
The Syntax of Essence′

November 27, 2007

Essence′ is a solver-independent constraint modelling language, which is a
subset of the abstract specification language Essence [1]. Hence Essence′ can
be used to

• formulate constraint problem models

• specify parameter values

• summarise problem solutions

In this document we give the grammar specification of each of these different
levels that is supported by the Essence′ translator [2]. Please note that this is
not a formal specification of the Essence′ language.

1 Grammar Specification

An Essence′ problem instance consists of two separate specifications: a prob-
lem model defining decision variables, domains and constraints, and a parameter
specification giving parameter values to specify the problem instance. The solu-
tion(s) of a problem instance can then be summarised by a solution specification.
Hence we have three different types of specifications:

1. problem model

2. parameter specification

3. solution specification

Before giving a concise context-free grammar for each part, we want to give
an overview of the notation that is used.

1.1 Notation

• Terms written in italic font are non-terminals and terms written in typewriter
font or special characters that are underlined (such as :) are terminals.

• Comments are preceded by $, which can be placed everywhere in the
grammar.

1

• A letter is an alphabetic character. An identifier is a string whose first
character is a letter and the rest of its characters are alphanumeric or “ ”.
Identifier recognition is case sensitive.

• A number is any string whose elements are the numeric characters.

• {a} stands for a non-empty list of as.

• {a}’ stands for a non-empty list of as separated by commas.

• {a}* stands for a non-empty list of as separated by the symbol “*”.

• [a] stands for one or zero occurences of a.

1.2 Grammar: Problem Model

1.2.1 Model

Model ::= Header
[{Declaration}’]
[Objective]
[such that { Expression }’]

Header ::= ESSENCE′ Number . Number
Declaration ::= given { Parameter }’|

where { Expression }’ |
letting { Constant }’ |
find { Variable }’

Objective ::= maximising Expression |
minimising Expression

DomainIdentifiers ::= { Identifier }’ : Domain
Constant ::= Identifier be domain Domain |

Identifier [: Domain] be Expression
Parameter ::= DomainIdentifiers

Variable ::= DomainIdentifiers

1.2.2 Domains

SimpleDomain :: bool |
int ({ RangeAtom }’) |
Identifier

Domain ::= SimpleDomain |
(Domain) |
matrix indexed by [{ Domain }’] of SimpleDomain

RangeAtom ::= Expression |
Expression .. Expression

IndexRangeAtom ::= Expression |
Expression .. Expression |
..Expression |
Expression ..

2

1.2.3 Expressions

Expression ::= (Expression) |
AtomExpression |
DeRefExpression |
UnaryOpExpression |
BinaryOpExpression |
GlobalConstraint |
QuantifierOpExpression |

AtomExpression ::= Number | true | false | Identifier
DeRefExpression ::= Identifier [{ IndexRangeAtom }’]

UnaryOpExpression ::= - Expression |
| Expression | |
! Expression

BinaryOpExpression ::= Expression BiOp Expression
BiOp ::= + | - | / | * | ^ |

\/ | /\ | => | <=> |
= | != | <= | < | >= | > |
<lex | <=lex | >lex | >=lex

GlobalConstraint ::= alldiff (Expression) |
element (Expression , AtomExpression , AtomExpression) |
table ([VariableList] , [TupleList]) |
atleast (Expression , ConstantList , ConstantList) |
atmost (Expression , ConstantList , ConstantList)

QuantifierOpExpression ::= Quantifier BindingExpression “.” Expression
Quantifier ::= forall | exists | sum

BindingExpression ::= { Identifier }’ : SimpleDomain

1.2.4 Further Restrictions

• Quantifications may not range over decision variables, i.e. BindingExpres-
sions may not contain decision variables

1.3 Grammar: Parameter Specification

ParameterSpecification ::= Header
[{Declaration}’]

Header ::= ESSENCE′ Number . Number . Number
Declaration ::= param { Constant }’

Constant ::= Identifier be domain Domain |
Identifier be ConstantExpression

ConstantExpression ::= Number | true | false
ConstantDomain :: bool |

int ({ RangeAtom }’)
RangeAtom ::= ConstantExpression |

ConstantExpression .. ConstantExpression

3

Operator Functionality Associativity
, comma Left
: colon Left
() left and right parenthesis Left
[] left and right brackets Left
! not Right
/\ and Left
\/ or Left
=> if (implication) Left
<=> iff (logical equality) Left
- unary minus Right
^ power Left
* / multiplication, integer division Left
+ - addition, substraction Left
< <= > >= (lex)less, (lex)less or equal,
<lex <=lex >lex >=lex (lex)greater, (lex)greater or equal none
= != equality, disequality none
. dot Right

Table 1: Operator precedence in Essence′

1.4 Grammar: Solution Specification

SolutionSpecification ::= Header
[{Solution}’]

Header ::= ESSENCE′ Number . Number
Solution ::= variable Identifier is { SolutionExpression}’

SolutionExpression ::= Number |
ConstantArray |

ConstantArray ::= [{ Number }’] |
[{ ConstantArray }’]

2 Operator Precedence

Table 1 describes the precedence of the operators that are arranged by decreasing
order of precedence (the operators on top have highest precedence)

3 Examples

To illustrate the grammar specified above, we give some examples. These exam-
ples can be found with the Essence′ translator which is available with Minion1.

1http://minion.sourceforge.net/

4

3.1 N-Queens

We start with the well-known n-queens problem which is to place n queens on
an n × n chessboard. The problem model states the problem class, as given as
follows:

N-Queens problem model
ESSENCE’ 1.0

given n : int(1...)
letting INDEX be domain int(1..n)
find f : matrix indexed by [INDEX] of INDEX

such that alldifferent(f),
forall i,j : INDEX .
(i > j) =>
((f[i] - i != f[j] - j)
/\ (f[i] + i != f[j] + j))

To solve a problem instance of the n-queens problem, we need to give a value
for the parameter n. We do this in the parameter specification:

N-Queens parameter specification
ESSENCE’ 1.0
param n be 8

After giving both problem model and parameter specification to a solver, for
instance using the Essence′ translator, you will be given a solution, such as

N-Queens solution specification
ESSENCE’ 1.0
var f is [0, 2, 1, 4, 3, 6, 7, 5]

References
[1] A.M. Frisch, M. Grum, C. Jefferson, B. Mart́ınez Hernández, and I. Miguel. The design of

essence: A constraint language for specifying combinatorial problems. In IJCAI, pp 80–87,
2007.

[2] I.P. Gent, I. Miguel and A. Rendl. Tailoring Solver-independet Constraint Models: A Case
Study with Essence′ and Minion In SARA, 2007.

[3] I.P. Gent, C. Jefferson, and I. Miguel. Minion: A fast scalable constraint solver. In ECAI, pp
98–102, 2006.

5

