XML Representation of Constraint Networks
Format XCSP 2.1

Abridged Representation for the
CPAI’'08 CSP Competition

Organising Committee of the
Third International Competition of CSP Solvers

Abstract

We propose a new extended format to represent constraint networks
using XML. This format allows us to represent constraints defined either in
extension or in intension. It also allows us to reference global constraints.
Any instance of the problems CSP (Constraint Satisfaction Problem),
QCSP (Quantified CSP) and WCSP (Weighted CSP) can be represented
using this format.

In this document, we present an abridged version (of the format) which
defines all constructs that will be used for the third international compe-
tition of CSP/Max-CSP/WCSP solvers which will be held during summer
2008 (deadline: May 10, 2008). We also introduce the restrictions that
will be enforced for the competition. A companion document presents the
full description of the XCSP 2.1 format.

The release of this document is January 15, 2008.

CONTENTS 2

Contents
1 Introduction 4
2 Basic Components 5
2.1 Identifiers and Integers L. 5
2.2 Separators 5
2.2.1 Tagged notation)
2.2.2 Abridged notationo 6
2.3 Constants e e 6
2.3.1 Tagged notation 6
2.3.2 Abridged notation 6
24 Imtervals L 6
2.4.1 Tagged notation 6
2.4.2 Abridged notationo 6
2.5 Variables 6
2.5.1 Tagged notation 7
2.5.2 Abridged notation 7
2.6 Formal parameters 7
2.6.1 Tagged notation 7
2.6.2 Abridged notation L. 7
2.7 Listso 7
2.7.1 Tagged notation 8
2.7.2 Abridged notation oo 8
2.8 Dictionaries e 8
2.8.1 Tagged notation 8
2.8.2 Abridged notation 9
2.8.3 Conventional order 9
2.9 Tuples 10
2.9.1 Tagged notation, 10
2.9.2 Abridged notation 10
2.10 Weighted Tuples 11
2.10.1 Tagged notation 11
2.10.2 Abridged notation 11
3 Representing CSP instances 12
3.1 Presentation. 12
3.2 Domainso 14
3.3 Variables 15
3.4 Relations 16
3.5 Predicates 17
3.5.1 Functional Representation 18
3.6 Constraints 19
3.6.1 Constraints in extension 20
3.6.2 Constraints in intension 21

3.6.3 Global constraints 21

CONTENTS

3.6.4 Global constraints from the Catalog
3.7 Illustrations

4 Representing QCSP instances

5 Representing WCSP instances
5.1 Presentation.
5.2 Relations
5.3 Functions
5.4 Constraints
5.5 Tlustration

6 Restrictions for the competition
6.1 Concerning CSP and MaxCSP
6.2 Concerning WCSP oo

23
26

27

27
28
28
28
29
29

1 INTRODUCTION 4

1 Introduction

The Constraint Programming (CP) community suffers from the lack of a stan-
dardized representation of problem instances. This is the reason why we propose
an XML representation of constraint networks. The Extensible Markup Lan-
guage (XML) [16] is a simple and flexible text format playing an increasingly
important role in the exchange of a wide variety of data on the Web. The objec-
tive of the XML representation is to ease the effort required to test and compare
different algorithms by providing a common test-bed of constraint satisfaction
instances.

One should notice that the proposed representation is low-level. More pre-
cisely, for each instance, domains, variables, relations (if any), predicates (if
any) and constraints are exhaustively defined. The current format should not
be confused with powerful modelling language such as the high-level proposals
dedicated to mathematical programming - e.g. AMPL (http://www.ampl.com)
and GAMS (http://www.gams.com) - or dedicated to constraint programming?!
- e.g. OPL [8], EaCL [14], NCL [17], ESRA [6], Zinc [4] and ESSENCE [7].
Nevertheless, we also project to extend this format in a near future to take into
account higher level constructs.

In this document, we present an extension, denoted XCSP 2.1, of the format
XCSP 2.0 which was used for the 2006 CSP solver competition. It aims at being
a (hopefully good) compromise between readability, verbosity and structuration.
More precisely, our objective is that the representation be:

e readable: thanks to XML, we think that it is the case. If you want to
modify an instance by hand, you can do it without too many difficulties
whereas it would be almost impossible with a tabular format. Only a few
constructions require an a-priori knowledge of the format.

e concise: with the abridged version which doesn’t use systematically XML
tags and attributes, the proposed representation can be comparable in
length to one that would be given in tabular format. This is important,
for example, to represent instances involving constraints in extension.

e structured: because the format is based on XML, it remains rather easy
to parse instances.

Roughly speaking, we propose two variants of this format:
e a fully-tagged representation,
e an abridged representation.

The first representation (tagged notation) is a full XML, completely struc-
tured representation which is suitable for using generic XML tools but is more
verbose and more tedious to write for a human being. The second representa-
tion (abridged notation) is just a shorthand notation of the first representation

IRemark that the specification language Z (http://vl.users.org) has also been used to
build nice (high-level) problem models [13]

2 BASIC COMPONENTS 5

which is easier to read and write for a human being, but less suitable for generic
XML tools.

