
Implementing a Constraint 
Solver: A Case Study

Emmanuel Hebrard
Cork Constraint Computation Centre & University College Cork



Road-map

• Goal
• Blueprint
• Data Structures
• Propagation
• Search
• Code Optimization
• Competition



Road-map

• Goal
• Blueprint
• Data Structures
• Propagation
• Search
• Code Optimization
• Competition



Goal



Goal

• “Constraint Programming 
represents one of the 
closest approaches computer 
science has yet made to the 
Holy Grail of programming: 
the user states the problem, 
the computer solves it.” [E. 
Freuder]



Goal

• “Constraint Programming 
represents one of the 
closest approaches computer 
science has yet made to the 
Holy Grail of programming: 
the user states the problem, 
the computer solves it.” [E. 
Freuder]

• ...if given enough time!



Does Mistral achieve this goal?



Does Mistral achieve this goal?

• Library in C++



Does Mistral achieve this goal?

• Library in C++
• Developed during my PhD 

- Ilog Solver is not open 
source

- Good substitutes (Gecode, 
Choco and others) did not 
exist yet



Does Mistral achieve this goal?

• Library in C++
• Developed during my PhD 

- Ilog Solver is not open 
source

- Good substitutes (Gecode, 
Choco and others) did not 
exist yet

• Under GNU General Public 
License



Does Mistral achieve this goal?

• Library in C++
• Developed during my PhD 

- Ilog Solver is not open 
source

- Good substitutes (Gecode, 
Choco and others) did not 
exist yet

• Under GNU General Public 
License

• Why Mistral?
- because Mistral IS a 

Terrific Recursive Acronym 
for a Library.



Does Mistral achieve this goal?

• Library in C++
• Developed during my PhD 

- Ilog Solver is not open 
source

- Good substitutes (Gecode, 
Choco and others) did not 
exist yet

• Under GNU General Public 
License

• Why Mistral?
- because Mistral IS a 

Terrific Recursive Acronym 
for a Library.

Cork

Montpellier

Frederick Mistral



Model: Golomb ruler



Model: Golomb ruler



Model: Golomb ruler



Model: Golomb ruler



Model: Golomb ruler



Model: Golomb ruler



Message:



Message:

• Efficient implementation 

- Details do matter



Message:

• Efficient implementation 

- Details do matter

• Modeling choices 

- Automatic choices of the best representation/algorithm
! Variable (Constant, Boolean, Interval, Bitset, List, ...)

! Constraints (Specific algorithm, Decomposition, Generic 
algorithms, ...)

! Heuristics

- Automatic rewritting?



Message:

• Efficient implementation 

- Details do matter

• Modeling choices 

- Automatic choices of the best representation/algorithm
! Variable (Constant, Boolean, Interval, Bitset, List, ...)

! Constraints (Specific algorithm, Decomposition, Generic 
algorithms, ...)

! Heuristics

- Automatic rewritting?

• Robustness 

- Worst case principle



Road-map

• Goal
• Blueprint
• Data Structures
• Propagation
• Search
• Code Optimization
• Competition



A little bit of structure

Search
• Search algorithms
• Heuristics

Data Structures
• Variables
• Backtrackable types

Propagation
• Library of constraints
• Generic algorithms 



A little bit of structure

Search
• Search algorithms
• Heuristics

Data Structures
• Variables
• Backtrackable types

Propagation
• Library of constraints
• Generic algorithms 

Backtrack Decision

Domain events Filtering

Learning



Road-map

• Goal
• Blueprint
• Data Structures

- Variables (Baktracks)

• Propagation
• Search
• Code Optimization
• Competition



Backtrackable Data-
Structures

• Copying/Trailing

- See Shulte’s papers and 
PhD Thesis

- Copying
! Easier to implement data 

structures

! Easier to implement search 
strategies

! Easier to parallelize

- Trailing
! Do only necessary work

! Memory efficient

Copying Trailing



 Domain as a Bitset

• One 32 bits word for every 
value in [min(D)..max(D)]

