
Treewidth is a structural parameter which is widely used in the complexity analysis
of graph algorithms. Many of them require exponential time only of the treewidth of
the input graph (and not on the size of the graph). Especially, counting the number
of models of a CNF formula Σ is fixed-parameter tractable when the parameter is
tw(Σ) [49]. A significant decrease of #var(Σ), #lit(Σ) or tw(Σ) may explain an
improved performance of the subsequent model counting process.

For each p, we considered both the best and the worst case scenarios; we also
evaluated the impact of p in practice by considering 182 CNF instances gathered into
9 data sets, as follows:

– Bayesian networks (60)
– BMC (11) (Bounded Model Checking)
– Circuit (28)
– Configuration (12)
– Handmade (28)
– Planning (17)
– Random (13)
– Scheduling (6)
– Qif (7) (Quantitative Information Flow analysis - security)

All the instances come from the SAT LIBrary (available at www.cs.ubc.ca/
˜hoos/SATLIB/index-ubc.html). The experiments have been conducted on
Intel Xeon E5-2643 (3.30GHz) processors with 32 GiB RAM on Linux CentOS. A
time-out of 1h and a memory-out of 7.6 GiB has been considered for each instance.

Since computing the treewidth of a graph is a NP-hard problem, we computed
only a upper bound of tw(Σ) using QuickBB (available at www.hlt.utdallas.
edu/˜vgogate/quickbb.html) equipped with the min fill heuristic and
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for an allocated time of 1h. When no preprocessing has been performed, QuickBB
terminated with a memory-out much of the time (for 102 instances over 182, includ-
ing many instances from the Bayesian networks family and from the BMC family,
and all instances from the scheduling data set and of the Qif data set). In such cases,
no approximation of the treewidth was returned. This explains why the number of
dots in the scatter plots reporting the tw value is significantly lower than the number
of dots in the scatter plots related to #var or to #lit (which are easy to be computed).
Note also that QuickBB succeeded in computing the exact value of the treewidth,
only for 12 instances.

3.1 Equivalence-Preserving Preprocessings

3.1.1 Backbone Identification

The backbone [41] of a CNF formula Σ is the set of all literals which are implied by
Σ when Σ is satisfiable, and is the empty set otherwise. The purpose of backbone
identification (cf. Algorithm 1) is to make the backbone B of the input CNF formula
Σ explicit, to conjoin it to Σ, and to use bcp on the resulting set of clauses. The
search of literals participating to the backbone is limited to the literals ` satisfied by
a model I of Σ computed first. If Σ ∧ ∼` is contradictory, then every model of Σ
must satisfy `, and ` must belong to B. Otherwise Σ ∧ ∼` has a model I ′ and only
the literals satisfied by both I and I ′ may belong to B (thus, the subsequent search
can be reduced).

Backbone identification preserves equivalence, and (obvioulsy) it is confluent and
projective. However, it may require exponential time (since we use a complete SAT
solver solve for achieving the satisfiability tests). In our implementation, solve
exploits assumptions; especially clauses which are learnt at each call to solve are
kept for the subsequent calls; this has a significant impact on the efficiency of the
whole process [3].

Algorithm 1: backboneSimpl
input : a CNF formula Σ
output : the CNF bcp(Σ ∪B), where B is the backbone of Σ
B←∅;1
I←solve(Σ);2
while ∃` ∈ I s.t. ` /∈ B do3
I′←solve(Σ ∪ {∼`});4
if I′ = ∅ then B←B ∪ {`}else I←I ∩ I′;5

return bcp(Σ ∪ B)6

Example 2 Let Σ be the CNF formula consisting of the following clauses:
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a ∨ b,
¬a ∨ b,
¬b ∨ c,

c ∨ d,
¬c ∨ e ∨ f ,
f ∨ ¬g.

The backbone of Σ is equal to B = {b, c}.
backboneSimpl(Σ) consists of the following clauses:

b,
c,

e ∨ f ,
f ∨ ¬g.

Clearly enough, we have #var(backboneSimpl(Σ)) ≤ #var(Σ): no variable
is added but some variables can be easily removed due to the Boolean constraint
propagation which is performed once the literals of the backbone have been found.

Furthermore, we also have that:

#lit(backboneSimpl(Σ)) ≤ #lit(Σ).

Since no new clauses are added to Σ, except unit ones, the primal graph of the CNF
formula backboneSimpl(Σ) is a partial graph of the primal graph of Σ. Since the
treewidth of any partial graph of a given graph is always lower than or equal to the
treewidth of the graph [47], we get that:

tw(backboneSimpl(Σ)) ≤ tw(Σ).

Interestingly, the reduction achieved by considering backboneSimpl can be arbi-
trarily large, whatever the considered measure (among the three ones we considered).
This can be easily observed by considering the CNF formulaΣ = x0∧(x0∨. . .∨xn).
Indeed, backboneSimpl leads to a CNF formula backboneSimpl(Σ) which is equal
to x0 (thus independent of n).

Empirically, we obtained the results reported on Figures 1, 2, and 3.
One can observe on Figures 1, 2, and 3 that backboneSimpl may lead in practice

to significant reductions of both the #var value, the #lit value and the tw value of
the instance. The backboneSimpl preprocessing looks as particularly useful for the
BMC data set and the planning data set, while of limited impact for the Bayesian net-
works data set, the configuration data set and the circuit dataset. Note also that using
the backboneSimpl preprocessing improves both the number of instances for which
QuickBB succeeded in computing a tw value (it terminated with a memory-out for
45 instances over 182 – remember that it crashed due to a memory-out for 102 in-
stances over 182 when no preprocessing was performed) and the number of instances
for which QuickBB succeeded in computing the exact value of the treewidth (33
instances vs. 12 without any preprocessing).

3.1.2 Occurrence Reduction

Occurrence reduction (cf. Algorithm 2) is a simple procedure we have developed
for removing some literals in the input CNF formula Σ via the replacement of some
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clauses α = `1 ∨ . . . ∨ `j ∨ `j+1 by subsuming ones α \ {`j+1}. In order to de-
termine whether a literal `j+1 can be removed from a clause α of Σ, the approach
consists in determining whether the clause which coincides with α except that `j+1

has been replaced by ∼`j+1 is a logical consequence of Σ. This is done by determin-
ing whether Σ ∧ `j+1 ∧ ∼`1 ∧ . . . ∧ ∼`j is contradictory. When this is the case, `j+1

can be removed from α without questioning logical equivalence. Again, bcp is used
as an incomplete yet efficient method to solve the entailment problem. At start, the
literals of Σ are sorted by considering their number of occurrences (the greatest first)
and put in a list L.

While it is equivalence-preserving, occurrence reduction neither is confluent nor
is projective. Especially, the reduction of previous clauses has an impact on the prop-
agation power of bcp, hence on the opportunity to reduce clauses occurring next.
For the same reason, it is not projective (when the clauses ”occurring next” are the
first clauses of Σ considered during the next round when occurrence reduction is
repeated).

Occurrence reduction has a worst-case time complexity cubic in the input size.
Occurrence reduction can also be viewed as a light form of vivification that will be
presented just after (the objective is just to remove literals and not clauses). Compared
to vivification, the rationale for keeping some redundant clauses is that this may lead
to an increased inferential power w.r.t. unit propagation.

Example 3 Let Σ be the CNF formula consisting of the following clauses:
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Algorithm 2: occurrenceSimpl
input : a CNF formula Σ
output : a CNF formula equivalent to Σ
L← sort(Lit(Σ));1
foreach ` ∈ L do2

foreach α ∈ Σ s.t. ` ∈ α do3
if ∅ ∈ bcp(Σ ∪ {`} ∪ {∼(α \ {`})}) then Σ←(Σ \ {α}) ∪ {α \ {`}};4

return Σ5

a ∨ f ,
a ∨ b ∨ c,

b ∨ d ∨ e,
c ∨ ¬d ∨ e,

b ∨ d ∨ ¬e,
c ∨ ¬d ∨ ¬e.

Among the possible lists L obtained at line 1 are L1 = (b, c, e,¬e, d,¬d, a, f,
¬a, ¬b, ¬c) and L2 = (b, c, a, e,¬e, d,¬d, f,¬a,¬b,¬c). If L1 is chosen, then
occurrenceSimpl(Σ) consists of the following clauses:

a ∨ f ,
b ∨ c,

b ∨ d,
c ∨ ¬d,

b ∨ d,
c ∨ ¬d.

The effect of occurrenceSimpl is to reduce a ∨ b ∨ c to b ∨ c, and to eliminate
every occurrence of the variable e. We can observe that occurrenceSimpl neither
is confluent, nor is projective. Indeed, if L2 was chosen, then occurrenceSimpl(Σ)
would consist of the following clauses:

a ∨ f ,
a ∨ b ∨ c,

b ∨ d,
c ∨ ¬d,

b ∨ d,
c ∨ ¬d.

This shows that occurrenceSimpl is not confluent. For the literal ordering L2,
the clause a∨b∨c has not been simplified into b∨c. However, if occurrenceSimpl
was applied once more while considering the list L2, we would have obtained
occurrenceSimpl(occurrenceSimpl(Σ)):

a ∨ f ,
b ∨ c,

b ∨ d,
c ∨ ¬d,

b ∨ d,
c ∨ ¬d.

showing that occurrenceSimpl is not projective.

Since occurrenceSimpl does not generate any new variable, we have that:

#var(occurrenceSimpl(Σ)) ≤ #var(Σ).

Similarly, since occurrenceSimpl consists in removing some literals in Σ, it
cannot lead to increase the size of Σ, thus we have:

#lit(occurrenceSimpl(Σ)) ≤ #lit(Σ).
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Finally, since no new clauses are added to Σ, except unit ones, the primal graph
of occurrenceSimpl(Σ) is a partial graph of the primal graph of Σ, so we get that:

tw(occurrenceSimpl(Σ)) ≤ tw(Σ).

The previous example considered for backboneSimpl can also be considered
here to show that the occurrenceSimpl preprocessing may lead to an arbitrarily
large reduction of the #var value, the #lit value, and the tw value of the instance.

Empirically, we obtained the results reported on Figures 4, 5, and 6.
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Fig. 4 Comparing #var(Σ) with #var(occurrenceSimpl(Σ)).

One can observe on Figures 4, 5, and 6 that occurrenceSimpl may lead in prac-
tice to valuable reductions of both the #var value, the #lit value and the tw value of
the instance. As it was the case for backboneSimpl, the impact on the tw value is of-
ten higher than the impact on the #lit value, which is itself higher than the impact on
the #var value. The occurrenceSimpl preprocessing looks as useful for the plan-
ning data set. The few dots slightly above the diagonal on Figure 6 can be viewed,
so to say, as ”empirical errors”; they correspond to instances for which applying the
occurrenceSimpl preprocessing leads to degrade the value of the estimation of the
treewidth, as computed by QuickBB (such dots would not exist if the exact value of
the treewidth was computed). Finally, note that using occurrenceSimpl improves
significantly both the number of instances for which QuickBB succeeded in com-
puting a tw value (it terminated with a memory-out for 49 instances over 182) and
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Fig. 5 Comparing #lit(Σ) with #lit(occurrenceSimpl(Σ)).
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Fig. 6 Comparing tw(Σ) with tw(occurrenceSimpl(Σ)).

the number of instances (24) for which QuickBB succeeded in computing the exact
value of the treewidth.
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Algorithm 3: vivificationSimpl
input : a CNF formula Σ
output : a CNF formula equivalent to Σ
foreach α ∈ Σ do1

Σ←Σ \ {α};2
α′←⊥;3
I←bcp(Σ);4
while ∃` ∈ α s.t. ∼` /∈ I and α′ 6= > do5

α′←α′ ∨ `;6
I←bcp(Σ ∪ {∼α′});7
if ∅ ∈ I then α′←>;8

Σ←Σ ∪ {α′};9

return Σ10

3.1.3 Vivification

Vivification (cf. Algorithm 3) [46] is a preprocessing technique which aims at reduc-
ing the given CNF formula Σ, i.e., to remove some clauses and some literals in Σ
while preserving equivalence. Its time complexity is in the worst case cubic in the
input size.

Basically, given a clause α = `1 ∨ . . . ∨ `k of Σ two rules are used in order to
determine whether α can be removed from Σ or simply shortened. Thus, for each
clause α of Σ the literals `j+1 of α are successively considered and the question
is to determine whether they should be added or not to the current subclause α′ =
`1 ∨ . . . ∨ `j of α (initialized as the empty clause at line 3). On the one hand, if for
any j ∈ 0, . . . , k − 1, one can prove using bcp that Σ \ {α} |= α′, then for sure
α is entailed by Σ \ {α} so that α can be removed from Σ. This is ensured by the
assignment α′ ← > at line 8 given the test α′ 6= > at line 5). On the other hand, if
one can prove using bcp thatΣ \{α} |= α′∨∼`j+1, then `j+1 can be removed from
α without questioning equivalence (this motivates the test ∼` 6∈ I at line 5 – remind
that I is at any step the set of literals which can be obtained from (Σ \ {α})∪{∼α′}
using unit propagation).

The clauses α ofΣ are considered sequentially, i.e., the first clause ofΣ is consid-
ered first, and so on. If the backbone identification preprocessing has been performed
first, literals are handled (line 5) based on the VSIDS (Variable State Independent, De-
caying Sum) [42] activities (the most active ones first) of the corresponding variables,
as computed by solve (line 2 of backboneSimpl); otherwise, they are considered
w.r.t. the lexicographic ordering. Note that the case ` ∈ I does not need to be con-
sidered explicitly at line 5 of vivificationSimpl. Indeed, if ` belongs to I, then
since ` belongs to α′ (due to line 6), bcp(Σ ∪ {∼α′}) generates {∅} at line 7 (a con-
tradiction is detected); this implies that the clause α at hand is removed at line 8 (it is
replaced by the clause α′ at line 9, and α′ has been set to > in this case).