These two representations are equivalent and this document details the trans-
lation of one representation to another. Automatic tools to convert from one
representation to another will be made available, and parsers will accept the two
representations. This will allow human beings to use the shorthand notation to
encode an instance while still being able to use generic XML tools.

In this document, we (mainly) present the abridged representation of the
format which will be adopted for the 2008 CSP solver competition. More infor-
mation about the fully-tagged representation is proposed in another document.
However, we also partially describe the fully-tagged representation as it makes
it easier to understand some parts of our presentation.

2 Basic Components

This section describes how the most common kinds of information are repre-
sented in this XML format. This section only details the general data struc-
tures that are used in the description of instances. The way these structures
are used to represent an instance is presented in the other sections of this doc-
ument. As mentioned in the introduction, we present two representations for
each structure. The first one is fully-tagged and the second one is abridged.

2.1 Identifiers and Integers

First, let us introduce the syntax of identifiers and integers. An identifier has to
be associated with some XML elements, usually under the form of an attribute
called name. An identifier must be a valid identifier according to the most
common rules (start with a letter or underscore and further contain letters,
digits or underscores). More precisely, identifiers and integers are defined (in
BNF notation) as follows:

<identifier> ::= <letter> | "_" { <letter> | <digit> | "_" }
<integer> ::= ["+" | "-"] <digit> {<digit>}

<letter> ::= "a".."z" | "A".."Z"

<digit> ::= "O".."g"

Of course, identifiers are case-sensitive.

2.2 Separators
2.2.1 Tagged notation

For the tagged version, we do not need to use any specific separator since the
document is fully structured.

2 BASIC COMPONENTS 6

2.2.2 Abridged notation

For the abridged version, we sometimes need to employ separators. They are
defined as follows:

<WhiteSpaCe> 1= "non I ||\t|l | Il\nll I ||\rll
<separator> ::= <whitespace> | { <whitespace> }
2.3 Constants

Different kinds of constant can be used in the encoding of a CSP instance.

2.3.1 Tagged notation

Boolean constants are written using two special elements: <true/> and <false/>.
Integer constants are written inside a <i> element (e.g. <i>19</i>).

2.3.2 Abridged notation

Wherever it is legal to have a numerical constant, its value can be written
directly without the enclosing tag (e.g. 19, 19.5). 19 is considered as an integer
constant.

To avoid introducing reserved keywords, Boolean constants (<true/> and
<false/>) cannot be abridged.

2.4 Intervals
2.4.1 Tagged notation

Intervals are represented by a <interval> element with two attributes: min and
max. The min represents the minimal value of the interval (the lower bound)
and the max attribute the maximal value (the upper bound). For example,
<interval min="10" max="13"/> corresponds to the set {10,11,12,13}.

2.4.2 Abridged notation

To represent an interval, on has just to write two constants (of the same type)
separated by the sequence ”..”. For example, 10..13 corresponds to the set of
integers {10,11,12,13}.

2.5 Variables

Several constructs in the format have to reference variables. For simplicity, we
consider here that the term variable refers to both effective and formal param-
eters of functions and predicates.

2 BASIC COMPONENTS 7

2.5.1 Tagged notation

The reference to a variable is represented by a <var> element with an empty
body and a single attribute name which provides the identifier of the vari-
able. For example, a reference to the variable X1 is represented by <var
name="X1"/>.

2.5.2 Abridged notation

Wherever it is legal to have a <var name="4dentifier"/> element, this ele-
ment can be replaced equivalently by identifier. For example, X1 and <var
name="X1"/> are two legal and equivalent ways to refer to the variable X1.

2.6 Formal parameters

A predicate or function in this XML format must first define the list of its formal
parameters (with their type). Then, these formal parameters can be referenced
with the notations defined in section 2.5.

In both tagged and abridged representations, formal parameters are defined
in the body of a <parameters> element.

2.6.1 Tagged notation

In the tagged notation, each formal parameter is defined by a <parameter>
element with two attributes. The attribute name defines the formal name of
the parameter and the attribute type defines its type. For example, <parameter
name="X0" type="int"> defines a parameter named X0 of integer type.

2.6.2 Abridged notation

Wherever it is legal to have a <parameter> element, a formal parameter can be
written in abridged notation by its type followed by whitespace followed by the
parameter name (as in C and Java programming language). Consecutive pa-
rameters must be separated by whitespace. For example, int X0 is the abridged
representation of <parameter name="X0" type="int">.

The syntax of the formal parameters list is described by the following gram-
mar (in BNF notation):

<formalParameters> ::= [<formalParametersList>]
<formalParametersList> ::= <formalParameter>
| <formalParameter> <separator> <formalParametersList>
<formalParameter> ::= <type> <separator> <identifier>
<type> ::= "int"
2.7 Lists

A list is an array of (possibly heterogeneous) objects. The order of objects in
the list is significant (but this order may be deliberately ignored when needed).

