
Sat4j-CSP
XCSP3 Competition – 2017

Daniel Le Berre, Emmanuel Lonca

CRIL (Centre de Recherche en Informatique de Lens)
Université d’Artois – CNRS

F-62307 Lens
France

{leberre,lonca}@cril.fr

03 September 2017

1 Solver Description

Sat4j[1] is a constraint satisfaction and optimization library developped in
Java. It is a mature project (Sat4j was born in 2004) included since June 2008
in the Eclipse IDE as part of its plugin dependency management engine[4]. As
indicated by its name, the original library design was built on top of a SAT
solver. Taking advantage of the this initial solver, several new kinds of solvers
were added to the library (pseudo-Boolean solver, MAXSAT solver, ...) including
a CSP solver.

Sat4J-CSP3, the version submitted to the 2017 XCSP3 Competition[7], is far
more than an improvement to Sat4j-CSP2[5] giving it the ability to read XCSP3
input files. While Sat4j-CSP2 was intended to handle the most common con-
straints (extension, intension, allDifferent), the current version was built with
the idea to handle the whole set of constraints proposed by the specifications of
the XCSP3-core instance format[2]. Since, for most constraints, we had to start
from scratch, we just translated most of the constraints into intension ones, tak-
ing advantage of the instance parser provided by Christophe Lecoutre[6].

The intension constraints encoder developped for Sat4j-CSP2 was simply
evaluating each constraint usin javascript (Rhino library) and generated the
whole set of nogoods for each of them. Although it was sufficient for instances
with intension constraints considering few variables with small domains, the
encoding of global constraints into intension constraints made the encoder abso-
lutely unefficient. We thus developped a new intension constraint encoder, based
on the principle of the Tseitin encoding:

1. from a constraint, we build a tree where the nodes are labelled with opera-
tors, and leaves with variables or constants;

2. each node is associated with a new integer variable giving its value (0 or 1
for nodes labelled with boolean operators);

3. considering the nodes from the leaves to the root, the mapping between the
values of its children and its own value is encoded using Boolean constraints;

4. the value of the root is enforced to a non-zero value.

Concerning the optimization of objectives in functional forms, the same algo-
rithm is used except for the last step: instead of enforcing the tree root value,
the variable it is associated with is set as the objective function.

2 Future Work

Sat4j-CSP3 was developped with the aim to handle the whole set of con-
straints allowed in XCSP3-core. However, at this step, there is room for im-
provements. First, the encoding of integer variables uses one binary variable for
each value in its range. For arrays of integer variables taking their values in large
domains, this results in the declaration of a huge amount of Boolean variables,
making the solver running out of memory. A slight adaptation of some encodings
used for At-Most-1 constraints (like the binary encoding or the Two-Product
encoding[3]) may help in terms of efficency to keep the memory consumption
under the system limits.

At this time, we did not develop any specific constraint encodings. We trans-
lated most of the global constraints into intension ones, so we do not take advan-
tage of known encodings of these constraints. In addition, new integer variable
encodings (as described in the beginning of this section) may bring some effi-
cency tracks to intension constraints encoding.

Finaly, we plan to support multicriteria optimization. This is possible because
Sat4j has such capabilities for some families of Boolean functions.

3 Acknowledgements

This work has been supported by the project CPER DATA from the “Hauts-de-
France” Region.

References

1. Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. JSAT, 7(2-3):59–6,
2010.

2. Fréderic Boussemart, Christophe Lecoutre, and Cédric Piette. XCSP3 specifications.
http://xcsp.org/specifications. Accessed on 2017-09-03.

3. Jingchao Chen. A new sat encoding of the at-most-one constraint. Proc. Constraint
Modelling and Reformulation, 2010.

4. Daniel Le Berre. Sat4j about page. http://www.sat4j.org/allabout.php. Accessed
on 2017-09-03.

5. Daniel Le Berre and Inês Lynce. Csp2sat4j: a simple csp to sat translator. Proceed-
ings of the 2nd International CSP Solver Competition, pages 43–54, 2008.

6. Christophe Lecoutre. XCSP3 java tools. https://github.com/xcsp3team/XCSP3-
Java-Tools. Accessed on 2017-09-03.

7. Olivier Roussel. XCSP3 competition. http://xcsp.org/competition. Accessed on
2017-09-03.

	Sat4j-CSP XCSP3 Competition – 2017
	Daniel Le Berre, Emmanuel Lonca