Example 4 Let Σ be the CNF formula consisting of the following clauses:
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a ∨ b ∨ c ∨ d,
a ∨ b ∨ c,
a ∨ ¬d.

Suppose that the VSIDS scores of the four variables are identical, and assume that
the variables are processed w.r.t. the ordering d < c < b < a. The CNF formula
vivificationSimpl(Σ) consists of the following clauses:

a ∨ b ∨ c,
a ∨ ¬d.

The effect of vivificationSimpl on Σ is to eliminate the first clause of it,
namely a ∨ b ∨ c ∨ d. Suppose now that the clauses of Σ were considered in the
following ordering (where the first two clauses of Σ have been switched):

a ∨ b ∨ c,
a ∨ b ∨ c ∨ d,
a ∨ ¬d.

In this case, vivificationSimpl(Σ) would consist of the following clauses:

a ∨ b ∨ c ∨ d,
a ∨ ¬d.

This shows that vivificationSimpl is not confluent. If vivificationSimpl
was applied once more on the resulting clauses while considering this time the vari-
able ordering a < d < c < b (which is possible since the VSIDS scores of the four
variables are identical), then one would get
vivificationSimpl(vivificationSimpl(Σ)):

a ∨ b ∨ c,
a ∨ ¬d.

showing that vivificationSimpl is not projective.

The same observations as those made for occurrenceSimpl can also be done
for vivificationSimpl, enabling to conclude that:

#var(vivificationSimpl(Σ)) ≤ #var(Σ),

#lit(vivificationSimpl(Σ)) ≤ #lit(Σ),

tw(occurrenceSimpl(Σ)) ≤ tw(Σ).

The previous example considered for backboneSimpl can also be considered
here to show that the vivificationSimpl preprocessing may lead to an arbitrarily
large reduction of the #var value, the #lit value, and the tw value of the instance.

Empirically, we obtained the results reported at Figures 7, 8, and 9.
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Fig. 7 Comparing #var(Σ) with #var(vivificationSimpl(Σ)).
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Fig. 8 Comparing #lit(Σ) with #lit(vivificationSimpl(Σ)).
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Fig. 9 Comparing tw(Σ) with tw(vivificationSimpl(Σ)).

Figures 7, 8, and 9 show that the vivificationSimpl preprocessing may lead
in practice to valuable reductions of both the #var value, the #lit value and the
tw value of the instance. The improvements are quite similar to the ones achieved
by occurrenceSimpl. The vivificationSimpl preprocessing looks as useful for
the planning data set, and for the configuration data set. Note also that using the
vivificationSimpl preprocessing improves both the number of instances for which
QuickBB succeeded in computing a tw value (it terminated with a memory-out for
48 instances over 182) and the number of instances (29) for which QuickBB suc-
ceeded in computing the exact value of the treewidth.

3.2 Literal Equivalences and Gates Detection and Replacement

Literal equivalences and gates detection and replacement are preprocessing tech-
niques which do not preserve equivalence but only the number of models of the input
formula. The detection of equivalent literals was used for preprocessing in [5], while
AND gates and XOR gates detection and replacement have been exploited in [44]
and in [21].

The correctness of those preprocessing techniques relies on the following prin-
ciple: given two propositional formulae Σ and Φ and a literal `, if Σ |= ` ↔ Φ
holds, then Σ[`← Φ] has the same number of models as Σ. Implementing it requires
first to detect a logical consequence ` ↔ Φ of Σ, then to perform the replacement
Σ[`← Φ] (and in our case, turning the resulting formula into an equivalent CNF). In



20 Jean-Marie Lagniez, Pierre Marquis

our approach, replacement is performed only if it is not too space inefficient (this is
reminiscent to NIVER [54], which allows for applying the variable elimination rule
on a formula if this does not lead to increase its size). This is guaranteed in the literal
equivalence case, i.e., when Φ is a literal but not in the remaining cases in general
– AND gate when Φ is a term (or dually a clause) and XOR gate when Φ is a XOR
clause (or dually a chain of equivalences).

3.2.1 Literal Equivalences

Literal equivalence detection and replacement is a preprocessing technique at work
in SAT solvers [21]. Algorithm 4 presents how this preprocessing is performed.

Some previous techniques for literal equivalence detection and replacement are
based on pattern checking, searching for binary clauses in the input CNF formula
Σ, encoding literal equivalences, and more generally looking at strongly connected
components of the binary implication graph of the input CNF formula Σ [24]. Con-
trastingly, in our approach, bcp is used for detecting equivalences between literals.
For each literal `, all the literals `′ which can be found equivalent to ` using bcp are
replaced by ` in Σ. Interestingly, taking advantage of bcp makes it more efficient (if
two binary clauses stating an equivalence between two literals ` and `′ occur in Σ,
then those literals are found equivalent using bcp, but the converse does not hold).

In the worst case, the time complexity of equivSimpl is cubic in the input size.3

Algorithm 4: equivSimpl
input : a CNF formula Σ
output : a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ;1
Unmark all variables of Φ;2
while ∃` ∈ Lit(Φ) s.t. var(`) is not marked do3

// detection
mark var(`);4
P`←BCP (Φ ∪ {`});5
N`←BCP (Φ ∪ {∼`});6
Γ←{`↔ `′|`′ 6= ` and `′ ∈ P` and ∼`′ ∈ N`};7

// replacement
foreach `↔ `′ ∈ Γ do8

replace ` by `′ in Φ;9

return Φ10

In equivSimpl, the literals of the input CNF formula Σ are processed w.r.t. the
lexicographic ordering of the corresponding variables. Since the chosen representa-
tive of each literal equivalence class depends on the syntactic presentation of the input
CNFΣ and since the replacement step may lead to reduce some clauses, equivSimpl
neither is confluent nor is projective.

3 Literals are degenerate AND gates and degenerate XOR gates; however equivSimpl may detect
equivalences that would not be detected by ANDgateSimpl or by XORgateSimpl; this explains why
equivSimpl is used.
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Example 5 Let Σ be the CNF formula consisting of the following clauses:

a ∨ b ∨ c ∨ ¬d,
¬a ∨ ¬b ∨ ¬c ∨ d,
a ∨ b ∨ ¬c,
¬a ∨ ¬b ∨ c,

¬a ∨ b,
a ∨ ¬b,
¬e ∨ ¬f ∨ h,
e ∨ ¬f ∨ g,

e ∨ ¬g,
¬e ∨ ¬h.

Assume that the variables ofΣ are considered in the following ordering: a < b <
c < d < e < f < g < h. Then equivSimpl(Σ) consists of:

¬f ∨ ¬g,
f ∨ ¬h.

Indeed, at the first step, when a is considered, the equivalence a ↔ b is detected
and a is replaced by b. Then, when b is considered, the equivalence b↔ c is detected
and b is replaced by c. When c is considered, the equivalence c↔ d is detected and c
is replaced by d. At this step, the first six clauses of Σ do not belong any longer to it,
because the successive replacements have turned them into valid clauses. Now, when
e is considered, we get Pe = {e,¬h,¬f} and Ne = {¬e,¬g, f}. Since ¬f ∈ Pe

and f ∈ Ne, the equivalence e ↔ ¬f has been found. Replacing e by ¬f in the
current set of clauses leads to the two clauses ¬f ∨¬g, f ∨¬h, as expected. Observe
that the equivalence e ↔ ¬f is detected thanks to bcp (unlike what happens for
a↔ b, the two clauses e ∨ f and ¬e ∨ ¬f stating this equivalence are not explicitly
present in Σ at start).

Assume now that the variables ofΣ were considered w.r.t. the following ordering:
e < f < g < h < d < c < b < a. Then equivSimpl would have consisted of:

c ∨ ¬d,
¬c ∨ d,

¬f ∨ ¬g,
f ∨ ¬h.

Indeed, nothing changes for the clauses ofΣ built up from {e, f, g, h} (since they
are disconnected to the other clauses ofΣ). Then, when d and c are successively con-
sidered, no equivalences are detected. When b is considered, the equivalence b↔ a is
detected and b is replaced by a. Finally, when a is considered, the equivalence a↔ c
is detected and a is replaced by c. This shows that equivSimpl is not confluent. Fur-
thermore, equivSimpl is not projective since if equivSimpl is applied once more
to the resulting set of clauses, then the equivalence d↔ c will be detected and d will
be replaced by c, leading to the following set of clauses:

¬f ∨ ¬g,
f ∨ ¬h.

With equivSimpl, each time a literal equivalence is detected, one variable is
eliminated, which shows that:

#var(equivSimpl(Σ)) ≤ #var(Σ).
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Similarly, it is obvious that the replacement of any literal by a literal cannot in-
crease the total number of literals. A decrease may easily occur because in the gen-
erated clauses every occurrence of a multi-occurrent literal (but one) is removed, and
valid clauses are eliminated. Thus we have:

#lit(equivSimpl(Σ)) ≤ #lit(Σ).

Contrastingly, applying equivSimpl does not ensure that the tw score of the
instance Σ evolves in a monotone way. Thus, an arbitrarily large tw decrease may
happen in some cases. For instance, consider Σ =

∧n−1
i=0 (¬xi ∨ xi+1) ∧ (¬xn ∨

x0) ∧
∨n

i=0 xi. Applied to it, equivSimpl leads to a CNF formula equivSimpl(Σ)
such that the cardinality of Var(equivSimpl(Σ)) is 1 (n variables are eliminated).
Accordingly, this example shows that an arbitrarily large decrease of each of the three
measures (#var, #lit, tw) may result from the application of equivSimpl.
However, a treewidth increase may also happen in some cases. Here is an example
showing it; letΣ = (¬x0∨x1)∧ (¬x1∨x0)∧ (¬x1∨x2)∧ (¬x2∨x4)∧ (¬x4∨x3)∧
(¬x3 ∨ x1)∧ (¬x3 ∨ x5)∧ (¬x5 ∨ x3).

Figure 10 gives a representation of the primal graph of Σ. We have tw(Σ) = 2.

x0 x1

x2

x3

x4

x5

Fig. 10 The primal graph of Σ.

Suppose now that the equivalences x0 ↔ x4 and x5 ↔ x2 are detected. If x0 and
x5 are successively replaced by their definitions, then one obtains the CNF formula
(Σ[x0 ← x4])[x5 ← x2] = (¬x4 ∨ x1)∧ (¬x1 ∨ x4)∧ (¬x1 ∨ x2)∧ (¬x2 ∨ x4)∧
(¬x4 ∨ x3)∧ (¬x3 ∨ x1)∧ (¬x3 ∨ x2)∧ (¬x2 ∨ x3).

Figure 11 gives a representation of the primal graph of (Σ[x0 ← x4])[x5 ← x2].
We have tw((Σ[x0 ← x4])[x5 ← x2]) = 3.

x1

x2

x3

x4

Fig. 11 The primal graph of (Σ[x0 ← x4])[x5 ← x2].



On Preprocessing Techniques and their Impact on Propositional Model Counting 23

It must be noted that when equivSimpl is used, each time an equivalence l↔ l′

is detected, then if there is an edge {var(l), var(l′)} in the primal graph of Σ (i.e.,
there is a clause containing the two variables), then the replacement of l by l′ (or vice-
versa) in Σ leads to a CNF formula the primal graph of which has the same treewidth
as tw(Σ). Indeed, in such a case, the replacement corresponds to an operation of
edge contraction, and the resulting graph is thus a minor of the initial graph; in such
a case, it is known that the treewidth remains unchanged [47].

Empirically, we obtained the results reported at Figures 12, 13, and 14.
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Fig. 12 Comparing #var(Σ) with #var(equivSimpl(Σ)).

Figures 12, 13, and 14 show how equivSimpl leads to a reduction of both the
#var value, the #lit value and the tw value of the instance. We can observe that
the instances for which huge reductions (i.e., one order of magnitude and above) are
obtained are less numerous than the instances for which huge reductions are obtained
when the previous, equivalence-preserving preprocessings are considered. Our results
have also shown that the equivSimpl preprocessing improves both the number of
instances for which QuickBB succeeded in computing a tw value (it terminated
with a memory-out for 46 instances over 182) and the number of instances (19) for
which QuickBB succeeded in computing the exact value of the treewidth. Finally,
while a treewidth increase may result in theory from applying equivSimpl, one may
observe that it does not occur in practice.
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Fig. 13 Comparing #lit(Σ) with #lit(equivSimpl(Σ)).
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Fig. 14 Comparing tw(Σ) with tw(equivSimpl(Σ)).

3.2.2 AND/OR Gates

First of all, let us recall that, as a trivial consequence of De Morgan’s laws, every
AND gate (of the form ` ↔ (`1 ∧ . . . ∧ `k)) can also be viewed (equivalently) as an
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OR gate (of the form ∼` ↔ (∼`1 ∨ . . . ∨ ∼`k)). This explains why we treat all such
gates (AND gates or OR gates) in a uniform way.

AND/OR gate detection and replacement is presented at Algorithm 5. In the worst
case, its time complexity is cubic in the input size. Unlike previous approaches based
on pattern matching (i.e., when one looks for clauses encoding an AND gate or an OR
gate), our approach takes advantage of bcp for detecting such gates, which makes it
more efficient (if clauses stating the presence of an AND/OR gate occur in Σ, then
ANDgateSimpl will find the gate – or a ”subsuming” one – but the converse is not
true).