2 BASIC COMPONENTS 8

2.7.1 Tagged notation

A list is represented by a <list> element with all members of the list given in
the body of the element. For example, a list containing the integers 1, 2 and
the Boolean value true is represented by:

<list> <i>1</i> <i>2</i> <true/> </list>

2.7.2 Abridged notation

Wherever it is legal to have a list element, the opening square brace is defined
as a synonym of <list> and the closing square brace is defined as a synonym
of </list>. A separator is used between two elements of the list. Whitespace
can be found before and after a square brace.

[1 2 <true/>]

2.8 Dictionaries

A dictionary is an associative array that maps a key to a value. In other words,
it is an array of <key,value> pairs. A key is a name which references a value in
the data structure. A notation common to a number of languages to access the
value corresponding to a key k in a dictionary d is d[k]. In a sense, a dictionary
is a generalization of an array: indices in (classical) arrays must be contiguous
integers while keys in a dictionary can be arbitrary names. A dictionary can also
be seen as a generalization of the notion of structures (struct in C/C++) and
records (Pascal). A record with n fields f1,..., f, can be seen as a dictionary
containing the n keys fi,..., f, and the corresponding values. A dictionary is
an extension of a record since new keys can be added to a dictionary while a
record usually has a fixed list of fields. Each pair <key,value> in a dictionary
is called an entry in that dictionary.

A function which accepts a dictionary as parameter can decide that some
keys must be present in the dictionary and that some others keys are optional.
This provides a simple way to support optional parameters. When a key is
missing in a dictionary, it is considered that there is no corresponding value.
The special tag <nil/> is another way to specify explicitly that a key has no
corresponding value. This special value corresponds to the null value in SQL.
Omitting a key k from a dictionary or defining that key k corresponds to value
<nil/> are equivalent ways of associating no value to key k.

The order of keys in a dictionary is not significant. A dictionary may contain
no key at all. A dictionary can be associated to a key in a given dictionary (in
other words, dictionaries may be contained in a dictionary).

2.8.1 Tagged notation

An entry of a dictionary that associates a value v with key k is encoded by an
element <entry> with a single attribute key with value k and a body containing
the value v: <entry key="k">v</entry>

2 BASIC COMPONENTS 9

A dictionary is defined by a <dict> element with all entries of the dictionary
given inside the body: <dict><entry key="namel">valuel</entry> <entry
key="name2">value2</entry></dict>. The body of this element cannot con-
tain other elements than dictionary entries.

2.8.2 Abridged notation

Several notations are already used in different languages to associate a key with
a value in an associative array (key => value in PHP and Perl, /key value in
PostScript and PDF,...). Since the character > is a reserved character in XML,
we use the PostScript notation.

A dictionary in abridged notation starts by a opening curly brace followed
by a list of entries and is ended by a closing curly brace. Each entry is written
as a key immediately preceded by a slash (no space between the slash and the
key), whitespace and the value corresponding to this key. Whitespace can be
found before and after a curly brace. For example:

{/namel value2 /name2 value2}

2.8.3 Conventional order

In some cases (e.g. when a function expects a dictionary with a given set of keys),
a conventional order can be associated with a dictionary. This conventional
order specifies a default order of keys which can be used to further shorten the
notations. When the conventional order of keys can be known from the context,
a dictionary can be written in abridged notation by opening a curly brace, listing
the values of each key which is expected in the dictionary and closing the curly
brace. The absence of a slash following the opening curly brace identifies a
dictionary represented in conventional order (note however that white space is
allowed between the opening curly brace and the first slash).

In this context, there must be as many values inside the curly braces as the
number of keys in the conventional order. To assign no value to a given key, the
special value <nil/> must be used.

For example, the coordinates of a point of a plane may be represented by a
dictionary containing two keys z and y. The point at coordinates (2,5) can be
represented by several notations. We can have:

<dict>
<entry key="x"><i>2</i></entry>
<entry key="y"><i>b</i></entry>
</dict>

or:
<dict>

<entry key="y"><i>b</i></entry>
<entry key="x"><i>2</i></entry>

2 BASIC COMPONENTS 10

</dict>

or:

{/x 2 /y 5}
or:

{/y 5 /x 2}
or:

{
/x 2
/y 5
}

When a conventional order is fixed which indicates that key x is given before
key y, the same dictionary can be written by:

{2 5}

2.9 Tuples

Here, we consider a tuple as being a sequence of objects of the same type. For
example, (2,5,8) is a tuple containing three integers.