11100101

X in
{0,1,2,5,7,18,19,21}

00000000 00110100



Domain as a Bitset

• One 32 bits word for every 
value in [min(D)..max(D)]

• For every word, we allocate 
as many word as values in 
that word: 

- 0((max-min+1) + 32*|D|) bits

11100101

X in
{0,1,2,5,7,18,19,21}

00000000 00110100



Domain as a Bitset

• One 32 bits word for every 
value in [min(D)..max(D)]

• For every word, we allocate 
as many word as values in 
that word: 

- 0((max-min+1) + 32*|D|) bits

11100101

X in
{0,1,2,5,7,18,19,21}

00000000 00110100

Allocated statically



Domain as a Bitset

00000000

X in {0,1,2,5,7,18,19,21}



Domain as a Bitset

11100101 00000000 00110100

X in {0,1,2,5,7,18,19,21}



Domain as a Bitset

11100101 00000000 00110100

decision 1 {0,5,7,18,19,21}

X in {0,1,2,5,7,18,19,21}1,2,



Domain as a Bitset

11100101
10000101

00000000 00110100

decision 1 {0,5,7,18,19,21} w1

X in {0,1,2,5,7,18,19,21}1,2,



Domain as a Bitset

11100101
10000101

00000000 00110100

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

w1

X in {0,1,2,5,7,18,19,21}1,2, ,21



Domain as a Bitset

11100101
10000101

00000000 00110100
00110000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

w1

w2

X in {0,1,2,5,7,18,19,21}1,2, ,21



Domain as a Bitset

11100101
10000101

00000000 00110100
00110000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

decision 3 {0,5,18}

w1

w2

X in {0,1,2,5,7,18,19,21}1,2, ,217,18,19



Domain as a Bitset

11100101
10000101
10000100

00000000 00110100
00110000
00100000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

decision 3 {0,5,18}

w1

w2

w1 w2

X in {0,1,2,5,7,18,19,21}1,2, ,217,18,19



Domain as a Bitset

11100101
10000101
10000100

00000000 00110100
00110000
00100000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

decision 3 {0,5,18}

decision 4 {0,5}

w1

w2

w1 w2

X in {0,1,2,5,7,18,19,21}1,2, ,217,18,19,7,18,



w2

Domain as a Bitset

11100101
10000101
10000100

00000000 00110100
00110000
00100000
00000000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

decision 3 {0,5,18}

decision 4 {0,5}

w1

w2

w1 w2

X in {0,1,2,5,7,18,19,21}1,2, ,217,18,19,7,18,



w2

Domain as a Bitset

11100101
10000101
10000100

00000000 00110100
00110000
00100000
00000000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

decision 3 {0,5,18}

decision 4 {0,5}

w1

w2

w1 w2

X in {0,1,2,5,7,18,19,21}1,2, ,217,18,19,7,18,



Domain as a Bitset

11100101
10000101
10000100

00000000 00110100
00110000
00100000
00000000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