Algorithm 5: ANDgateSimpl
input : a CNF formula Σ
output : a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ;1
// detection
Γ←∅;2
unmark all literals of Φ;3
while ∃` ∈ Lit(Φ) s.t. ` is not marked do4

mark `;5
P`←(BCP (Φ ∪ {`}) \ (BCP (Φ) ∪ {`})) ∪ {∼`};6
if ∅ ∈ bcp(Φ ∪ P`) then7

let C` ⊆ P` s.t. ∅ ∈ bcp(Φ ∪ C`) and ∼` ∈ C`;8
Γ←Γ ∪ {`↔

∧
`′∈C`\{∼`} `

′};9

// replacement
while ∃`↔ β ∈ Γ st. |β|<maxA and |Φ[`←β]| ≤ |Φ| do10

Φ←Φ[`←β];11
Γ←Γ [`←β];12
Γ←Γ \ {`′ ↔ ζ ∈ Γ |`′ ∈ ζ}13

return Φ14

The algorithm starts with a gate detection phase. At line 4, literals ` of Lit(Σ)
are considered w.r.t. any total ordering such that ∼` comes just after `. As it is the
case with equivSimpl, one looks in ANDgateSimpl for AND gates defining literals
by considering the literals occurring in Σ w.r.t. the lexicographic ordering of the
corresponding variables. At line 6, P` contains ∼` and all the literals which can be
derived fromΣ∧` (using bcp), but not fromΣ or ` taken separately. Hence, after this
step, P` is such thatΣ |= `→ (

∧
`′∈P`\{∼`} `

′). The test at line 7 allows for deciding
whether an AND gate β with output ` exists inΣ. Indeed, ifΣ∧

∧
`′∈P`\{∼`} `

′∧∼` is
unsatisfiable (shown by bcp), we have Σ |= (∧

∧
`′∈P`\{∼`} `

′) → `. Accordingly,
there is an AND gate β =

∧
`′∈P`\{∼`} `

′ with output ` in Σ. In our implementation,
one tries to minimize the number of variables in this gate (lines 8 and 9) by taking
advantage of the implication graph at hand [52,34,42]. Indeed, the unit refutation
which has been found from Φ ∪ P` at line 7 can be viewed as a DAG (the so called
implication graph) whose nodes are labelled with literals (alias unit clauses), such that
the sources of the graph (i.e., its nodes of in-degree 0) are labelled with literals from
P`, there is a node labelled by the empty clause, and each arc (`i, `j) in the graph
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corresponds to the generation using unit resolution of the literal `j from `i using the
clause ∼`i ∨ `j of Φ. Then the set C` computed at line 8 is the union of {∼`} with
the set containing precisely the source literals of the implication graph which can be
reached from the node labelled by the empty clause in the graph by considering the
arcs back. Note that only one definition per literal ` is computed and stored in Γ .

Once all the definitions have been computed, the replacement phase takes place
(lines 10 to 13). The definitions ` ↔ β are sorted by increasing size of β. The re-
placement of a literal ` by the corresponding definition β is performed only if the
number of conjuncts in the AND gate β remains ”small enough” (i.e., ≤ maxA – in
our experiments maxA = 10). Furthermore, the gate replacement is achieved only if
it does not lead to increase the input size. The two conditions at line 10 capture it.
The replacement is performed both in the input CNF formula and in the set Γ of defi-
nitions (lines 11 and 12). Valid definitions `↔ β are removed from Γ (line 13). Note
that a decrease of the instance size may also result from the replacement, because it
may produce valid clauses, and such clauses are removed when generated.

Example 6 Let Σ be the CNF formula consisting of the following clauses:

a ∨ b ∨ c ∨ d,
¬a ∨ ¬b,
¬a ∨ b ∨ ¬c,

¬a ∨ b ∨ c ∨ ¬d,
¬a ∨ e,
a ∨ f .

Consider the literal ordering: a < ¬a < b < ¬b < c < ¬c < d < ¬d < e <
¬e < f < ¬f . ANDgateSimpl(Σ) consists of:

b ∨ c ∨ d ∨ e,
¬b ∨ f ,

¬c ∨ f ,
¬d ∨ f .

Indeed, starting with literal a, we get at line 6 bcp(Φ∪{a}) = {a,¬b,¬c,¬d, e}.
Hence Pa = {¬a,¬b,¬c,¬d, e}. Now, bcp(Φ ∪ Pa) = {∅}. As a consequence, one
knows at that stage that the equivalence a ↔ (¬b ∧ ¬c ∧ ¬d ∧ e) holds in Φ. Then
one tries to reduce the number of variables in this AND gate defining a. As explained
before, one takes advantage of the implication graph associated with bcp(Φ ∪ Pa)
to do this job. We can observe that the clause a ∨ b ∨ c ∨ d is the unique reason of
the conflict. Here, we have Ca = {¬a,¬b,¬c,¬d}. Accordingly, the simpler AND
gate a ↔ (¬b ∧ ¬c ∧ ¬d) holds in Φ as well. The next step is this to replace a
by ¬b ∧ ¬c ∧ ¬d in Φ. This leads to remove the first four clauses of Φ since this
replacement turns them into valid clauses. This leads also to turn the clause ¬a ∨ e
into the clause b∨ c∨d∨e, and the clause a∨f into the three clauses ¬b∨f , ¬c∨f ,
¬d∨ f . Since the size of the resulting formula remains bounded by the size of Φ, the
replacement is committed. For the eleven remaining literals, no other AND/OR gate
is detected, so that nothing changes since then.

It is easy to show that ANDgateSimpl neither is confluent, nor is projective. To do
so, it is sufficient to consider Example 5 again (as already mentioned, literal equiva-
lences can be considered as simple AND/OR gates).
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Since each time an AND/OR gate is detected, one variable is eliminated, we get
that:

#var(ANDgateSimpl(Σ)) ≤ #var(Σ).

Clearly enough, for each AND/OR gate detected, the replacement of the occur-
rences of the defined variable by its definition could easily lead to increase the size
of the input formula Σ. However, for ANDgateSimpl, the replacement of a variable
takes place only if it does not lead to increase the size of the formula, so it is ensured
that:

#lit(ANDgateSimpl(Σ)) ≤ #lit(Σ).

Like equivSimpl, ANDgateSimpl may lead to an arbitrarily large tw decrease
for some instances but cannot ensure a decrease for each of them. Thus, the same
example as the one used for showing that a tw increase may happen can be used again
here. Compared to equivSimpl, the situation is even worse since the replacement of
a variable by the corresponding definition can lead to a treewidth increase, even if the
gates are already ”syntactically present” in the CNFΣ (i.e., there are clauses inΣ the
conjunction of which is equivalent to the gate). The following example shows it. Let
Σn =

∧n−1
i=0 (¬xi+1∨xi)∧(¬xi+1∨yi)∧(¬xi∨¬yi∨xi+1). Clearly enough,Σn is

a CNF representation of the conjunction of nAND gates of the form xi+1 ↔ (xi∧yi)
(with i varying from 0 to n− 1).

Figure 15 gives a representation of the primal graph ofΣ3. We have tw(Σ3) = 2.

x0 x1 x2 x3

y0 y1 y2

Fig. 15 The primal graph of Σ3.

Assume that the AND gates are detected in such a way that the gate defining xi
is found before the gate defining xi+1 (with i varying from 1 to n − 1). Each time
a gate xi+1 ↔ (x0 ∧

∧i
j=0 yj) is detected and xi+1 is replaced by x0 ∧

∧i
j=0 yj ,

the treewidth of the resulting CNF formula increases by 1. Thus, at the first step,
the gate x1 ↔ (x0 ∧ y0) is detected and x1 is replaced by x0 ∧ y0 in Σn. We get
Σn[x1 ← x0∧y0] = (¬x2∨x0)∧ (¬x2∨y0)∧ (¬x2∨y1)∧ (¬x0∨¬y0∨¬y1∨x2)
∧
∧n−1

i=2 (¬xi+1 ∨ xi)∧ (¬xi+1 ∨ yi)∧ (¬xi ∨ ¬yi ∨ xi+1).
Figure 16 gives a representation of the primal graph of Σ3[x1 ← x0 ∧ y0]).

We can check that tw(Σ3[x1 ← x0 ∧ y0]) = 3. At the next step the gate x2 ↔
x0 ∧ y0 ∧ y1 is detected and x2 is replaced by x0 ∧ y0 ∧ y1 in Σn[x1 ← x0 ∧ y0]. The
resulting CNF formula (Σ[x1 ← x0 ∧ y0])[x2 ← x0 ∧ y0 ∧ y1] contains the clause
(¬x0 ∨ ¬y0 ∨ ¬y1 ∨ ¬y2 ∨ x3).

Figure 17 gives a representation of the primal graph of (Σ3[x1 ← x0∧y0])[x2 ←
x0 ∧ y0 ∧ y1]. We have tw((Σ3[x1 ← x0 ∧ y0])[x2 ← x0 ∧ y0 ∧ y1]) = 4. An easy
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x0 x2 x3

y0 y1 y2

Fig. 16 The primal graph of Σ3[x1 ← x0 ∧ y0].

structural induction shows that when the AND gates defining x1, ..., xn−1 have been
successively detected and the defined variable replaced by its definition, the resulting
CNF formula has a treewidth equal to n+ 1.

x0 x3

y0 y1 y2

Fig. 17 The primal graph of (Σ3[x1 ← x0 ∧ y0])[x2 ← x0 ∧ y0 ∧ y1].

Indeed, after k successive detections of the gates x1 ↔ x0∧y0, x2 ↔ x0∧y0∧y1,
. . ., xk ↔ x0 ∧

∧k−1
j=0 yj followed by the immediate replacement of the defined

variable by its definition, the resulting formula

(...(Σn[x1 ← x0 ∧ y0])[x2 ↔ x0 ∧ y0 ∧ y1])...)[xk ↔ x0 ∧
k−1∧
j=0

yj ]

contains the clause

¬x0 ∨
k∨

j=0

¬yj ∨ xk+1

as an essential prime implicate. Since every CNF representation of the resulting for-
mula must include that clause, no equivalence-preserving additional preprocessing
would prevent from the treewidth increase.

Empirically, we obtained the results reported at Figures 18, 19, and 20.
Figures 18, 19, and 20 clearly show that ANDgateSimpl may lead in practice to

very significant reductions of both the #var value, the #lit value and the tw value
of the instance. The reductions achieved are often much larger than those obtained
using the other preprocessing techniques, reflecting the fact that AND/OR gates can
be quite numerous in the instances. ANDgateSimpl has an impact on every family
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Fig. 18 Comparing #var(Σ) with #var(ANDgateSimpl(Σ)).
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Fig. 19 Comparing #lit(Σ) with #lit(ANDgateSimpl(Σ)).
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Fig. 20 Comparing tw(Σ) with tw(ANDgateSimpl(Σ)).

of instances considered here, and it appears as quite huge on the Bayesian networks
data set. Using the ANDgateSimpl preprocessing also improves both the number of
instances for which QuickBB succeeded in computing a tw value (it terminated
with a memory-out for 41 instances over 182) and the number of instances (57)
for which QuickBB succeeded in computing the exact value of the treewidth. As
for equivSimpl, no increase of the tw score has resulted in practice from applying
ANDgateSimpl.

3.2.3 XOR Gates

XOR gate detection and replacement is presented at Algorithm 5. At line 2 some
XOR gates `i ↔ χi are first detected ”syntactically” from Σ (i.e., one looks in Σ for
the clauses obtained by turning `i ↔ χi into an equivalent CNF; only XOR clauses
χi of size ≤ maxX are targeted; in our experiments maxX = 5). Then the resulting
set of gates, which can be viewed as a set of XOR clauses since `i ↔ χi is equivalent
to ∼`i⊕χi, is turned into reduced row echelon form using Gauss algorithm (once this
is done one does not need to replace `i by its definition in Γ during the replacement
step). The last phase is the replacement one (lines 4 and 5): every `i is replaced by
its definition χi in Σ, provided that the normalization it involves does not generate
”large” clauses (i.e., with size > maxX ). Due to this condition and the fact that the
detection of XOR gates is ”syntactic” (i.e., we determine for each clause α of Σ
whether it participates to a XOR gate by looking for other clauses of Σ such that,
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together with α, form a CNF representation of a XOR gate), the time complexity of
XORgateSimpl is in the worst case quadratic in the input size.

Algorithm 6: XORgateSimpl
input : a CNF formula Σ
output : a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ;1
// detection
Γ←{XOR clauses syntactically detected};2

// Gaussian elimination
Γ←Gauss({`1 ↔ χ1, `2 ↔ χ2, . . . , `k ↔ χk})3

// replacement
for i←1 to k do4

if @α ∈ Φ[`i←χi] \ Φ s.t. |α| > maxX then Φ←Φ[`i←χi];5

return Φ6

Example 7 Let Σ be the CNF formula consisting of the following clauses:

b ∨ d,
¬b ∨ ¬d,
¬a ∨ ¬b ∨ c,
a ∨ ¬b ∨ ¬c,

¬a ∨ b ∨ ¬c,
a ∨ b ∨ c,
b ∨ e,
a ∨ f .