2.9.1 Tagged notation

A tuple is represented by a <tuple> element with all members of the tuple given
in the body of the element. For example, the tuple (2,5,8) is represented by:
<tuple> <i>2</i> <i>b</i> <i>8</i> </tuple>

2.9.2 Abridged notation

For the abridged variant, the members of any tuple are written directly within
the enclosing tag. However, if we have two successive tuples (i.e. ... </tuple>
<tuple> ...), we use the character ’|’ as a separator between them. For exam-
ple, the representation of a sequence of binary tuples takes the form (in BNF
notation):
<binaryTupleSequence> ::= <binaryTuple> | <binaryTuple> "|" <binaryTupleSequence>
<binaryTuple> ::= <integer> <separator> <integer>
For ternary relations, one has just to consider tuples formed from 3 values,
etc. For example, a list of binary tuples is:
0 1/0 3|1 2|1 3|2 0]2 113 1
while a list of ternary tuples is:
001102 1/101]1 20211222

2 BASIC COMPONENTS 11

2.10 Weighted Tuples

It may be interesting (e.g. see the WCSP framework [9]) to associate a weight
(or cost) with a tuple or a sequence of tuples.

2.10.1 Tagged notation

We then just have to enclose this tuple (these tuples) within a <weight> element
which admits one attribute value. This attribute must be an integer or the
special value ”infinity”. For example, if a weight equal to 10 must be associated
with the tuple (2,5,8), we obtain:

<weight value="10"> <tuple> <i>2</i> <i>b</i> <i>8</i> </tuple>
</weight>

Notice that it is possible to directly associate the same weight with several
tuples.

2.10.2 Abridged notation

In abridged notation, each tuple can be given an explicit cost by prefixing it
with its cost followed by a colon character :>. When a cost is not specified for a
tuple, it simply means that the cost of the current tuple is equal to the cost of
the previous one. At the extreme, only the first tuple is given an explicit cost,
all other tuples implicitly referring to this cost. In any case, the first tuple of a
relation must be given an explicit cost. Remark that with the abridged variant,
it is not possible to put in the same context unweighted and weighted tuples
(but, we believe that it is not a real problem). Finally, to associate the special
value ”infinity” with a tuple, the special element <infinity/> must be used.

For example, let us consider the following “classical” list of binary tuples:

0 110 311 2|1 3|2 012 113 1

If 1 is the cost of tuples (0, 1), (0,3), (3,1) whereas 10 is the cost of all other
tuples, then we can write:

1:0 111:0 3110:1 2]10:1 3[10:2 0[10:2 1|1:3 1
but also, using implicit costs:
1:0 110 3110:1 2]1 3|2 0]2 1]1:3 1

This example may also be written equivalently on several lines:

1: 0 1l0 3|
10: 1 2|1 3|2 012 1]
1: 31

Note that using the abridged representation to associate costs with tuples
allows us to save a large amount of space.

3 REPRESENTING CSP INSTANCES 12

3 Representing CSP instances

In order to avoid any ambiguity, we briefly introduce constraint networks. A
constraint network consists of a finite set of variables such that each variable X
has an associated domain dom(X) denoting the set of values allowed for X, and
a finite set of constraints such that each constraint C has an associated relation
rel(C) denoting the set of tuples allowed for the variables scp(C) involved in C'.
A solution to a constraint network is the assignment of a value to each variable
such that all the constraints are satisfied. A constraint network is said to be
satisfiable if it admits at least a solution. The Constraint Satisfaction Problem
(CSP), whose task is to determine whether or not a given constraint network is
satisfiable, is NP-hard. A constraint network is also called a CSP instance. For
an introduction to constraint programming, see for example [5, 1].

Each CSP instance is represented following the format given in Figure 1
where ¢, n, r, p and e respectively denote the number of distinct domains, the
number of variables, the number of distinct relations, the number of distinct
predicates and the number of constraints. Note that ¢ < n as the same domain
definition can be used for different variables, r < e and p < e as the same
relation or predicate definition can be used for different constraints. Thus, each
instance is defined by an XML element which is called <instance> and which
contains four, five or six elements. Indeed, it is possible to have one instance
defined without any reference to a relation or/and to a predicate. Then, the
elements <relations> and <predicates> may be missing (if both are missing,
it means that only global constraints are referenced).

Each basic element (<presentation>, <domain>, <variable>, <relation>,
<predicate> and <constraint>) of the representation admits an attribute
called name. The value of the attribute name must be a valid identifier (as
introduced in the previous section). In the representation of any instance, it is
not possible to find several attributes "name” using the same identifier.

Remark 1 In the body of any element of the document, one can insert an
<extension> element in order to put any information specific to a solver.

3.1 Presentation

The XML element called <presentation> admits a set of attributes and may
contain a description (a string) of the instance:

<presentation
name = ’put here the instance name’
maxConstraintArity = ’put here the greatest constraint arity’
minViolatedConstraints = ’the minimum number of violated constraints’
nbSolutions = ’put here the number of solutions’
solution = ’put here a solution’
type = ’CSP’>
format = ’XCSP 2.1°

Put here the description of the instance
</presentation>

3 REPRESENTING CSP INSTANCES

<instance>
<presentation
name = ’put here the instance name’

format = ’XCSP 2.1’ >
Put here the description of the instance
</presentation>

<domains nbDomains=’q’>

<domain
name = ’put here the domain name’
nbValues = ’put here the number of values’ >
Put here the list of values
</domain>
</domains>

