Sugar++: A SAT-Based MAX-CSP/COP
Solver

Tomoya Tanjo Naoyuki Tamura Mutsunori Banbara
Kobe University, Japan

Sep. 14, 2008
CP’'08 Workshop of CSP Solver Competition

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Background
Background

@ Enormous progress in performance of SAT solvers has been
made in the last decade.

@ Such progress has enabled to solve problems by encoding
them to SAT problems: hardware verification, planning, and
scheduling.

@ Sugar is a CSP solver based on a new SAT-encoding method
named "order encoding”.

@ In the order encoding, a comparison x < a is encoded by a
different Boolean variable P, , for each integer variable x and
integer value a.

@ In Sugar, a SAT-encoded CSP is solved by the MiniSat (Eén
and Sorensson) solver.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Main features of Sugar++

@ Sugar++ is an enhancement of Sugar by using an incremental
version of MiniSat.

@ In Sugar++, a MAX-CSP is translated into a COP
(Constraint Optimization Problem), and then it is encoded
into a SAT problem except an optimization condition.

@ Sugar++ solves the COP by invoking only one MiniSat
process for a single SAT problem with varying the bound
condition of the objective variable.

@ Therefore the learnt clauses generated during the search can
be reused.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Translating

Translating MAX-CSP into COP

@ Given a CSP, the Max-CSP is to find an assignment that minimizes the
number of violated constraints.

@ The Max-CSP for a CSP(V, Dom,{C1, G, ..., Cy}) can be translated
into a COP: minimize cost s.t. CSP(V*, Dom™,C*) as follows:
o V*=VU{c,...,cp, cost}

@ ¢;: The penalty of the constraint C;.
@ cost: The objective variable to be minimized.

{0,1} ifx=¢ (1<i<n)
e Dom*(x)=4¢ {0,...,n} if x = cost
Dom(x) otherwise
o C* = {(C1 :0) = G,
(C2 = 0) = G,

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Translating

Example: Translating MAX-CSP into COP

(int x 0 2) (int y 1 3) | x € {0,1,2}, y € {0,1,2}
(= (+x (x2y)) 5) I x+2y =05
(= ¢+ (x2x (x3y) 8) ' 2x4+3y=38

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Translating

Example: Translating MAX-CSP into COP

(int x 0 2) (int y 1 3) | x € {0,1,2}, y € {0,1,2}
(= (+x (x2y)) 5) I x+2y =05
(= ¢+ (x2x (x3y) 8) ' 2x4+3y=38

COP
(int x 0 2) (int y 1 3)
(int c1 0 1) (int c2 0 1)

(Amp (= c1 0) (= (+ x (* 2 y)) 5))

(Amp (= c20) (= (+ (x 2 x) (x 3 y)) 8))
(int cost 0 2) (>= cost (+ cl1 c2))
(objective minimize cost)

@ The symbol imp means an implication.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Translating

Example: Translating MAX-CSP into COP

(int x 0 2) (int y 1 3) | x € {0,1,2}, y € {0,1,2}
(= (+x (x2y)) 5) I x+2y =05
(= ¢+ (x2x (x3y) 8) ' 2x4+3y=38

COP
(int x 0 2) (int y 1 3)
(int c1 0 1) (int c2 0 1)

(Amp (= c1 0) (= (+ x (*x 2 y)) 5))

(Amp (= c2 0) (= (+ (x 2 x) (*x 3 y)) 8))
(int cost 0 2) (>= cost (+ cl1 c2))
(objective minimize cost)

@ The symbol imp means an implication.
@ The integer variables c1 and c2 are the penalties of the
corresponding constraints.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Translating

Example: Translating MAX-CSP into COP

(int x 0 2) (int y 1 3) | x € {0,1,2}, y € {0,1,2}
(= (+x (x2y)) 5) I x+2y =05
(= ¢+ (x2x (x3y) 8) ' 2x4+3y=38

COP
(int x 0 2) (int y 1 3)
(int c1 0 1) (int c2 0 1)

(Amp (= c1 0) (= (+ x (* 2 y)) 5))

(Amp (= c20) (= (+ (x 2 x) (x 3 y)) 8))
(int cost 0 2) (>= cost (+ cl1 c2))
(objective minimize cost)

@ The symbol imp means an implication.

@ The integer variables c1 and c2 are the penalties of the
corresponding constraints.