At line 2, the two XOR gates b ⊕ d and a ⊕ b ⊕ c are detected successively and
put in a set Γ . Then at line 3, Gauss elimination is achieved in this set, leading to the
two XOR gates b ⊕ d and a ⊕ ¬d ⊕ c. At line 5 the replacement step is done in the
input formula: the first six clauses which participate to the XOR gates are made valid
through this substitution, the clause b ∨ e is replaced by ¬d ∨ e, and the clause a ∨ f
is replaced by the two clauses c∨d∨f and ¬c∨¬d∨f . Finally, XORgateSimpl(Σ)
consists of the following clauses:

¬d ∨ e,
c ∨ d ∨ f ,
¬c ∨ ¬d ∨ f .

For the same reasons as those pointed out for equivSimpl and ANDgateSimpl,
XORgateSimpl neither is confluent nor is projective. To prove it, it is enough to con-
sider Example 5 again (literal equivalences can also be considered as XOR gates, and
in Example 5 all the gates about variables a, b, c, d can be detected ”syntactically”).

Since each time a XOR gate is detected, one variable is eliminated, we get that:

#var(XORgateSimpl(Σ)) ≤ #var(Σ).

Now, unlike equivSimpl and ANDgateSimpl, applying XORgateSimpl to Σ
may lead to increase the number of literals in it. However, only a ”reasonable” in-
crease is allowed due to the presence of the maxX condition in Algorithm 6. More
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precisely, the size of the output formula Φ is upper bounded by |Σ|. 2maxX−1.maxX ,
which is acceptable in practice when maxX is small enough.

Finally, like equivSimpl and ANDgateSimpl, XORgateSimpl may offer but
does not ensure a tw decrease in the general case. A similar family of CNF for-
mulae as the one considered for ANDgateSimpl can be used to show a similar result
when XOR gates are considered (basically, Σn is then a CNF representation of the
conjunction of n XOR gates of the form xi+1 ↔ (xi ↔ yi), with i varying from 1 to
n− 1).

Empirically, we obtained the results reported at Figures 21, 22 and 23.
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Fig. 21 Comparing #var(Σ) with #var(XORgateSimpl(Σ)).

One can observe on Figures 21, 22 and 23 that XORgateSimpl may lead in prac-
tice to reductions of both the #var value, the #lit value and the tw value of the
instance. However, the number of instances for which huge reductions (i.e., one order
of magnitude and above) are obtained is typically lower than the number of instances
for which huge reductions are obtained when other elementary preprocessings (but
equivSimpl) are considered. Note also that using the XORgateSimpl preprocessing
improves both the number of instances for which QuickBB succeeded in computing
a tw value (it terminated with a memory-out for 45 instances over 182) and the num-
ber of instances (20) for which QuickBB succeeded in computing the exact value of
the treewidth. Finally, applying XORgateSimpl never led to increase the tw scores
of the instances considered in the experiments.
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Fig. 22 Comparing #lit(Σ) with #lit(XORgateSimpl(Σ)).
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Fig. 23 Comparing tw(Σ) with tw(XORgateSimpl(Σ)).
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3.3 The pmc Preprocessor, the eq Combination, and the #eq Combination

Our preprocessor pmc (cf. Algorithm 7) is based on the elementary preprocess-
ing techniques presented before. Each elementary technique is invoked or not, de-
pending on the value of a Boolean parameter: optV (vivification), optB (backbone
identification), optO (occurrence reduction), optG (gate detection and replacement).
gatesSimpl(Φ) is a short for XORgateSimpl(ANDgateSimpl(equivSimpl(Φ))).

pmc is an iterative algorithm. Indeed, it can prove useful to apply more than once
some elementary techniques since each application may change the resulting CNF
formula. This is not the case for backbone identification, and this explains why it is
performed at start, only. Indeed, each of the remaining techniques generates a CNF
formula which is a logical consequence of its input. As a consequence, if a literal
belongs to the backbone of a CNF formula which results from the composition of
such elementary preprocessings, then it belongs as well to the backbone of the CNF
formula considered initially. Any further call to backboneSimpl would just be a
waste of time.

Once the literals of the backbone have been detected and propagated using BCP,
we use occurrenceSimpl in order to possibly reduce the size of the input clauses,
thus enhancing the power of BCP which is used next for discovering literal equiva-
lences and gates. vivificationSimpl could be used as well, but since it may lead
to remove some clauses, it does not empower BCP as occurrenceSimpl does. Thus
we use vivificationSimpl at the end of each iteration to propagate in the whole
CNF the effect of the equivalences and gates replacement and so to say to ”clean” the
instance.

Within pmc the elementary preprocessings (but backboneSimpl) can be per-
formed several times. Iteration stops when a fixed point is reached (i.e., the output of
the preprocessing is equal to its input) or when a preset (maximal) number numTries
of iterations is reached. In our experiments numTries was set to 10.

Algorithm 7: pmc
input : a CNF formula Σ
output : a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ;1
if optB then Φ←backboneSimpl(Φ);2
i←0;3
while i < numTries do4

i←i+ 1;5
if optO then Φ← occurrenceSimpl(Φ);6
if optG then Φ←gatesSimpl(Φ);7
if optV then Φ←vivificationSimpl(Φ);8
if fixpoint then break ;9

return Φ10

In our work, we have considered two combinations of the elementary preprocess-
ings described in the previous section:
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– eq corresponds to the parameter assignment of pmc where optV = optB =
optO = 1 and optG = 0. It is equivalence-preserving.

– #eq corresponds to the parameter assignment of pmc where optV = optB =
optO = 1 and optG = 1. This combination is guaranteed only to preserve the
number of models of the input.

Example 8 Let Σ be the CNF formula Σ consisting of the following clauses:

b1 ∨ b2 ∨ b3,
b1 ∨ b2 ∨ ¬b3,
b1 ∨ ¬b2 ∨ b3,
b1 ∨ ¬b2 ∨ ¬b3,
¬b1 ∨ v1 ∨ o1,
v5 ∨ o2,
¬o1 ∨ ¬o2 ∨ v1,
v6 ∨ o3,
v10 ∨ o6,
v6 ∨ v10 ∨ ¬o6,
v1 ∨ v2 ∨ v3 ∨ ¬v4,

v1 ∨ v5 ∨ o5,
v2 ∨ ¬v5 ∨ v11,
v6 ∨ v7 ∨ v8 ∨ ¬v9,
v6 ∨ v10 ∨ o6,
v7 ∨ ¬v10 ∨ ¬v8,
¬e1 ∨ e2,
¬e2 ∨ e3,
¬e3 ∨ e1,
¬b1 ∨ e2 ∨ e3 ∨ ¬e4,
¬e2 ∨ e3 ∨ ¬e5,
a1 ∨ ¬e2 ∨ ¬e4,

e4 ∨ ¬e2 ∨ ¬a1,
¬e4 ∨ a2,
x1 ∨ x2 ∨ x3,
¬x1 ∨ ¬x2 ∨ x3,
¬x1 ∨ x2 ∨ ¬x3,
x1 ∨ ¬x2 ∨ ¬x3,
¬i1 ∨ ¬e2 ∨ a2,
¬i1 ∨ e4,
i1 ∨ ¬a2.

This example aims at illustrating the effect on Σ of the successive elementary
preprocessings that have been considered when the #eq combination is used. The
variable names refer to the preprocessing which is illustrated. b variables are for
”backbone detection”, o variables for ”occurrence simplification”, v variables for
”vivification”, e variables for ”equivalence detection and replacement”, a variables
for ”AND gate detection and replacement”, x variables for ”XOR gate detection and
replacement”, and finally i variables are useful for illustrating the impact of putting
together and performing iteratively some preprocessings (as it is the case in the two
combinations eq and #eq we have defined).

The backbone of Σ is equal to B = {b1}. backboneSimpl(Σ) consists of the
following clauses:

b1,
v1 ∨ o1,
v5 ∨ o2,
¬o1 ∨ ¬o2 ∨ v1,
v6 ∨ o3,
v10 ∨ o6,
v6 ∨ v10 ∨ ¬o6,

v1∨v2∨v3∨¬v4,
v1 ∨ v5 ∨ o5,
v2 ∨ ¬v5 ∨ v11,
v6∨v7∨v8∨¬v9,
v6 ∨ v10 ∨ o6,
v7 ∨ ¬v10 ∨ ¬v8,
¬e1 ∨ e2,

¬e2 ∨ e3,
¬e3 ∨ e1,
e2 ∨ e3 ∨ ¬e4,
¬e2 ∨ e3 ∨ ¬e5,
a1 ∨ ¬e2 ∨ ¬e4,
e4 ∨ ¬e2 ∨ ¬a1,
¬e4 ∨ a2,

x1 ∨ x2 ∨ x3,
¬x1 ∨ ¬x2 ∨ x3,
¬x1 ∨ x2 ∨ ¬x3,
x1 ∨ ¬x2 ∨ ¬x3,
¬i1 ∨ ¬e2 ∨ a2,
¬i1 ∨ e4,
i1 ∨ ¬a2.

occurrenceSimpl(backboneSimpl(Σ)) consists of the following clauses:

b1,
v1 ∨ o1,
v5 ∨ o2,
¬o1 ∨ ¬o2 ∨ v1,

v6 ∨ o3,
v10 ∨ o6,
v6 ∨ v10 ∨ ¬o6,
v1∨v2∨v3∨¬v4,

v1 ∨ v5,
v2 ∨ ¬v5 ∨ v11,
v6 ∨ v7 ∨ v8 ∨ v9,
v6 ∨ v10,

v7 ∨ ¬v10 ∨ ¬v8,
¬e1 ∨ e2,
¬e2 ∨ e3,
¬e3 ∨ e1,
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e2 ∨ e3 ∨ ¬e4,
¬e2 ∨ e3 ∨ ¬e5,
a1 ∨ ¬e2 ∨ ¬e4,

e4 ∨ ¬e2 ∨ ¬a1,
¬e4 ∨ a2,
x1 ∨ x2 ∨ x3,

¬x1 ∨ ¬x2 ∨ x3,
¬x1 ∨ x2 ∨ ¬x3,
x1 ∨ ¬x2 ∨ ¬x3,

¬i1 ∨ ¬e2 ∨ a2,
¬i1 ∨ e4,
i1 ∨ ¬a2.

The effect of occurrenceSimpl has been to reduce v1 ∨ v5 ∨ o5 to v1 ∨ v5, and
to reduce v6 ∨ v10 ∨ o6 to v6 ∨ v10.

vivificationSimpl(occurrenceSimpl
(backboneSimpl(Σ))) consists of the following clauses:

b1,
v1 ∨ o1,
v5 ∨ o2,
¬o1 ∨ ¬o2 ∨ v1,
v6 ∨ o3,
v10 ∨ o6,
v1∨v2∨v3∨¬v4,

v2 ∨ ¬v5 ∨ v11,
v6 ∨ v7 ∨ v9,
v6 ∨ v10,
v7 ∨ ¬v10 ∨ ¬v8,
¬e1 ∨ e2,
¬e2 ∨ e3,
¬e3 ∨ e1,

e2 ∨ e3 ∨ ¬e4,
¬e2 ∨ e3 ∨ ¬e5,
a1 ∨ ¬e2 ∨ ¬e4,
e4 ∨ ¬e2 ∨ ¬a1,
¬e4 ∨ a2,
x1 ∨ x2 ∨ x3,
¬x1 ∨ ¬x2 ∨ x3,

¬x1 ∨ x2 ∨ ¬x3,
x1 ∨ ¬x2 ∨ ¬x3,
¬i1 ∨ ¬e2 ∨ a2,
¬i1 ∨ e4,
i1 ∨ ¬a2.

The effect of vivificationSimpl has been to cancel the clauses v6∨ v10∨¬o6
and v1 ∨ v5, and to reduce v6 ∨ v7 ∨ v8 ∨ v9 to v6 ∨ v7 ∨ v9.

equivSimpl(vivificationSimpl
(occurrenceSimpl(backboneSimpl(Σ)))) consists of the following clauses:

b1,
v1 ∨ o1,
v5 ∨ o2,
¬o1 ∨ ¬o2 ∨ v1,
v6 ∨ o3,
v10 ∨ o6,
v1∨v2∨v3∨¬v4,

v2 ∨ ¬v5 ∨ v11,
v6 ∨ v7 ∨ v9,
v6 ∨ v10,
v7 ∨ ¬v10 ∨ ¬v8,
e2 ∨ ¬e4,
a1 ∨ ¬e2 ∨ ¬e4,
e4 ∨ ¬e2 ∨ ¬a1,

¬e4 ∨ a2,
x1 ∨ x2 ∨ x3,
¬x1 ∨ ¬x2 ∨ x3,
¬x1 ∨ x2 ∨ ¬x3,
x1 ∨ ¬x2 ∨ ¬x3,
¬i1 ∨ ¬e2 ∨ a2,
¬i1 ∨ e4,

i1 ∨ ¬a2.

The literals e1, e2 and e3 are found equivalent using bcp. Thus, every occur-
rence of e1 or e3 is replaced by e2. The effect of equivSimpl has been to reduce
e2 ∨ e3 ∨ ¬e4 into e2 ∨ ¬e4 and to cancel the three clauses ¬e1 ∨ e2, ¬e2 ∨ e3,
and ¬e3 ∨ e1 (the replacement step makes each of them valid), as well as the clause
¬e2 ∨ e3 ∨ ¬e5 (again, replacing e3 by e2 in it generates a valid clause).