<variables nbVariables=’n’>

<variable
name = ’put here the variable name’
domain = ’put here the name of a domain’
/>
</variables>

<relations nbRelations=’r’>

<relation
name = ’put here the name of the relation’
arity = ’put here the arity of the relation’
nbTuples = ’put here the number of tuples’
semantics = ’put here either supports or conflicts’ >

Put here the list of tuples
</relation>
</relations>

<predicates nbPredicates=’p’>
<predicate
name = ’put here the name of the predicate’ >
<parameters>
put here a list of formal parameters
</parameters>
<expression>
Put here one (or more) representation of the predicate expression
</expression>
</predicate>

</predicates>

<constraints nbConstraints=’e’>

<constraint
name = ’put here the name of the constraint’
arity = ’put here the arity of the constraint’
scope = ’put here the scope of the constraint’
reference = ’put here the name of a relation, a
predicate or a global constraint’>
</constraint>
</constraints>
</instance>

Figure 1: XML representation of a CSP instance

13

3 REPRESENTING CSP INSTANCES 14

Ounly the attribute format is mandatory (all other attributes are optional
as they mainly provide human-readable information). It must be given the
value "XCSP 2.1’ for the current format. The attribute name must be a valid
identifier (or the special value ’?’). The attribute maxConstraintArity is of
type integer and denotes the greatest arity of all constraints involved in the
instance. The attribute minViolatedConstraints can be given an integer
value denoting the minimum number of constraints that are violated by any full
instantiation of the variables, an expression of the form ’at most k’ with k being
a positive integer or ’?7’. The attribute nbSolutions can be given an integer
value denoting the total number of solutions of the instance, an expression of
the form ’at least k’ with k being a positive integer or ’7’.

For example,

e nbSolutions = ’0’ indicates that the instance is unsatisfiable,

e nbSolutions 3 indicates that the instance has exactly 3 solutions,

e nbSolutions = ’at least 1’ indicates that the instance has at least 1
solution (and, hence, is satisfiable),

e nbSolutions = ’?7’ indicates that it is unknown whether or not the in-
stance is satisfiable,

The attribute solution indicates a solution if one exists and has been found.
The type attribute indicates the kind of problem described by this instance. It
should be set to ’‘CSP’ for a constraint satisfaction problem, "QCSP’ for a quan-
tified CSP and "WCSP’ for a weighted CSP. For compatibility with the XCSP
2.0 format, this attribute is optional for CSP instances (but it is strongly advised
to use it). It is mandatory for other types of instances (QCSP, WCSP,...).

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION
Only the attributes maxConstraintArity and format of element
<presentation> will be present (and the content of element <presentation>
empty). Potentially, the attribute type will be present.

Remark that the optional attribute maxSatisfiableConstraints, although
still authorized, is deprecated. We encourage to use minViolatedConstraints
instead.

3.2 Domains

The XML element called <domains> admits an attribute which is called nbDo-
mains and contains some occurrences (at least, one) of an element called
<domain>, each one being associated with at least one variable of the instance.
The attribute nbDomains is of type integer and its value is equal to the num-
ber of occurrences of the element <domain>. Each element <domain> admits two
attributes, called name and nbValues and contains a list of values, as follows:

3 REPRESENTING CSP INSTANCES 15

<domain
name = ’put here the domain name’
nbValues = ’put here the number of values’ >
Put here the list of values
</domain>

The attribute name corresponds to the name of the domain and its value
must be a valid identifier.

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION

The value of the attribute name of the i** element <domain> must be the letter
D followed by the number i —1 (i.e. we have D0, D1, ...). Besides, each domain
must be referenced by at least one variable.

The attribute nbValues is of type integer and its value is equal to the
number of values of the domain. The content of the element <domain> gives
the set of integer values included in the domain. More precisely, it contains a
sequence of integers and integer intervals.

For the abridged variant, we have for example:

e 15 10 corresponds to the set {1,5,10}.
e 1..3 7 10..14 corresponds to the set {1,2,3,7,10,11,12,13,14}.

Note that nbValues gives the number of values of the domain (i.e. the
domain size), and not, the number of domain pieces (integers and integer inter-
vals).

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION
The values that an element <domain> contains must be given in ascending order
without multiple occurrences of the same value.

3.3 Variables

The XML element called <variables> admits an attribute which is called
<nbVariables> and contains some occurrences (at least, one) of an element
called <variable>, one for each variable of the instance. The attribute nbVari-
ables is of type integer and its value is equal to the number of occurrences of
the element <variable>. Each element <variable> is empty but admits two
attributes, called name and domain, as follows:

<variable
name = ’put here the variable name’
domain = ’put here the name of a domain’
/>

The attribute name corresponds to the name of the variable and its value
must be a valid identifier.

3 REPRESENTING CSP INSTANCES 16

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION
The value of the attribute name of the i*" element variable must be the letter
V followed by the number ¢ —1 (i.e. we have V0, V1, ...). Besides, each variable
must be referenced by at least one constraint (i.e. must be involved in at least
one constraint).