@ The cost is the objective variable to be minimized.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Solving COP by using SAT solver

@ A solution to SAT-encoded COP can be obtained by bisection
search with varying the bound condition of the objective
variable.

4

@ For each search, the original Sugar invokes a different MiniSat
process. This slows down the execution speed because the
learnt clauses can not be reused in addition to the invocation
overhead of multiple MiniSat processes.

4

@ To solve this problem, Sugar+-+ uses an incremental version
of MiniSat called MiniSat_inc.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Solving COP

MiniSat_inc: an incremental version of MiniSat

@ We modify the MiniSat so that it can deal with the following
three commands from the standard input:

e add Ll L2 Ln
Adds a clause {L1, Ly, ..., L,} to the SAT clause database.

@ solve L1 Ly -+ L,
Solves the SAT problem with assumptions. These assumptions
are not used for conflict analysis.

e exit
Terminates the MiniSat_inc.

@ Bi-directional 10 is used to perform communication between
Sugar++ and MiniSat_inc.

Sugar++ MiniSat_inc

solve L
—
SAT or UNSAT
—

add L
—

exit
—

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Solving COP

Example: Solving COP by using MiniSat_inc

COP Example

(int x 05) (int y05) 0<x<50<y<5

= x y) G=(+xy)4) x>y, x+ty>4

(objective minimize x) ‘

@ A COP is encoded into a SAT problem except the bound
condition of the objective variable.

@ MiniSat_inc is invoked with the SAT problem except the
bound condition of the objective variable x.

@ The bound condition of x are passed to MiniSat_inc during
the bisection search.
e Unknown conditions are passed as assumptions.
o Decided conditions are added to the SAT clause database.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Solving COP

Example: Solving COP by using MiniSat_inc

(int x 0 5)
e (int y 0 5) |
SAT |
clause OC=x7y
database

An assumption

@ At First, the CSP part of the COP is encoded by using order
encoding method.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Solving COP

Example: Solving COP by using MiniSat_inc

7PX,O V Px,l *nyl \Y Px,2 (il’lt x 0 5)
_x2\/Px3 _X3\/PX4
| =P,oVP,1 —P,iVP,, | (intyo05) |
SAT 7Py72 \Y Py73 —Py3V Py,4
clause | =P.oVPo —PaVP1 | OG=xy |
database —P«2V Py —P3V Py 3
— x4 V Py,4
| —PooV=Py3s —PV-P| O=(+xy 4 |
| =PxeV-P1 —PiV-Po |]
An assumption

@ At First, the CSP part of the COP is encoded by using order
encoding method.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Solving COP

Example: Solving COP by using MiniSat_inc

—PxoV P1 —Pe1V Py (int x 0 5)
| =Px2VPes =PV Pes |]
7Py,o\/P71 7y1\/P,2 (inty05)
SAT | —Ty,2 Y Eyﬁi - r &37\/7’3&4 777777777777
clause —PX70 Vv PyA,O —PXJ Vv Py71 (>= X y)
database —Px2V Py —P3V Py 3
— x4 V Py,4
| —=PuoV =P,z —P1iV-Po,o | G=(+xy) 4|
| =PeV-P1 —PV-Po |]
An assumption | Py3 (<= x 3)

@ Sugar++ assumes (<= x 3), that is Py 3, since 0 < x <5.
@ This CNF under the assumption (<= x 3) is satisfiable.

@ The learnt clauses are generated and added to the SAT clause
database during the search.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Solving COP

Example: Solving COP by using MiniSat_inc

SAT
clause
database

_X,O\/Px,l _Xl\/Px,2

| P2V P3| —PesVPra
Py,o\/PJ — yﬁl\/P,Q

| P2 VP PV Py

_XO\/PyA,O _xl\/PyJ

—Px2V Py —P3VPy3

_Px4\/Py4

| —=PxoV—P,3 —P.iV—-Po

| =PV =P —PesV—Pro_

PX,3

(int x 0 5)

An assumption

@ Sugar++ adds a unit clause {Py 3} to the SAT clause

database since this CNF under the assumption (<= x 3) is

satisfiable.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara

Sugar++: A SAT-Based MAX-CSP/COP Solver

Solving COP

Example: Solving COP by using MiniSat_inc

—ProVPxr —Pe1V Pso (int x 0 5)
| =P ¥ P | PP |]
—ProFPyr Py1V Py> (int y O 5)
SAT —FProPrs PPy
clause | —PovPoe —PaiVPL | G=xy |
database —Px2V Py —PsVPrs
| PP]
—ProV—"Pyz =P V=P | O= (+ xy) 4)
—P2V—-P1 —FPzvN—Fo
| P T T T T T T T k=23]
An assumption

@ Sugar++ adds a unit clause {Py 3} to the SAT clause
database since this CNF under the assumption (<= x 3) is
satisfiable.