ANDgateSimpl(equivSimpl(vivificationSimpl
(occurrenceSimpl(backboneSimpl(Σ))))) consists of the following clauses:

b1,
v1 ∨ o1,
v5 ∨ o2,
¬o1 ∨ ¬o2 ∨ v1,
v6 ∨ o3,

v10 ∨ o6,
v1∨v2∨v3∨¬v4,
v2 ∨ ¬v5 ∨ v11,
v6 ∨ v7 ∨ v9,
v6 ∨ v10,

v7 ∨ ¬v10 ∨ ¬v8,
¬e2 ∨ ¬a1 ∨ a2,
x1 ∨ x2 ∨ x3,
¬x1 ∨ ¬x2 ∨ x3,
¬x1 ∨ x2 ∨ ¬x3,

x1 ∨ ¬x2 ∨ ¬x3,
¬i1 ∨ ¬e2 ∨ a2,
¬i1 ∨ e2,
¬i1 ∨ a1,
i1 ∨ ¬a2.
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Using bcp, the AND gate e4 ↔ (e2 ∧ a1) is first detected. Observe that the
power of unit propagation is used to this purpose; especially the clause a1 ∨ ¬e4
which is obtained by turning the gate into CNF does not appear in the input; only the
clause a1 ∨ ¬e4 ∨ ¬e2 is available; the fact that e2 can be obtained from the input
and e4 using bcp is exploited again to derive a1 from e4 and e2. Then the effect of
ANDgateSimpl has been to replace e4 by its definition e2 ∧ a1 everywhere in the
input. In the three clauses e2 ∨ ¬e4, a1 ∨ ¬e2 ∨ ¬e4, and e4 ∨ ¬e2 ∨ ¬a1 which
have been used to find the definition, the replacement leads to valid clauses, which
are thus cancelled. Finally, the replacement of e4 by its definition in ¬e4 ∨ a2 leads
to the clause ¬e2∨¬a1∨a2 and in ¬i1∨e4 leads to the clauses ¬i1∨e2 and ¬i1∨a1.

XORgateSimpl(ANDgateSimpl(equivSimpl
(vivificationSimpl(occurrenceSimpl(backboneSimpl(Σ)))))) consists of the
following clauses:

b1,
v1 ∨ o1,
v5 ∨ o2,
¬o1 ∨ ¬o2 ∨ v1,

v6 ∨ o3,
v10 ∨ o6,
v1∨v2∨v3∨¬v4,
v2 ∨ ¬v5 ∨ v11,

v6 ∨ v7 ∨ v9,
v6 ∨ v10,
v7 ∨ ¬v10 ∨ ¬v8,
¬e2 ∨ ¬a1 ∨ a2,

¬i1 ∨ ¬e2 ∨ a2,
¬i1 ∨ e2,
¬i1 ∨ a1,
i1 ∨ ¬a2.

The XOR gate x1 ↔ (¬x2⊕x3) is first detected. Then the effect of XORgateSimpl
has been to cancel the four clauses x1 ∨ x2 ∨ x3, ¬x1 ∨ ¬x2 ∨ x3, ¬x1 ∨ x2 ∨ ¬x3,
and x1 ∨ ¬x2 ∨ ¬x3, which are used to show that x1 is equivalent to ¬x2 ⊕ x3.

Finally, pmc(Σ) consists of the following clauses:

b1,
v1 ∨ o1,
v5 ∨ o2,

¬o1 ∨ ¬o2 ∨ v1,
v6 ∨ o3,
v10 ∨ o6,

v1∨v2∨v3∨¬v4,
v2 ∨ ¬v5 ∨ v11,
v6 ∨ v7 ∨ v9,

v6 ∨ v10,
v7 ∨ ¬v10 ∨ ¬v8.

The fixed point is reached after 3 iterations. During the second iteration, the
equivalence i1 ↔ a2 is detected by equivSimpl. This leads first to cancel the
clauses ¬i1 ∨ ¬e2 ∨ a2 and i1 ∨ ¬a2. Furthermore, the replacement of i1 by its defi-
nition in ¬i1 ∨ e2 leads to generate the clause ¬a2 ∨ e2; the replacement of i1 by its
definition in ¬i1 ∨ a1 leads to generate the clause ¬a2 ∨ a1. Finally, during the third
iteration, the AND gate a2 ↔ (e2 ∧ a1) is detected. The corresponding replacement
leads to cancel the clauses ¬e2 ∨¬a1 ∨ a2, ¬a2 ∨ e2 and ¬a2 ∨ a1, which have been
used to find the definition.

3.3.1 The eq Combination

Clearly enough, the eq preprocessing ensures that:

#var(eq(Σ)) ≤ #var(Σ),

#lit(eq(Σ)) ≤ #lit(Σ),
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tw(eq(Σ)) ≤ tw(Σ)

since every elementary preprocessing in it satisfies such inequalities.
Empirically, we obtained the results reported at Figures 24, 25, and 26.
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Fig. 24 Comparing #var(Σ) with #var(eq(Σ)).

Figures 24, 25, and 26 show significant improvements of both the #var value,
the #lit value and the tw value of the instance. Especially, some synergetic effects
obtained by combining elementary preprocessings can be observed; for instance, for
the configuration data set, taking advantage of eq leads to enhanced reductions of the
#lit value and the tw value, compared with those obtained using backboneSimpl

alone. The eq preprocessing also improves both the number of instances for which
QuickBB succeeded in computing a tw value (it terminated with a memory-out for
43 instances over 182) and the number of instances (48) for which QuickBB suc-
ceeded in computing the exact value of the treewidth.

3.3.2 The #eq Combination

Contrariwise to the eq preprocessing , the #eq preprocessing ensures only that:

#var(#eq(Σ)) ≤ #var(Σ).

For the #lit measure and for the tw measure, an increase is possible.
Empirically, we obtained the results reported at Figures 27, 28, and 29.
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Fig. 25 Comparing #lit(Σ) with #lit(eq(Σ)).
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Fig. 26 Comparing tw(Σ) with tw(eq(Σ)).
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Those figures show that #eq may lead in practice to huge reductions of both the
#var value, the #lit value and the tw value of the instance. Again, some synergetic
effects obtained by combining elementary preprocessings can be observed; compared
with ANDgateSimpl (which is the most efficient elementary preprocessing included
in the #eq combination), the reduction of the #var value of the instance is more
important (whatever the data set under consideration). For the configuration data set
and the circuit data set, the further decreases of the #lit value and of the tw value
obtained by exploiting #eq are also salient. Unsurprisingly #eq appears as the most
efficient preprocessing among those we considered (in the sense that it leads to the
most significant reductions of the #var value, the #lit value and the tw value). As
the other preprocessings, using #eq also improves both the number of instances for
which QuickBB succeeded in computing a tw value (it terminated with a memory-
out for 29 instances over 182) and the number of instances (79) for which QuickBB
succeeded in computing the exact value of the treewidth.
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Fig. 27 Comparing #var(Σ) with #var(#eq(Σ)).

4 On the Impact of Preprocessings on Model Counting Techniques

In a second step, we evaluated the impact of each elementary preprocessing by cou-
pling it with a model counter. Two families of model counters have been considered
downstream.
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Fig. 28 Comparing #lit(Σ) with #lit(#eq(Σ)).
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We first considered ”direct” model counters, i.e., without any compilation. We
took advantage of the exact model counters Cachet [50] and sharpSAT [55], as
well as of the approximate model counter SampleCount [25].

The second family gathers compilation-based approaches to model counting. We
considered the compilers C2D [14,15], Dsharp [43], SDD [16], and cnf2obdd [56,
31]. C2D and Dsharp target the Decision-DNNF language; SDD and cnf2obdd tar-
get respectively the languages SDD and OBDD (two subsets of the d-DNNF language).

We considered the 182 instances already used in the previous section. All the
model counters and compilers have been run with their options by default, and a time
limit of 1h per instance as been considered for each of them, but SampleCount. For
SampleCount, the cutoff has been fixed at 200000. Only equivalence-preserving
techniques (including the eq combination) have been used when the compilation-
based approaches have been considered.

For each model counting technique used, for each preprocessing technique p un-
der consideration, we computed the numbers of benchmarks ”solved”4 when p is
used, and when it is not. The results are presented under the form of cactus plots.
Such plots make precise the number of instances ”solved” in a given amount of time
per instance.

4.1 Exact and Approximate Model Counters

4.1.1 Cachet

Cachet (www.cs.rochester.edu/˜kautz/Cachet/index.htm) [50] is
an exact model counter, based on the ZChaff SAT solver [42,59], and integrating com-
ponent caching with clause learning. The branching heuristic it exploits is Variable
State Aware Decaying Sum (VSADS) [51].

Figure 30 illustrates the impact of each preprocessing considered in the previous
section on Cachet. We can observe that the best performers are backboneSimpl,
eq , ANDgateSimpl, and #eq . Clearly enough, #eq leads to the larger improvements,
and appears as significantly better than backboneSimpl, eq , and ANDgateSimpl.
The other preprocessings do not have any noticeable impact (their level of perfor-
mance is close to the one obtained when no preprocessing is used).

4.1.2 sharpSAT

sharpSAT (sites.google.com/site/marcthurley/sharpsat) [55] al-
so is an exact model counter. Compared to Cachet, sharpSAT takes advantage of
a new approach of coding components, which reduces the cache size significantly,
and a new cache management scheme. Furthermore, within sharpSAT, (implicit)
bcp is used at every decision point in order to find some failed literals, i.e., literals
which are falsified in every model of the formula corresponding to the decision point.
This is done independently of the variable selected by the branching heuristic (which

4 ”Solved” means that the number of models has been found for all methods but SampleCount, and
that an approximation has been computed when SampleCount is considered.
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Fig. 30 Comparing the impact of preprocessings on Cachet.

is VSADS, as in Cachet). The literals which belong to clauses that became binary
in the most recent call to bcp are selected as candidates for failed literals. A conflict
clause is learned for each failed literal found.

Figure 31 presents similar results as those presented for Cachet, but based on
the model counter sharpSAT. Again, #eq leads to the larger improvements. While
backboneSimpl, eq , ANDgateSimpl exhibit quite the same level of performance as
when Cachet is used downstream, it turns out that ANDgateSimpl is significantly
better than eq when the model counter under consideration is sharpSAT. Inter-
estingly, every preprocessing considered here has an impact (it leads to solve more
quickly more instances than those solved when no preprocessing takes place).

4.1.3 SampleCount

SampleCount (www.cs.cornell.edu/˜sabhar/#software) [25] is an
approximate model counter. It is a randomized algorithm with a high probability of
success. Indeed, SampleCount provides provably (probabilistic) guaranteed lower
bounds on the model counts of the input formula using solution sampling. More pre-
cisely, SampleCount first uses sampling to select a set of variables of the formula
to fix. Once a sufficient number of variables have been set, the remaining formula can
be counted using an exact model counter (Cachet). From the exact residual model
count and the number of fixed variables, a lower bound on the total number of models
is obtained.

Figure 32 presents the numbers of instances for which SampleCount succeeded
in computing an approximation of the number of models, for a cutoff equal to 200000,
depending on the chosen preprocessing.



44 Jean-Marie Lagniez, Pierre Marquis

 1

 10

 100

 1000

 60  70  80  90  100  110  120  130  140  150

T
im

e 
(i

n
 s

ec
o

n
d

s)

Number of solved instances

Init
Eq

#Eq
XOR Gates

Backbone
AND/OR Gates

Literal Equivalences
Vivification

Occurence ReductionOccurrence

Fig. 31 Comparing the impact of preprocessings on sharpSAT.
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Fig. 32 Comparing the numbers of instances solved by SampleCount equipped or not with some
preprocessings.

#eq appears as the best preprocessing technique among those tested as to the
number of instances ”solved”. However, the very significance of this measure is
doubtful, since it does not tell anything about the quality of the approximation. In-
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deed, 0 is a lower bound of the number of models of any instance, and it can be com-
puted in constant time! For this reason, we performed some additional experiments
in order to determine whether applying some preprocessing technique leads or not to
improve the approximation of the number of models achieved by SampleCount.
The results are reported in Table 1. Each cell indicates the number of instances for
which SampleCount equipped with the preprocessing technique associated with
the row led to a better estimate (i.e., a larger value since SampleCount reports a
lower bound of the number of models of the input instance) than SampleCount
equipped with the preprocessing technique associated with the column. ”Init” means
that no preprocessing has been used. Interestingly, the ”Init” column of the top table
shows that each preprocessing has a positive influence on the quality of the lower
bounds computed using SampleCount; furthermore, the #eq rows show that #eq
is the approach leading to the best improvements among the tested preprocessings.

Init backboneSimpl occurrenceSimpl vivificationSimpl

Init 0 -57 -37 -47
backboneSimpl 57 0 20 22
occurrenceSimpl 37 -20 0 1
vivificationSimpl 47 -22 -1 0

equivSimpl 39 -18 6 -5
ANDgateSimpl 52 -16 10 11
XORgateSimpl 37 -20 2 3

eq 56 1 15 19
#eq 76 3 36 39

equivSimpl ANDgateSimpl XORgateSimpl eq #eq

Init -39 -52 -37 -56 -76
backboneSimpl 18 16 20 -1 -3
occurrenceSimpl -6 -10 -2 -15 -36
vivificationSimpl 5 -11 -3 -19 -39

equivSimpl 0 -14 2 -15 -33
ANDgateSimpl 14 0 13 -7 -26
XORgateSimpl -2 -13 0 -15 -33

eq 15 7 15 0 -19
#eq 33 26 33 19 0

Table 1 Quality of the estimates of the number of models reported by SampleCount depending on the
preprocessing which has been applied first.

4.2 Compilation-Based Model Counting

4.2.1 C2D

C2D (reasoning.cs.ucla.edu/c2d/) [14,15] is a top-down compiler target-
ing the Decision-DNNF language. The generation of the decision nodes in the result-
ing Decision-DNNF representation is guided by a decomposition tree (dtree) of the
input CNF instance Σ, which is computed first.
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Fig. 33 Comparing the impact of preprocessings on C2D.