The value of the attribute domain gives the name of the associated domain.
It must correspond to the value of the name attribute of a domain element.

3.4 Relations

If present, the XML element called <relations> admits an attribute which is
called nbRelations and contains some occurrences (at least, one) of an element
called <relation>, each one being associated with at least one constraint of the
instance. The attribute nbRelations is of type integer and its value is equal
to the number of occurrences of the element <relation>.

Each element <relation> admits four attributes, called name, arity, nbTu-
ples and semantics, and contains a list of distinct tuples that represents either
allowed tuples (supports) or disallowed tuples (conflicts). It is defined as follows:

<relation
name = ’put here the name of the relation’
arity = ’put here the arity of the relation’
nbTuples = ’put here the number of tuples’

semantics = ’put here either supports or conflicts’ >
Put here the list of tuples
</relation>

The attribute name corresponds to the name of the relation and its value
must be a valid identifier.

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION

The value of the attribute name of the it element <relation> must be the

letter R followed by the number i — 1 (i.e. we have R0, R1, ...). Besides, each
relation must be referenced by at least one constraint.

The attribute arity is of type integer and its value is equal to the arity of
the relation. The attribute nbTuples is of type integer and its value is equal
to the number of tuples of the relation. The attribute semantics can only be
given two values: ’supports’ and ’conflicts’. Of course, if the value of semantics
is ’supports’ (resp. ’conflicts’), then it means that the list of tuples correspond
to allowed (resp. disallowed) tuples. The content of the element <relation>
gives the set of distinct tuples of the relation.

The representation of lists of tuples is given in Section 2.9.

3 REPRESENTING CSP INSTANCES 17

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION
It is imposed that the tuples contained in an element <relation> must be
given in ascending (lexicographic) order without multiple occurrences of the
same tuple. Also, a relation must contain at least one tuple (otherwise the
relation is either trivially unsatisfiable or trivially satisfied, depending on its
semantics).

3.5 Predicates

If present, the XML element called <predicates> admits an attribute which
is called nbPredicates and contains some occurrences (at least, one) of an
element called <predicate>, one for each predicate associated with at least a
constraint of the instance. The attribute nbPredicates is of type integer and
its value is equal to the number of occurrences of the element <predicate>.
Each element <predicate> admits one attribute, called name, and contains
two elements, called <parameters> and <expression>. It is defined as follows:

<predicate
name = ’put here the name of the predicate’ >
<parameters>
put here a list of formal parameters
</parameters>
<expression>
Put here one (or several) representation(s) of the predicate expression

</expression>

</predicate>

The attribute name corresponds to the name of the predicate and its value
must be a valid identifier.

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION

The value of the attribute name of the i*" element <predicate> must be the
letter P followed by the number i — 1 (i.e. we have PO, P1, ...). Besides, each
predicate must be referenced by at least one constraint.

The <parameters> element defines the list of formal parameters of the pred-
icate. The syntax of this element is detailed is section 2.6.

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION

The name of the i*" formal parameter must be the letter X followed by the
number ¢ — 1 (i.e. we have X0, X1, ...).

The only authorized type is for the moment ’int’ (denoting integer values).
The element <expression> may contain several representations of the pred-
icate expression.

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION
Only the functional representation, described below, is considered. Each formal
parameter occurs at least one time in the expression of the predicate.

3 REPRESENTING CSP INSTANCES

3.5.1 Functional Representation

18

It is possible to insert a functional representation of the predicate expression
by inserting in <expression> an element <functional> which contains any
Boolean expression defined as follows:

<integerExpression> ::

<integer> | <identifier>

| "neg("
| n abs (n
| "add ("
I n sub(n
| "mul("
I "div(n
| "mod ("
| "pow("
| "min(n
| "max("
|

"if (" <booleanExpression> ",

<booleanExpression>
"false" |

"not ("
n and("

"or(" <booleanExpression> ",

|

|

|

| "XOI'(n
| "iff("
I n eq(n

| "ne("
I "ge (n

| "gt("
| "le("
| n 1t (n

<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>

"true"
<booleanExpression>
<booleanExpression>

<booleanExpression>

<booleanExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>

")

"
>

<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>

<booleanExpression>
<booleanExpression>

<booleanExpression>

<booleanExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>
<integerExpression>

||)"
nyn
||)|l
nyn
||)|l
nyn
nyn
||)n

n"on
s

||)|l
nyn

nyn

||)"
nyn
ll)ll
nyn
ll)ll
nyn
nyn

<integerExpression> ")"

Hence, any constraint in intension can be defined by a predicate which cor-
responds to an expression built from (Boolean and integer) constants and the
introduced set of functions (operators). The semantics of operators is given by

Table 1.