@ The unit propagations eliminate some clauses.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Solving COP

Example: Solving COP by using MiniSat_inc

—Px1V P (int x 0 5)
T T T T T =PyiVvP,, | Gnty05) |
SAaT |
clause P11V P2 >=xy)
database —Ps2V Py

| =P2V-Py]
(k= x 3)
An assumption | Py 1 (k= x 1)
@ Next, Sugar++ assumes (<= x 1), thatis Py 1, since

0<x<3.

@ The learnt clauses that are generated in previous search are
reused.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara

Sugar++: A SAT-Based MAX-CSP/COP Solver

Solving COP

Example: Solving COP by using MiniSat_inc

—Px1V P (int x 0 5)
T T T T T =PyiVvP,, | Gnty05) |
SAaT |
clause —P«1V P21 >=xy)
database —Ps2V Py

—Px1 (<=x3) >Gx1)

An assumption

@ Next, Sugar++ assumes (<= x 1), that is Py 1, since
0<x<3.

@ The learnt clauses that are generated in previous search are
reused.

@ Sugar++ adds a unit clause {—Px 1} to the SAT clause
database since this CNF under the assumption (<= x 1) is
unsatisfiable. —P, 1 is the negation of Py ,.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Solving COP

Example: Solving COP by using MiniSat_inc

—Pia v Peo (int x 0 5)
T T T T T =PyiVvP,, | Gnty05) |
SaT |
clause —PervPrr GC=xy
database —Ps2V Py
T - PPy | G=(+ x y) 4)]
| =PeVv-Py
—Per (<=x3) >x1)

An assumption

@ Next, Sugar++ assumes (<= x 1), that is Py 1, since
0<x<3.
@ The learnt clauses that are generated in previous search are

reused.

@ Sugar++ adds a unit clause {—Px 1} to the SAT clause
database since this CNF under the assumption (<= x 1) is
unsatisfiable. —P, 1 is the negation of Py ,.

@ The unit propag

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara

ations eliminate some clauses.
Sugar++: A SAT-Based MAX-CSP/COP Solver

Solving COP

Example: Solving COP by using MiniSat_inc

(int x 0 5)
T T T T T =PiVP, | Gntyo05) |
SAT |
clause >=x7y)
database —Ps2V Py
T O O
| =Pev=bha]
(k=x3) > x1)
An assumption | Px» (k= x 2)

@ Sugar++ assumes (<= x 2) since 2 < x < 3.

@ The learnt clauses that are generated in previous search are

reused.

@ Because this CNF under the assumption (<= x 2) is
satisfiable, the optimal value x = 2 is found.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara

Sugar++: A SAT-Based MAX-CSP/COP Solver

Conclusion
Conclusion

@ We talked about Sugar++ that is an enhancement of Sugar
by using an incremental version of MiniSat.

@ In Sugar+-+, a MAX-CSP is translated into a COP, and then
it is encoded into a SAT problem except an optimization
condition.

@ Sugar++ solves the COP by invoking only one MiniSat
process for a single SAT problem with varying the bound
condition of the objective variable.

@ Therefore the learnt clauses generated during the search can
be reused.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Conclusion

moya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

Conclusion
Benchmarks

No. of searching | Sugar | Sugar++ | Sugar/Sugar++
gep-2-Fulllns_5 4 | 255.27 334.64 0.76
golombRuler-8 6 15.24 18.48 0.82
jss-ft10 9 | 148.17 65.33 2.27
oss-gpl10-01 12 | 116.03 34.14 34
Tdsp-C1-1 4 7.24 23.78 0.3
AVERAGE 151

@ In average, Sugar++ is 50% faster than Sugar.

@ Larger the number of searching are, more effective the
incremental search are.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Sugar++: A SAT-Based MAX-CSP/COP Solver

	Background
	Features
	Translating
	Solving COP
	Conclusion