decision 3 {0,5,18}

w1

w2

w1 w2

X in {0,1,2,5,7,18,19,21}1,2, ,217,18,19



Domain as a Bitset

11100101
10000101
10000100

00000000 00110100
00110000
00100000
00000000

decision 1 {0,5,7,18,19,21}

decision 2 {0,5,7,18,19}

w1

w2

X in {0,1,2,5,7,18,19,21}1,2, ,21



Domain as a List



Domain as a List

9 1 5 12 2 14 6 4 list



Domain as a List

9 1 5 12 2 14 6 4

8 size

list



Domain as a List

9 1 5 12 2 14 6 4

1 4 7 2 6 0 3 5∞ ∞ ∞ ∞ ∞∞ ∞

8 size

list
index



Domain as a List

9 1 5 12 2 14 6 4

1 4 7 2 6 0 3 5

0 1 2 3 4 5 6 7 8 9 10 11 13 1412

∞ ∞ ∞ ∞ ∞∞ ∞

8

membership: index[v] < size

size

list
index



Domain as a List

9 1 5 12 2 14 6 4

1 4 7 2 6 0 3 5

0 1 2 3 4 5 6 7 8 9 10 11 13 1412

∞ ∞ ∞ ∞ ∞∞ ∞

8

membership: index[v] < size

size

list
index



Domain as a List

9 1 5 12 2 14 6 4

1 4 7 2 6 0 3 5

0 1 2 3 4 5 6 7 8 9 10 11 13 1412

∞ ∞ ∞ ∞ ∞∞ ∞

8

membership: index[v] < size

size

list
index



Domain as a List

9 1 5 12 4 14 6 2

1 7 4 2 6 0 3 5

0 1 2 3 4 5 6 7 8 9 10 11 13 1412

∞ ∞ ∞ ∞ ∞∞ ∞

7

membership: index[v] < size

size

list
index



Domain as a List

6 12 5 1 4 14 9 2

3 7 4 2 0 6 1 5

0 1 2 3 4 5 6 7 8 9 10 11 13 1412

∞ ∞ ∞ ∞ ∞∞ ∞

2

membership: index[v] < size

size

list
index



Domain as a List

6 12 5 1 4 14 9 2

3 7 4 2 0 6 1 5

0 1 2 3 4 5 6 7 8 9 10 11 13 1412

∞ ∞ ∞ ∞ ∞∞ ∞

2 Backtrack

membership: index[v] < size

size

list
index



Domain as a List

6 12 5 1 4 14 9 2

3 7 4 2 0 6 1 5

0 1 2 3 4 5 6 7 8 9 10 11 13 1412

∞ ∞ ∞ ∞ ∞∞ ∞

8

membership: index[v] < size

size

list
index



Pigeon holes



Pigeon holes

• Domain as a Bitset:
! Space complexity in O(max-min)

! Restore up to 32 values at a 
time

! 600,000 Bts/second



Pigeon holes

• Domain as a Bitset:
! Space complexity in O(max-min)

! Restore up to 32 values at a 
time

! 600,000 Bts/second

• Domain as a List:
! Similar space complexity 

! Restore any number of values in 
one operation

! 900,000 Bts/second

! However, operations are much 
slower on the list (interval 
reasoning, set operations)



Road-map

• Goal
• Blueprint
• Data Structures
• Propagation

- Nested predicates

- GAC valid v allowed 

• Search
• Code Optimization
• Competition



Constraint Propagation

• Variable/Constraint Queue

• Specific Propagators

• Nested Predicates

• Generic AC algorithms
- Binary: AC3Bitset

- Tight: GAC2001Allowed

- Loose: GAC3rValid

Pruning:



Nested Predicates

<predicate name="P0">
  <parameters>int X0 int X1 int X2 int X3 int X4 int X5</parameters>
  <expression>
    <functional>or(le(add(X0,X1),X2),le(add(X3,X4),X5))<functional>
  </expression>
</predicate>

 <constraint name="C0" arity="2" scope="V0 V1" reference="P0">
   <parameters>V0 85 V1 V1 64 V0</parameters>
 </constraint>

Example: open-shop scheduling:



Nested Predicates: Decomposition

Example: open-shop scheduling:

Or

< >

+ +

6485X1

X2 X1

X2



Nested Predicates: Decomposition

Example: open-shop scheduling:

Or

< >

+

64

X2Y1

Y1 = X1 + 85

X1

X2



Nested Predicates: Decomposition

Example: open-shop scheduling:

Or

>

+

64

Y2

Y1 = X1 + 85
Y2 = (Y1 < X2)

X1

X2



Nested Predicates: Decomposition

Example: open-shop scheduling:

Or

>Y2

Y3

Y1 = X1 + 85

Y3 = X2 + 64
Y2 = (Y1 < X2)

X1



Nested Predicates: Decomposition

Example: open-shop scheduling:

Or

Y2 Y4

Y1 = X1 + 85

Y3 = X2 + 64
Y2 = (Y1 < X2)

Y4 = (Y3 < X1)



Nested Predicates: Decomposition

Example: open-shop scheduling: Y1 = X1 + 85

Y3 = X2 + 64
Y2 = (Y1 < X2)

Y4 = (Y3 < X1)
(Y2 ∨ Y4)



Nested Predicates: GAC-Checker

Example: open-shop scheduling:

Or

< >

+ +

6485

check ([30, 100]) {
  assign leaves;
  query root;
}

X1 X2

X1X2



Nested Predicates: GAC-Checker

Example: open-shop scheduling:

Or

< >

+ +

6485

check ([30, 100]) {
  assign leaves;
  query root;
}

 assign leaves;

X1 X2

X1X2

30

100 30

100



Nested Predicates: GAC-Checker

Example: open-shop scheduling:

Or

< >

+ +

6485

check ([30, 100]) {
  assign leaves;
  query root;
}

 assign leaves;
  query root;

False

115 164

False False

X1 X2

X1X2

30

100 30

100



Golomb ruler / FAPP

Instance:

Decomposition

GAC-Checker



Golomb ruler / FAPP

Instance:

Decomposition

GAC-Checker

Golomb
Ruler

128 nodes
0.18 seconds

87 nodes
38.22 seconds



Golomb ruler / FAPP

Instance:

Decomposition

GAC-Checker

Golomb
Ruler

128 nodes
0.18 seconds

87 nodes
38.22 seconds

FAPP

60181 nodes
55.18 seconds

374 nodes
1.18 seconds



Making the Right Choice



Making the Right Choice

Feature GAC Decomp OSP



Making the Right Choice

Feature GAC Decomp OSP

Constraint Arity - + binary



Making the Right Choice

Feature GAC Decomp OSP

Constraint Arity - + binary

Ratio node/leaves + - 5/2



Making the Right Choice

Feature GAC Decomp OSP

Constraint Arity - + binary

Ratio node/leaves + - 5/2

Domain continuity - + no holes



Making the Right Choice

Feature GAC Decomp OSP

Constraint Arity - + binary

Ratio node/leaves + - 5/2

Domain continuity - + no holes

Cartesian product cardinality - + >60,000



Making the Right Choice

Feature GAC Decomp OSP

Constraint Arity - + binary

Ratio node/leaves + - 5/2

Domain continuity - + no holes

Cartesian product cardinality - + >60,000

Boolean domains - + no



Making the Right Choice

Feature GAC Decomp OSP

Constraint Arity - + binary

Ratio node/leaves + - 5/2

Domain continuity - + no holes

Cartesian product cardinality - + >60,000

Boolean domains - + no

Total number of constraints + - small



Making the Right Choice

Feature GAC Decomp OSP

Constraint Arity - + binary

Ratio node/leaves + - 5/2

Domain continuity - + no holes

Cartesian product cardinality - + >60,000

Boolean domains - + no

Total number of constraints + - small

Decomposition!



GAC Allowed v. GAC Valid
Backtracks/second

Tighter                                                    Looser



Road-map

• Goal
• Blueprint
• Data Structures
• Propagation
• Search

- Heuristics

• Code Optimization
• Competition



Search Strategies

• Depth-first, Breadth-first, 
LDS,...

• Branching Choices
- Domain Splitting

- Arbitrary Constraint

• Variable/Value Ordering

- “Learning” heuristics
! Weighted Degree, Impact



Weighted Heuristics

• The best general purpose orderings are based on some 
kind of learning (or weighting)
- Weighted Degree [Boussemart, Hemery, Lecoutre, Sais 2004]

- Impact [Refalo 2004]

• A “Weighter” can suscribe for different types of event
- Weighted degree: failures

- Impact: Decisions, success, failures 

• This architecture allows easy development of variations 
around these models
- Why isn’t Impact/Weighted Degree any good?