An expression usually contains identifiers which correspond to the formal
parameters of a predicate. To illustrate this, let us consider the predicate that
allows defining constraints involved in any instance of the queens problem. It
corresponds to: X #Y A |X — Y| # Z. We obtain using the functional repre-

sentation:

<predicate
<paramet
int X

name="P0">
ers>
int Y int Z

</parameters>

<express
<funct

ion>
ional>

and (ne (X,Y) ,ne(abs(sub(X,Y)),Z))
</functional>

</expres
</predicat

sion>
e>

3 REPRESENTING CSP INSTANCES 19

[Operation [Arity | Syntax | Semantics [MathML |

Arithmetic (operands are integers)

Opposite 1 neg(x) -X <minus>
Absolute Value 1 abs(x) | x| <abs>
Addition 2 add(x,y) Xty <plus>
Substraction 2 sub(x,y) X-y <minus>
multiplication 2 mul(x,y) x ¥y <times>
Integer Division 2 div(x,y) x div y <quotient>
Remainder 2 mod(x,y) x mod y <rem>>
Power 2 pow(x,y) xY <power>
Minimum 2 min(x,y) min(x,y) <min>
Maximum 2 max(x,y) max(x,y) <max>
Relational (operands are integers)
Equal to 2 eq(x,y) X =y <eq>
Different from 2 ne(x,y) X#y <neq>
Greater than or equal 2 ge(x,y) x>y <geq>
Greater than 2 gt(x,y) x>y <gt>
Less than or equal 2 le(x,y) x <y <leq>
Less than 2 1t(x,y) x <y <lt>
Logic (operands are Booleans)
Logical not 1 not(x) - x <not>
Logical and 2 and(x,y) XAy <and>
Logical or 2 or(x,y) xVy <or>
Logical xor 2 xor(X,y) XDy <xor>
Logical equivalence (iff) 2 iff(x,y) X &y
Control
Alternative 3 if(x,y,z) value of y if x is true,
otherwise value of z

Table 1: Operators used to build predicate expressions

3.6 Constraints

The XML element called <constraints> admits an attribute which is called
nbConstraints and contains some occurrences (at least, one) of an element
called <constraint>, one for each constraint of the instance. The attribute
nbConstraints is of type integer and its value is equal to the number of oc-
currences of the element <constraint>.

Each element <constraint> admits four attributes, called name, arity,
scope and reference, and potentially contains some elements:

<constraint
name = ’put here the name of the constraint’
arity = ’put here the arity of the constraint’
scope = ’put here the scope of the constraint’
reference = ’put here the name of a relation, of
predicate or a global constraint’>

</constraint>

3 REPRESENTING CSP INSTANCES 20

The attribute name corresponds to the name of the constraint and its value
must be a valid identifier.

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION

The name of the " constraint must be the letter C' followed by the number
i —1 (i.e. we have CO, C1, ...).

The attribute arity is of type integer and its value is equal to the arity of
the constraint (that is to say, the number of variables in its scope). It must be
greater than or equal to 1. The value of the attribute scope denotes the set
of variables involved in the constraint. It must correspond to a list of distinct
variable names where each name corresponds to the value of the name attribute
of a <variable> element. Variables are separated by whitespace.

—— RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION
To facilitate the identification of constraints which have the same scope, con-
straints in the competition instances will be sorted according to the lexicographic
order of their normalized scope. The normalized scope is the scope of the con-
straint sorted by variable name (for example, VO V1 V2 is the normalization of
V2 VO V1).

This will ensure that two constraints which involve the same set of variables will
be adjacent in the list of constraints. However, constraints which involve the
same set of variables may have different scope attributes. For example, if C1 is
defined on VO V1 and C2 is defined on V1 VO, it is guaranteed that C1 and C2
will be adjacent in the list (i.e. within the element <constraints>) but C2 will
not be rewritten to have scope VO V1 because this is too expensive in a number
of cases.

Solvers which need to identify constraints which involve the same sets of vari-
ables must generate the normalized scope and compare it to the normalized
scope of the previous constraint. If they are equal, the constraints involve the
same set of variables and they may be merged into a single constraint using a
logical and.

More than two consecutive constraints may involve the same set of variables.

There are three alternatives to represent constraints. Indeed, it is possible
to introduce:

e constraints in extension
e constraints in intension

e global constraints

3.6.1 Constraints in extension

The value of the attribute reference must be the name of a relation. It means
that it must correspond to the value of the name attribute of a <relation>
element. The element <constraint> is empty when it represents a constraint
defined in extension. For example:

3 REPRESENTING CSP INSTANCES 21

<constraint name="CO" scope="VO V1" reference="RO" />

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION
All tuples of a relation referenced by a constraint must be valid for this constraint
(i.e. any value occurring in a tuple of the relation must belong to the domain
of the corresponding variable in the scope of the constraint).

3.6.2 Constraints in intension

The value of the attribute reference must be the name of a predicate. It means
that it must correspond to the value of the name attribute of a <predicate>
element.