Figure 33 gives the numbers of instances which have been successfully compiled
by C2D within the time limit, depending on the preprocessing used. eq appears as
the best performer, offering larger gains than backboneSimpl, which led itself to a
larger number of solved instances than the other preprocessing techniques. For them,
the impact is unclear (they exhibit quite the same level of performance as when no
preprocessing is performed).

4.2.2 Dsharp

Dsharp (www.haz.ca/research/dsharp/) [43] also is a top-down compiler
targeting the Decision-DNNF language. The Decision-DNNF representations which
are generated by Dsharp are generated by following the traces of the sharpSAT
model counter, thus following the approach presented in [31]. Unlike C2D, the gen-
eration of the decision nodes is not guided by a decomposition tree, but a dynamic
decomposition approach is used for performing the disjoint component analysis.
Dsharp also incorporates some preprocessing technique, namely a restricted form
of backbone detection, based on bcp.

Figure 34 presents similar results as above, but based on the Dsharp compiler.
This time, both backboneSimpl and eq appear as the best performers, offering larger
gains than vivificationSimpl and occurrenceSimpl. Interestingly, every pre-
processing technique considered here has an impact.
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Fig. 34 Comparing the impact of preprocessings on Dsharp.

4.2.3 SDD

SDD (reasoning.cs.ucla.edu/sdd/ [16] is a bottom-up compiler targeting
the SDD language. A variable tree (vtree) associated with the CNF instance is searched
in a dynamic way, and an SDD representation of Σ for this tree is generated. This
representation is canonical (each computed SDD representation is compressed and
trimmed).

Figure 35 presents similar results as above for the SDD compiler. The same obser-
vations as those made for Dsharp can also be done. The improvements offered by
backboneSimpl and eq over vivificationSimpl and occurrenceSimpl, and by
vivificationSimpl and occurrenceSimpl over the case when no preprocessing
is used are nevertheless more prominent than for Dsharp.

4.2.4 cnf2obdd

cnf2obdd (www.sd.is.uec.ac.jp/toda/code/cnf2obdd.html) [56]
is a top-down OBDD compiler, following the approach presented in [31].

Figure 36 presents similar results as above for the cnf2obdd compiler. The
same observations as for SDD can be made.

5 A Large-Scale Evaluation of eq and #eq

Finally, we performed a large-scale evaluation of the benefits offered by the eq and
#eq combinations, for each of the model counting technique considered in the pre-
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Fig. 35 Comparing the impact of preprocessings on SDD.
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Fig. 36 Comparing the impact of preprocessings on cnf2obdd.

vious section. We made quite intensive experiments on a number of CNF instances Σ
from different domains, available again in the SAT LIBrary. 1449 instances Σ (from
the same 9 families as those considered in the previous sections) have been used.
They are gathered as follows:



On Preprocessing Techniques and their Impact on Propositional Model Counting 49

– BMC (18)
– Circuit (68)
– Qif (7)
– Planning (34)
– Random (105)
– Scheduling (6)
– Handmade (58)
– Configuration (35)
– Bayesian networks (1118)

No specific optimization of the preprocessing achieved depending on the family
of the instance under consideration has been considered.

We have first performed some experiments for computing the simplification times
required by the two combinations of preprocessings eq and #eq , on those instances.
It turns out that pmc is not time-expensive: the instances can typically be prepro-
cessed using a few milliseconds (even when they contain many variables and/or many
clauses).

Then, the aim was to count the number of models of each instance Σ using pmc
for the two combinations of preprocessings eq and #eq , and to determine whether
the combination(s) under consideration prove(s) or not useful for this task.

For the direct model counters except SampleCount, we compared for each
instance the time needed to solve it (i.e., to compute the number of models) when
no preprocessing was used, with the time needed to solve it when eq (resp. #eq) has
been applied first (of course, the preprocessing time is part of the global solving time),
and we also compared eq with #eq . The time limit and memory limit considered in
the experiments are the same ones as those considered in the previous experiments
(1h and 7.6 GiB).

As to SampleCount, we compared the quality of the aproximations of the num-
ber of models obtained (with a cutoff equal to 200000) when no preprocessing, eq or
#eq were first used.

For the compilation-based model counters, we performed a similar comparison as
in the case of exact and direct model counters, yet focusing on the compilation times
and the sizes of the resulting compiled forms.

The results are mainly presented using scatter plots (i.e., for all model counters
but SampleCount). Each dot corresponds to a CNF instance Σ. For Cachet and
sharpSAT, the x-axis of the figure represents the computation time needed to count
its number of models when no preprocessing has been performed (or when eq has
been applied first), while the y-axis represents the time needed to count its number
of models when eq (or #eq) has been applied first. For the compilation-based model
counters, the x-axis of the figure represents the compilation time (or the size of the
compiled form) when no preprocessing has been performed, while the y-axis rep-
resents the compilation time (or the size of the compiled form) when eq has been
applied first.
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5.1 On Simplification Times

For each of the two combinations eq and #eq , Figures 37 and 38 indicate (respec-
tively) how many instances over 1449 are preprocessed within a given time limit
(in seconds). The two cactus plots are very similar (we report them in two distinct
pictures for readability reasons). This similarity shows that the gate detection and
replacement step is very efficient. Going into more detail, 78% (resp. 77 %) of the
instances are preprocessed within 1s when eq (resp. #eq) is considered; 94% (resp.
94 %) of the instances are preprocessed within 10s when eq (resp. #eq) is consid-
ered. 99% (resp. 99 %) of the instances are preprocessed within 100s when eq (resp.
#eq) is considered. Ten (resp. eleven) instances required more than 100s for being
preprocessed when eq (resp. #eq) is considered. For four of them the preprocessing
phase did not terminate before the time-out of 3600s. For the great majority of in-
stances Σ for which pmc requires more than 1s, almost all the computation time is
spent in backboneSimpl; those instances are typically hard for SAT, and unsurpris-
ingly, none of the downstream model counters has proved able to solve them (what-
ever they have been preprocessed or not). The reported simplification times appear as
very small most of the time for the two combinations under consideration. Hence, for
sure, they are very small as well for all the elementary preprocessings used in them
(but backboneSimpl in some cases).

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400

ti
m
e
(s
)

#instances

Eq(Σ)

Si
m

pl
ifi

ca
tio

n
tim

e
(i

n
se

co
nd

s)

Number of instances

Fig. 37 Number of instances (over 1449) processed by pmc equipped with the eq combination in a given
time bound.



On Preprocessing Techniques and their Impact on Propositional Model Counting 51

0.1

1

10

100

1000

0 200 400 600 800 1000 1200 1400

ti
m
e
(s
)

#instances

#Eq(Σ)

Si
m

pl
ifi

ca
tio

n
tim

e
(i

n
se

co
nd

s)

Number of instances

Fig. 38 Number of instances (over 1449) processed by pmc equipped with the #eq combination in a
given time bound.

5.2 Exact and Approximate Model Counters

5.2.1 Cachet

Figure 39 presents the obtained results for Cachet when the eq preprocessing is
used. The solving times decrease often, especially this is frequent for the instances
from the random data set. Improvements are also obtained for many instances from
the Bayesian networks data set. We can also observe that it is not rare that applying
the eq preprocessing leads to increase the computation times spent by Cachet for
counting the number of models of the instance.

Figure 40 presents similar results for Cachet when the #eq preprocessing is
used. This time, huge time savings are obtained for most of the families of instances.
Compared to the eq preprocessing, the number of instances for which using #eq leads
to decrease significantly the performances of the model counter is small. The benefits
offered by #eq over eq are also salient on Figure 41. Globally, Cachet equipped
with #eq (resp. eq , no preprocessing) has been able to solve 1221 instances (resp.
1111, 1083) over 1449 within the time and memory limits.

5.2.2 sharpSAT

Figures 42, 43, and 44 reports similar results as those obtained for Cachet, but
considering the sharpSAT model counter instead. The observations we can do are
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Fig. 39 Comparison of the computation times needed to count the number of models of an instance using
Cachet, when no preprocessing is used vs. when the eq combination has been applied first.
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Fig. 40 Comparison of the computation times needed to count the number of models of an instance using
Cachet, when no preprocessing is used vs. when the #eq combination has been applied first.
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Fig. 41 Comparison of the computation times needed to count the number of models of an instance using
Cachet, when the eq combination has been applied first vs. when the #eq combination has been applied
first.

globally the same ones as those made for Cachet, except that the benefits offered
by the two preprocessings eq and #eq are less important than in the case of Cachet.
The instances for which using eq or #eq leads to degrade the computation times are
also more numerous than for Cachet. Nevertheless, sharpSAT equipped with #eq
(resp. eq , no preprocessing) has been able to solve 1226 instances (resp. 1114, 1114)
over 1449 within the time and memory limits.

5.2.3 SampleCount

Table 2 compares the estimates of the number of models reported by SampleCount
when no preprocessing, the eq combination or the #eq combination has been applied
first. As in Table 1, each cell of the table indicates the number of instances (over 1449)
for which SampleCount equipped with the preprocessing technique associated
with the row led to a better estimate (i.e., a larger value since SampleCount reports
a lower bound of the number of models of the input instance) than SampleCount
equipped with the preprocessing technique associated with the column. ”Init” means
that no preprocessing has been used.

Clearly enough, both eq and #eq have a positive influence on the quality of the
lower bounds computed using SampleCount. #eq leads to better bounds than eq
in many cases.
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Fig. 42 Comparison of the computation times needed to count the number of models of an instance using
sharpSAT, when no preprocessing is used vs. when the eq combination has been applied first.
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Fig. 43 Comparison of the computation times needed to count the number of models of an instance using
sharpSAT, when no preprocessing is used vs. when the #eq combination has been applied first.
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Fig. 44 Comparison of the computation times needed to count the number of models of an instance using
sharpSAT, when the eq combination has been applied first vs. when the #eq combination has been
applied first.

Init eq #eq

Init 0 -144 -300
eq 144 0 -155
#eq 300 155 0

Table 2 Quality of the estimates of the number of models reported by SampleCount when no prepro-
cessing, the eq combination or the #eq combination has been applied first.

5.3 Compilation-Based Model Counting

5.3.1 C2D

Figure 45 presents the compilation times spent by C2D when no preprocessing is
used and when the eq combination has been applied first. The impact of the eq pre-
processing is salient and concerns all the families of instances.

Figure 46 presents the sizes of the compiled forms obtained using C2D, when
no preprocessing is used and when the eq combination has been applied first. The
results cohere with those obtained for the compilation times. The impact of the eq
preprocessing on the sizes of the resulting Decision-DNNF representations appears as
very significant. The instances for which the eq preprocessing has a negative influence
are quite rare, and the corresponding increases in the sizes of the compiled forms
remain limited. Globally, C2D equipped with eq (resp. with no preprocessing) has
been able to solve 1329 instances (resp. 1265) over 1449 within the time and memory
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Fig. 45 Comparisons of the compilation times of C2D, when no preprocessing is used vs. when the eq
combination has been applied first.
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Fig. 46 Comparisons of the sizes of the compiled forms obtained using C2D, when no preprocessing is
used vs. when the eq combination has been applied first.

limits. It proved empirically as the best approach on the set of benchmarks we used
(which can be explained by the huge number of instances from the Bayesian networks
family considered in the experiments).



On Preprocessing Techniques and their Impact on Propositional Model Counting 57

5.3.2 Dsharp

Figures 47 and 48 present similar results when Dsharp is used as the downstream
compiler. This time, the improvements are more mitigated. While the eq preprocess-
ing has a positive influence on both the compilation times and the sizes of the com-
piled forms for instances from the random family, it turns out to exhibit a negative
influence on those measures for instances from the Bayesian networks data set. For
many instances, it can be observed that the eq preprocessing has no influence (or a
very limited one) on the two measures. This highly contrasts with the observations
which can be made when the compiler C2D is used. Dsharp equipped with eq (resp.
with no preprocessing) has been able to solve 968 instances (resp. 973) over 1449
within the time and memory limits. Thus, the influence of the eq preprocessing on
Dsharp is globally negative as to the number of instances ”solved”.
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Fig. 47 Comparisons of the compilation times of Dsharp, when no preprocessing is used vs. when the
eq combination has been applied first.

5.3.3 SDD

Figures 49 and 50 give the results for SDD. The influence of the eq preprocessing
on the compilation times can be huge, both positively and negatively, especially for
instances from the Bayesian networks data set. The influence of the eq preprocessing
on the sizes of the compiled forms can be positive or negative as well, but it appears
as quite limited in most cases, despite the fact that the vtree which is computed can be
deeply impacted by the preprocessing. Note nevertheless that eq has a clear positive



58 Jean-Marie Lagniez, Pierre Marquis

1

10

100

1000

10000

100000

1e+06

1e+07

1 10 100 1000 10000 100000 1e+06 1e+07

E
q

(Σ
)

Σ

Bayesian Networks
Handmade

Planning
Circuit

Configuration
BMC

Random
Qif

Fig. 48 Comparisons of the sizes of the compiled forms obtained using Dsharp, when no preprocessing
is used vs. when the eq combination has been applied first.

influence on the number of instances solved: SDD equipped with eq (resp. with no
preprocessing) has been able to solve 815 instances (resp. 730) over 1449 within the
time and memory limits.