Road-map

• Goal
• Blueprint
• Data Structures
• Propagation
• Search
• Code Optimization
• Competition



Optimisation: Binary 
Extensional

• Standard algorithms:
- AC3-bitset, Variable queue (fifo), revision condition

• Profiling, what does take time?
- Propagation:.......................................... 68%

• “&” operation:..................................... 25.9%
• Domain iteration:................................ 20.6%
• AC3 (queuing/dequeuing):................ 11.4%
• Revision condition + virtual call:.. 10.0%

- Data structure modification:........... 19%
• Domain modification:.......................... 19.0%

- Search:..................................................... 12%
• Trailing:..................................................... 9.7%
• Variable choice + Branching:........... 2.2%



Intersection on Bitsets (25%)

  inline bool MistralSet::wordIntersect(const MistralSet& s) const 
  {
    return ( table[neg_words] & s.table[neg_words] ) ;
  }

  bool VariableList::wordIntersect(const MistralSet& s) const
  {
    return values.wordIntersect(s);
  }



Values Iteration (20%)



Values Iteration (20%)

• Random binary CSP



Values Iteration (20%)

• Random binary CSP

• Domain as a Bitset:
- 6,500 Bts/second



Values Iteration (20%)

• Random binary CSP

• Domain as a Bitset:
- 6,500 Bts/second

• Domain as a List (hybrid 
bitset/list):
- 10,000 Bts/second

- Values are stored 
contiguously in an array

- The order does not matter



Road-map

• Goal
• Blueprint
• Data Structures
• Propagation
• Search
• Code Optimization
• Competition



Quick Comparison
(#instances)

Abscon Choco Mistral



Quick Comparison
(#instances)

30%

50%

70%

90%

BIN-EXTBIN-INT N-EXT
N-INT

GLOBAL
ALL

Abscon Choco Mistral



Quick Comparison
(#instances)

30%

50%

70%

90%

BIN-EXTBIN-INT N-EXT
N-INT

GLOBAL
ALL

Abscon Choco Mistral



Quick Comparison
(cpu time)

Abscon Choco Mistral



Quick Comparison
(cpu time)

20s

60s

100s

140s

180s

BIN-EXT
BIN-INT

N-EXT
N-INT

GLOBAL

Abscon Choco Mistral



Quick Comparison
(cpu time)

20s

60s

100s

140s

180s

BIN-EXT
BIN-INT

N-EXT
N-INT

GLOBAL

Abscon Choco Mistral



Backtracks v CPU-time

0

750,000

1,500,000

2,250,000

3,000,000

0 500 1,000 1,500 2,000

Mistral Abscon Choco

Bkts

CPU-time
rand-2-40-19-443-230-* and frb40-19



Backtracks v CPU-time

0

750,000

1,500,000

2,250,000

3,000,000

0 500 1,000 1,500 2,000

Mistral Abscon Choco

Bkts

CPU-time
rand-2-40-19-443-230-* and frb40-19



Conclusion



Conclusion

• Implementing a constraint 
solver may appear like a  
daunting task



Conclusion

• Implementing a constraint 
solver may appear like a  
daunting task
- It is so.



Conclusion

• Implementing a constraint 
solver may appear like a  
daunting task
- It is so.

- But you’ll learn a lot!



Conclusion

• Implementing a constraint 
solver may appear like a  
daunting task
- It is so.

- But you’ll learn a lot!

• Adaptability



Conclusion

• Implementing a constraint 
solver may appear like a  
daunting task
- It is so.

- But you’ll learn a lot!

• Adaptability

• Attention to details



Conclusion

• Implementing a constraint 
solver may appear like a  
daunting task
- It is so.

- But you’ll learn a lot!

• Adaptability

• Attention to details

• Robustness



Conclusion

• Implementing a constraint 
solver may appear like a  
daunting task
- It is so.

- But you’ll learn a lot!

• Adaptability

• Attention to details

• Robustness
- Weaknesses are always 

more obvious to a user 
than strengths 