5.3.4 cnf2obdd

Finally, Figures 51 and 52 give the results obtained for cnf2obdd. The influence
of the eq preprocessing on the compilation times appears as positive or negative de-
pending on the instances, but is limited for most cases, except for instances from
the random family, for which it is typically positive and huge. As to the sizes of the
compiled forms, the eq preprocessing does not show any significant impact, except
for some instances of the random family, for which a large decrease can be observed.
Because OBDD< representations are canonical ones for each variable ordering <, no
equivalence-preserving preprocessing technique can have an impact of the size of the
resulting representation. However, the variable ordering used by cnf2obdd is gen-
erated using the MINCE heuristic [1], and the modification of the CNF instance Σ
which results from applying any preprocessing p may easily lead MINCE to generate
a variable ordering associated with p(Σ) different from the one associated with Σ.
This explains why the sizes of the compiled forms produced by eq+cnf2obdd may
differ from those produced by cnf2obdd. Globally, cnf2obdd equipped with eq
(resp. with no preprocessing) has been able to solve 304 instances (resp. 261) over
1449 within the time and memory limits.
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Fig. 49 Comparisons of the compilation times of SDD, when no preprocessing is used vs. when the eq
combination has been applied first.
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Fig. 50 Comparisons of the sizes of the compiled forms obtained using SDD, when no preprocessing is
used vs. when the eq combination has been applied first.
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Fig. 51 Comparisons of the compilation times of cnf2obdd, when no preprocessing is used vs. when
the eq combination has been applied first.
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Fig. 52 Comparisons of the sizes of the compiled forms obtained using cnf2obdd, when no preprocess-
ing is used vs. when the eq combination has been applied first.
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5.4 Focusing on the number of instances solved

A B #s(A and B) #s(A or B) #s(A) - #s(B) #s(B) - #s(A)
eq+Cachet Cachet 1083 1113 29 1
#eq+Cachet Cachet 1083 1223 139 1
#eq+Cachet eq+Cachet 1111 1223 111 1
eq+sharpSAT sharpSAT 1092 1138 23 23
#eq+sharpSAT sharpSAT 1099 1243 128 16
#eq+sharpSAT eq+sharpSAT 1106 1236 121 9

eq+SampleCount SampleCount 1168 1365 182 15
#eq+SampleCount SampleCount 1179 1387 204 4
#eq+SampleCount eq+SampleCount 1336 1397 47 14

eq+C2D C2D 1250 1346 80 16
eq+Dsharp Dsharp 953 990 16 21

eq+SDD SDD 688 857 127 42
eq+cnf2obdd cnf2obdd 259 306 45 2

Table 3 Impact of the eq and #eq preprocessings on the number of instances ”solved” for several ap-
proaches to model counting.

Tables 3 synthesizes some of the results. Each line compares the performances
of two approaches to model counting (say, A and B), using or not eq or #eq . For
instance, the first line compares Cachet equipped with the eq preprocessing with
Cachet when no preprocessing is performed. #s(A and B) indicates how many in-
stances (over 1449) have been solved by both A and B within the time limit. #s(A
or B) indicates how many instances have been solved by A or by B (or by both of
them) within the time limit. #s(A) - #s(B) (resp. #s(B) - #s(A)) indicates how many
instances have been solved by A but not by B (resp. by B but not by A) within the
time limit. In each line, the winner is in bold type, i.e., when a a value in the column
#s(A) −#s(B) is in bold, it means that #s(A) −#s(B) > #s(B) −#s(A), so
that A has been a better performer than B; similarly, when a a value in the column
#s(B) −#s(A) is in bold, it means that #s(B) −#s(A) > #s(A) −#s(B), so
that B has been a better performer than A.

The preprocessing time spent by pmc whatever the combination used is system-
atically included in the times reported in the previous figures and tables. Note that it
would not make sense to draw any conclusion about the efficiency of the preprocess-
ing by comparing for each instance the preprocessing time with the overall solving
time. Indeed, in some cases, the preprocessing time is (almost) equal to the overall
solving time, just because pmc does (almost) all the model counting job!

The empirical results clearly show the efficiency of our preprocessing techniques.
Thus, the number of instances which can be solved within the time limit when a pre-
processing is used is higher for many downstream model counters, and sometimes
significantly higher, than the corresponding number without preprocessing. This hap-
pens for all the model counters we tested, except sharpSAT and Dsharp when
equipped with the eq preprocessing (which is coherent since Dsharp mainly fol-
lows the trace of sharpSAT). A possible explanation is that the use of implicit bcp
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in sharpSAT and Dsharp, as well as the (incomplete) backbone detection per-
formed by Dsharp as a preprocessing, make the eq preprocessing useless; the time
spent doing it is thus wasted, and this has an influence on the number of instances
which can be solved within the time limit.

Interestingly, eq+C2D led to substantial space savings compared to C2D. Espe-
cially, our experiments showed that the size of the resulting Decision-DNNF represen-
tations can be more than one order of magnitude larger without preprocessing. This
can be explained by the treewidth reduction which can be achieved by the eq pre-
processing (cf. Figure 26). Indeed, it is known that the only exponential factor in the
time complexity of C2D (thus, in the size of the generated Decision-DNNF represen-
tation) is the width of the decomposition tree which is computed. Furthermore, this
width is bounded by the treewidth of the primal graph of the input CNF instance [14].
The size reduction of the compiled form which results from the eq preprocessing is
a strong piece of evidence that its practical impact is not limited to the model count-
ing issue, and that the eq preprocessing also proves useful for equivalence-preserving
knowledge compilation.

Finally, contrariwise to eq , the #eq preprocessing proved useful for every down-
stream model counter. The increase of the number of instances solved when #eq is
applied is often very significant. One can also observe that the impact of the equiva-
lence/gates detection and replacement is huge (for instance, #eq+Cachet is a much
better performer than eq+Cachet).

5.5 Explaining the Impact of eq and #eq on Model Counting

In order to look for an explanation of the computational benefits offered by the
eq combination and the #eq combination, we performed some additional measure-
ments. Our primary assumptions were that reducing the input CNF instances in term
of #var, #lit and tw would lead to improved performances for subsequent model
counting (i.e., a reduction of the computation times needed to count models when
direct model counters are used, and a reduction of both the compilation times and the
sizes of the compiled representations, when compilation-based model counters are
considered). Our further measurements are intended to test these assumptions.

In order to keep the paper in reasonable size limits, only two downstream model
counters have been considered: Cachet and C2D.5 For each of the three measures
(#var, #lit and tw), we drew a dot plot where we reported for Cachet (equipped
with #eq) and C2D (equipped with eq), the time improvement as a function of the
measure improvement. For eq and C2D, we also added similar dot plots about size
improvement. Each time/size/measure improvement has been computed as the ratio
between its value without preprocessing minus its value with preprocessing, divided
by the value of the measure without preprocessing. This ratio is positive when the
preprocessing proved useful, and negative otherwise (which may easily happen – for
instance when the instance under consideration has already been preprocessed, pre-
processing it again may just be a waste of computational resources when no further

5 We made similar measurements with the other model counters considered in the paper, and got similar
observations. The corresponding results are available from the authors on demand.
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reduction is achieved). So as to make significant observations, we selected in the set
of 1449 benchmarks only those which are ”mildly hard” for model counting (for-
mally, those for which C2D – which was the best performer on our dataset given the
huge number of instances encoding Bayesian networks in it – required at least 10s to
compile them). The resulting subset of CNF formulae Σ contains 1188 instances for
which measure improvements have been computed. Cachet succeeded in counting
the number of models for 1082 instances among them within the given time limit. For
the tw measure, as already explained, we actually computed a upper bound of tw(Σ).
We did it using QuickBB (www.hlt.utdallas.edu/˜vgogate/quickbb.
html) equipped with the min fill heuristic and for an allocated time of 1h. This
led us to focus on a proper (and much smaller) subset of the set of instances, contain-
ing only 69 CNF formulae (for the remaining ones, QuickBB has not been able to
do the job in due time).

Figures 53, 54, and 55 show how the #var (resp. #lit, tw) improvement ob-
tained by using eq is related to the compilation time improvement obtained by C2D.
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Fig. 53 Comparisons of the #var improvements and the compilation time improvements obtained when
eq and C2D are used.

Figures 56, 57, and 58 report measurements similar to those given on Figures 53,
54, and 55, but focus on compilation size improvements.

Finally, Figures 59, 60, and 61 show how the #var (resp. #lit, tw) improve-
ment obtained by using #eq is related to the time improvement for model counting
obtained by Cachet.

Looking at Figures 53 to 61, one can first observe that there is no monotonic
relationship between any measure improvement and the time (or space) improvement
it would lead to, whatever Cachet (equipped with #eq) or C2D (equipped with
eq) are used for model counting. This can be easily explained by the fact that some
instances are already simplified (or almost simplified) and in this case, as already
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Fig. 54 Comparisons of the #lit improvements and the compilation time improvements obtained when
eq and C2D are used.
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Fig. 55 Comparisons of the tw improvements and the compilation time improvements obtained when eq
and C2D are used.

mentioned, the preprocessing phase is useless and increases the global solving time. It
can even be the case that simplifying the input instance (i.e., reducing its #var, #lit
or tw measure) leads to increasing the corresponding time (solving time for Cachet
and compilation time for C2D), as well as the size of the compiled representation
obtained with C2D. A reason for it is that the simplification phase may have a strong
impact on the branching heuristic (based on VSADS) used by Cachet and on the
decomposition tree computed by C2D. One can observe that such scenarios where
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Fig. 56 Comparisons of the #var improvements and the compilation size improvements obtained when
eq and C2D are used.
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Fig. 57 Comparisons of the #lit improvements and the compilation size improvements obtained when
eq and C2D are used.

preprocessing appears as counterproductive are quite rare when #var and tw are
considered, and more frequent when #lit is considered.

Another interesting observation is that for a great majority of instances any mea-
sure improvement leads to a time (or a space) improvement for the downstream ap-
proach to model counting: graphically speaking, the great majority of dots in Fig-
ures 53 to 61 are located in the rightmost parts of the figures (those for which the
time/space improvements are positive). Of course, this coheres with the results of
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Fig. 58 Comparisons of the tw improvements and the compilation size improvements obtained when eq
and C2D are used.
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Fig. 59 Comparisons of the #var improvements and the time improvements for model counting obtained
when #eq and Cachet are used.

the experiments discussed previously in the paper and shows that preprocessing is
typically useful.

One can also observe that the repartition of the #lit improvements which have
been obtained is more uniform than the repartition of the #var improvements and
that (as expected) #eq leads to eliminate many more variables than eq . Indeed, most
of the time, #var improvements are of value less than 20% when eq is used, and of
value less than 40% when #eq is used instead. For a few instances, all the variables
are eliminated.
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Fig. 60 Comparisons of the #lit improvements and the time improvements for model counting obtained
when #eq and Cachet are used.
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Fig. 61 Comparisons of the tw improvements and the time improvements for model counting obtained
when #eq and Cachet are used.

In order to get less informative, yet more readable figures, we also measured mean
cumulated improvements for the three measures. For each of #var, #lit and tw, for
each possible improvement ratio r obtained in the experiments for this measure, we
gather all instances for which the improvement obtained by preprocessing is ≤ r.
Then we compute the mean value of the improvements for those instances, and we
relate it with the mean time/size improvement obtained for the same instances. The
resulting dots are then linked (formally, a linear interpolation is achieved) in order to
make the curves smooth.
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Figure 62 shows how the mean cumulated improvement for #var, #lit and tw
obtained by using #eq is related to the mean cumulated time improvement for model
counting obtained by Cachet.
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Fig. 62 Comparisons of the mean cumulated improvements for the three measures and the mean cumu-
lated time improvements for model counting obtained when #eq and Cachet are used.

Figures 63 and 64 show respectively how the mean cumulated improvement for
#var, #lit and tw obtained by using eq is related to the mean cumulated compilation
time improvement (respectively the mean cumulated compilation size improvement)
obtained by C2D.

One can check on Figures 62, 63 and 64 that none of the reported curves corre-
spond strictly to a monotonic function. However, each of the curves has the shape
of a ”globally increasing” function, which was what we expected. The ”quite flat”
aspect of the curves related to #var is easily explained by that fact that the experi-
ments done led to almost no improvement value in the interval [20, 100) when C2D
has been considered (resp. [40, 80] when Cachet has been considered). Finally, it is
quite hard to draw any solid conclusion about the tw curves. On the one hand, only
upper approximations of the actual tree widths are computed. On the other hand, the
curves are based on very few instances.

To sum up, our experiments show slight, yet interesting correlations: from an
empirical point of view, reducing the value of #var, #lit and tw through a prepro-
cessing step often leads to diminish the model counting times (for Cachet), and
both the compilation times and the sizes of the compiled representations for C2D.
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Fig. 63 Comparisons of the mean cumulated improvements for the three measures and the mean cumu-
lated compilation time improvements obtained when eq and C2D are used.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

s
iz

e

#lit

#var

tw

Fig. 64 Comparisons of the mean cumulated improvements for the three measures and the mean cumu-
lated compilation size improvements obtained when eq and C2D are used.

6 Other Related Work

As evoked in the introduction, many preprocessing techniques have been considered
so far for SAT solving and QBF solving, see e.g., [27,30]. Some of them do not pre-
serve the number of models of the input, and we cannot take advantage of such tech-
niques given our model counting objective. Among the remaining preprocessings are
the following equivalence-preserving techniques:
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– Failed Literal Elimination (FLE) [23],
– Self-Subsuming Resolution (SSR) [21],
– Hidden Literal Elimination (HLE) [29],
– Subsumption Elimination (SE) [12,37,7,21],
– Hidden Subsumption Elimination (HSE) [27],
– Asymmetric Subsumption Elimination (ASE) [27,30],
– Tautology Elimination (TE) [7,21],
– Hidden Tautology Elimination (HTE) [27],
– Asymmetric Tautology Elimination (ATE) [27,30].

Those simplification techniques can be gathered into three categories: the first
one consists of clause addition techniques which lead to add some unit clauses to
the input CNF formula Σ (FLE belongs to it), the second one consists of the clause
reduction techniques which lead to remove some literals in clauses of Σ (SSR and
HLE belong to it), and the third one consists of the clause elimination techniques
which lead to remove clauses from Σ (SE, HSE, ASE, TE, HTE and ATE belong to
it).

Indeed, FLE consists in adding to the input CNF formula Σ the complements
of the failed literals in it, i.e., those literals ` such that bcp(Σ ∪ {∼`}) = {∅}. SSR
consists in replacing every clause α of the input CNF formulaΣ which has a resolvent
with another clause ofΣ, such that this resolvent subsumes α, by this resolvent. HLE
consists in exploiting the implication graph associated with the set of binary clauses
occurring in Σ. Basically, given a clause α of Σ such that α contains a literal `,
the set HL(Σ, `) containing the complements of all literals reachable from ∼` in
the binary implication graph, is computed. Then α is simplified by removing from it
every literal belonging to HL(Σ, `). SE (resp. TE) simply consists in removing from
the input CNF formula Σ the clauses which are properly subsumed (resp. which are
valid). The remaining techniques listed above also consist in removing some clauses
from the input when they are detected as subsumed or as tautologies, after applying
a literal addition rule to them. This rule is referred to as the Hidden Literal Addition
rule (HLA) for HSE and HTE, and as the Asymmetric Literal Addition rule (ALA)
for ASE and ATE. Given a CNF formula Σ containing a clause `1 ∨ . . . ∨ `k ∨ ` and
another clause α of Σ containing the literals `1, . . . , `k, applying the ALA rule to α
givenΣ consists in replacing α by α∨∼`. The HLA rule is the restriction of the ALA
rule to the case k = 1.

It is easy to check that backboneSimpl is a clause addition technique which is
more effective than FLE in the sense that every unit clause added using FLE is also
obtained using backboneSimpl, but the converse does not hold. Furthermore, in [27]
it is shown that ATE is more effective (or powerful) than any preprocessing technique
among the remaining clause elimination techniques (SE, TE, HSE, HTE, ASE) in the
sense that every clause which can be removed using any of those techniques can be
removed as well using ATE, but the converse does not hold.

We now show that, on the one hand, occurrenceSimpl is more efficient w.r.t.
clause reduction than SSR and HLE, and on the other hand, that vivificationSimpl
is more efficient than ATE w.r.t. clause elimination.
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Proposition 1 If a literal ` of a clause α from Σ is eliminated using SSR or HLE,
then ` is eliminated from α as well using occurrenceSimpl.

Proof

– SSR: ` can be removed from α using SSR iff there exists a clause ∼` ∨ β in Σ
such that every literal from β is a literal from α \ {`}. Hence, every literal from
∼` ∨ β is the complement of a literal from {`} ∪ {∼(α \ {`})}. Accordingly,
bcp(Σ ∪ {`} ∪ {∼(α \ {`})}) = {∅}, which implies that ` can be removed from
α using occurrenceSimpl.

– HLE: Let ` be a literal from a clause α of Σ. Suppose that α contains also a
literal `′ such that ` ∈ HL(Σ, `′). Then there exists a subset B of Σ consisting
of binary clauses `′ ∨ `1,∼`1 ∨ `2, . . . ,∼`k ∨ ∼`. We have that `′ ∈ α \ {`}.
Hence ∼`′ ∈ ∼(α \ {`})}). Now, from B and `, by unit propagation the literal
`′ is generated. Accordingly, since ∼`′ ∈ ∼(α \ {`})}), we obtain that bcp(Σ ∪
{`} ∪ {∼(α \ {`})}) = {∅}. This shows that ` can be removed from α using
occurrenceSimpl.

Proposition 2 If a clause α from Σ is eliminated using ATE, then α is eliminated as
well using vivificationSimpl.

Proof Let ALA(Σ,α) be the set of literals ` which can be added to a clause α of Σ
via the application of the ALA rule. We show that for each ` ∈ ALA(Σ,α), in the
implication graph associated with bcp((Σ\{α})∪{∼α}) there exists a node labelled
with ∼`. The proof is by induction on the number n of applications of the ALA rule
needed to generate the whole set ALA(Σ,α).

Let ALA(Σ,α)m (0 ≤ m ≤ n) be the set consisting of the m literals obtained
by applying the ALA rule to α given Σ m times successively. Let αm (0 ≤ m ≤ n)
be the clause obtained by adding to α0 = α all literals from ALA(Σ,α)m.

The base case is when n = 1. Then there exists a clause `1 ∨ . . . ∨ `k ∨ ` in
Σ \ {α0} such that `i ∈ α0 (i ∈ 1, . . . , k), leading to replace α0 by α1 = α0 ∨ ∼`.
The literal ∼` is added to ALA(Σ,α)0 = ∅, leading to ALA(Σ,α)1 = {∼`}. Since
`i ∈ α (i ∈ 1, . . . , k) and `1 ∨ . . .∨ `k ∨ ` belongs to Σ \ {α}, it is easy to verify that
` can be derived by unit propagation from (Σ \ {α}) ∪ {∼α}.

Now, consider the general case n > 1. By induction hypothesis, suppose that
every ` generated by applying the ALA rule to αm−1 (with m − 1 < n) given Σ,
there exists a node in the implication graph associated with bcp((Σ \ {α}) ∪ {∼α})
which is labelled with ∼`. We have to show that the literal ∼` generated by applying
the ALA rule to αm given Σ satisfies the same property. We know that there exists a
clause `1 ∨ . . .∨ `k ∨ ` in Σ \ {αm} such that `i ∈ α∪ALA(Σ,α)m (i ∈ 1, . . . , k),
leading to replace αm by αm+1 = αm ∨ ∼` and to add ∼` to ALA(Σ,α)m in order
to produce ALA(Σ,α)m+1. Let us consider any `i (i ∈ 1, . . . , k). If `i ∈ α, then by
construction ∼`i ∈ ∼α, hence ∼`i belongs to the implication graph associated with
bcp((Σ \{α})∪{∼α}). If `i ∈ ALA(Σ,α)m, then by induction hypothesis ∼`i also
belongs to this graph.

Finally, let α be any clause from Σ such that α is removed using the ATE rule.
This implies that the clause αn is valid. Since for every literal ` of αn, ` belongs to
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α ∪ ALA(Σ,α)n, we obtain that every literal ∼` belongs to the implication graph
associated with bcp((Σ \ {α}) ∪ {∼α}). Since αn is valid, there exist two comple-
mentary literals in this graph, implying that bcp((Σ \ {α}) ∪ {∼α}) = {∅}. In this
case, by definition of vivificationSimpl, α is removed by vivificationSimpl.

In the main loop of pmc equipped with the eq combination or the #eq combina-
tion, occurrenceSimpl is performed first in order to possibly get more propagation
power for bcp, and vivificationSimpl is performed last in order to remove use-
less clauses. Together with the previous effectiveness results recalled above, Propo-
sitions 1 and 2 explain why none of the nine equivalence-preserving techniques con-
sidered here has been taken into account explicitly in any of the two combinations.6

Using in addition any of the other techniques described above would not lead to get
more effective clause reductions or eliminations.

To sum up, while the other techniques may prove useful in practice when the sat-
isfiability issue is targeted, it turns out that considering more efficient (yet more time
demanding) preprocessings such as occurrenceSimpl and vivificationSimpl

makes sense when the objective is more time consuming, as it is the case for model
counting. Of course, it cannot be excluded that considering less effective preprocess-
ing techniques (in term of clause reduction/clause elimination) would lead to dimin-
ish the preprocessing time, hence the overall solving time, and further experiments
would be needed to determine whether this is the case. Nevertheless, the simplifi-
cation times about the preprocessing combinations we implemented, as reported in
Section 5.1, are typically very small. In addition, for the elementary preprocessing
techniques we have considered in our experiments, the more effective the technique
(in term of clause reduction/clause elimination) the more significant the reduction of
the overall solving time. This is particularly salient for the gate detection and replace-
ment preprocessings, as described in Section 5.4.

7 Conclusion

We have implemented a preprocessor pmc for model counting which includes sev-
eral preprocessing techniques, especially vivification, occurrence reduction, back-
bone identification, as well as equivalence, AND and XOR gate identification and
replacement.

The experimental results we have obtained show that pmc is useful for many
downstream model counters. Especially, it often leads to significantly decrease the
time needed for model counting when direct model counters are used downstream,
and the size of the compiled forms when compilation-based model counters are con-
sidered.

If the main contribution of the paper consists in presenting a preprocessor for
model counting, and in proving it practically efficient, some other contributions of
different nature are also worth being noted. From an algorithmic point of view, our

6 Similarly, it is easy to check that the Equivalent Literal Substitution (ELS) technique which consists in
computing first the strongly connected components of the binary implication graph ofΣ, then in replacing
in Σ every literal by a representative of its equivalence class is less effective than equivSimpl.
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technique for detecting AND/OR gates turns out to be original and efficient. In partic-
ular, it is somehow ”semantical” (i.e., based on BCP) and not ”syntactical” (i.e., based
on pattern matching). From a more theory-oriented side, we have shown that replac-
ing equivalent literals in a CNF formula can increase the tree width of the associated
primal graph. We have also obtained a number of results concerning the confluence,
the projectivity and the relative efficiency of some preprocessing techniques.

This work opens several perspectives for further research. Finding other efficient
preprocessings and incorporating them into pmc, and testing some additional com-
binations are some of them. Especially, detecting and replacing If-Then-Else gates
(as considered in [21]) could prove useful. It would also be interesting to determine
the ”best” combinations of elementary preprocessings, depending on the benchmark
families. Assessing whether pmc proves useful upstream to other knowledge compi-
lation techniques (for instance, those described in [10,53,22,9]) would be valuable
as well.

As future work, we plan also to investigate whether the preprocessing techniques
we have considered could be adapted to the inprocessing case [33] (i.e., being used
within a ”direct” model counter at some decision nodes).

Exploiting the preprocessing techniques based on equivalence or gate detection
and replacement in the case a compilation-based approach is used downstream, has
to be investigated. Indeed, if Σ |= l ↔ Φ holds, then replacing Σ by Σ[` ←
Φ] ∧ (` ↔ Φ) is an equivalence-preserving transformation. When the set PS of
propositional variables can be partitioned into two sets, a set C of controllable vari-
ables and a set U of uncontrollable variables, so that conditioning the variables of
U is never required, such an equivalence-preserving transformation can prove useful
in a compilation-based approach to model counting. The idea is to look for equiva-
lences of the form ` ↔ Φ when var(`) ∈ U , only. Indeed, given a consistent term γ
built up from variables of C, only, the conditioning Σ | γ of Σ by γ is equivalent to
(Σ[` ← Φ] | γ) ∧ (` ↔ (Φ | γ)), hence the number of models of Σ | γ is equal to
the number of models of (Σ[`← Φ] | γ). Compiling Σ[`← Φ] into a representation
from which both the conditioning transformation and the model counting query are
tractable thus prove enough to be able to compute the number of models of Σ condi-
tioned by any term built up from variables of C. Interestingly, problems for which a
restricted form of conditioning is sufficient occur in the model-based diagnosis area,
and in the planning area. It would be interesting to determine empirically whether
such detections would prove computationally helpful.

Finally, another interesting issue to be investigated concerns the impact of pmc
on model enumeration, i.e., the problem which consists in listing successively all
the models of a given propositional formula Σ. Obviously, model enumeration is
computationally hard when no restriction is imposed on Σ, because the number of
models of Σ can be exponential in the size of Σ (and there is nothing to do for
circumventing this source of complexity), but also because generating an additional
model (or determining that all the models have been generated) also is computa-
tionally demanding. Clearly enough, pmc equipped with the eq combination can be
safely used to simplify any Σ before enumerating its models, and it would be use-
ful to characterize families of instances Σ for which this is computationally helpful.
Furthermore, provided that the definitions `1 ↔ Φ1, . . . , `k ↔ Φk are stored when
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they are found, gate detection and replacement can also be exploited for model enu-
meration. Indeed, by construction, there exists a one-to-one mapping between the set
of models of Σ over Var(Σ) and the set of models of Σ[`1 ← Φ1, . . . , `k ← Φk]
(i.e., the formula obtained by replacing in Σ every gate found by its definition) over
Var(Σ[`1 ← Φ1, . . . , `k ← Φk]). Given any model Ir of Σ[`1 ← Φ1, . . . , `k ← Φk]
over its set of variables, determining the corresponding model I of Σ over Var(Σ)
simply consists in determining the truth value of each var(`i) (i ∈ 1, . . . , k) in I
(since Ir is a restriction of I). But the truth value of each var(`i) (i ∈ 1, . . . , k) in
I precisely is the truth value in Ir of the associated definition Φi. Hence completing
Ir to generate the corresponding I is not computationally demanding when the def-
initions `1 ↔ Φ1, . . . , `k ↔ Φk have been computed first. Making some further ex-
periments to determine the extent to which pmc equipped with the #eq combination
is useful for model enumeration would thus be of interest. This could be particularly
valuable when compilation-based model counters are considered. Indeed, when the
input formula has been first turned into a compiled form, model enumeration can be
typically achieved with a polynomial-delay algorithm (an enumeration algorithm has
polynomial delay if the elapsed time between two successive outputs is polynomial
in the size of the input).
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