The element <constraint> contains an element <parameters> when it rep-
resents a constraint defined in intension. The element <parameters> contains a
sequence of effective parameters, each one being either an integer or a variable
reference (which must occur in the scope of the constraint). For the abridged
variant, a separator is inserted between two elements. Of course, the arity of
a predicate referenced by a constraint must correspond to the number of effec-
tive parameters of this constraint. Also, all variables occurring in the scope of
a constraint referencing a predicate must occur as effective parameters of this
constraint. For example:

<constraint name="CO" scope="VO V1" reference="P0">
<parameters>
Vo V1 1
</parameters>
</constraint>

The semantics is the following. Given a tuple built by assigning a value to
each variable belonging to the scope of the constraint, the predicate expression
is evaluated after replacing each occurrence of a formal parameter corresponding
to an effective parameter denoting a variable with the assigned value. The tuple
is allowed iff the expression evaluates to true.

3.6.3 Global constraints

The value of the attribute reference must be the name of a global constraint,
prefixed by “global:”. As the character .’ cannot occur in any valid iden-
tifier, it avoids some potential collision with other identifiers. The name of
global constraints is case-insensitive. Therefore, global:allDifferent and
global:alldifferent represent the same constraint.

The element <constraint> may contain an element <parameters> when it
represents a global constraint. If present, the element <parameters> contains a
sequence of parameters specific to the global constraint. As a consequence, the
description of such parameters must be given for each global constraint. It is
then clear that, for each global constraint, we have to indicate its name (the one

3 REPRESENTING CSP INSTANCES 22

to be referenced), its parameters (and the way they are structured in XML) and
its semantics. Below, we provide such information for four global constraints.

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION
Only the following global constraints will be considered: allDif ferent,
weightedSum, element and cumulative.

Constraint weightedSum (not defined in the global constraint catalog)

Semantics 22:1 k; = X; op b where r denotes the arity of the constraint,
k; denotes an integer, X; the i*" variable occurring in the scope of the constraint,
op a relational operator in {=,#,>,>, <, <}, and b an integer.

Parameters There is a first parameter that represents a list of k dictionar-
ies representing each product in the sum. Each dictionary contains an integer
coefficient (associated with the coef key) and one variable identifier (associ-
ated with the var key). The conventional order of keys in these dictionaries is
coef,var. Therefore, {/coef 2 /var X1} can be represented as {2 X1}.

There is a second parameter which is a tag denoting the relational operator.
It corresponds to an atom that must necessarily belong to {<eq/>,<ne/>,<ge/>,
<gt/>,<le/>,<1t/>} (see Table 1). There is a third parameter which is an
integer.

Example V0+42V1-3V2>12

<constraint name="C2" arity="3" scope="VO0 V1 V2" reference="global:weightedSum">
<parameters>
[{1vo}r{2vi}{-3Vv21}]
<gt/>
12
</parameters>
</constraint>

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION
All coefficients must be non null and all variable identifiers must be different
and must occur in the scope of the constraint.

The syntax of the weightedSum global constraint slightly changed from the
XCSP 2.0 format to the current format. The first parameter of this constraint
is now a list of dictionaries (previously, it was a list of lists). The old syntax is
deprecated.

3 REPRESENTING CSP INSTANCES 23

Alternatives This arithmetic constraint can be represented in intension
(using the grammar described earlier in the paper). It is interesting to note
that:

Z::1kz*X1:b<:>z::1kl*XzZb/\zrzlkz*Xsz

Z::1ki*Xi7éb<:>Z::1ki*Xi>bvz::1ki*Xi<b

Z::1kl*X’L>b<:>22:1kl*xz2b_1

21:1 ki x* X; < b= 22:1 —kiz * X; > —b

References This arithmetic constraint is related to the constraint called
sum_ctr in [2]. Some information can also be found in [12].

3.6.4 Global constraints from the Catalog

The catalog of global constraints (see http://www.emn.fr/x-info/sdemasse/
gccat) describes a huge number of global constraints. This section describes
how these constraints can be translated in the XML representation. This de-
scription is based on the 2006-09-30 version of the catalog.

This version of the XML format supports global constraints from the cat-
alog with parameters of type int, dvar, list and collection (in the catalog
terminology).

The current version of the format doesn’t support constraints with sint,
svar, mint, mvar, f1t or fvar parameters (this restriction will be lifted in
future versions of the format).

Unless stated otherwise for a particular constraint, the name of the global
constraint in the XML representation is directly obtained from the name of the
constraint in the catalog by prefixing it with ’global:’. For example, the catalog
defines a constraint named cumulative. In the XML representation, it is named
global:cumulative. The semantics of the global constraint is the one defined
in the catalog.

Except for some particular cases, parameters of global constraints are rep-
resented according to the following rules.

atom In the catalog, a parameter of type atom is represented in the XML format
by a tag. Atoms representing relational operators will be denoted by
elements of {<eq/>,<ne/>,<ge/>, <gt/>,<le/>,<1t/>} (see Table 1).

int In the catalog, a parameter of type int is an integer constant. It is
represented in the XML format as an integer constant (<i>value</i> in
tagged notation or value in abridged notation).

dvar In the catalog, a parameter of type dvar corresponds to a CSP vari-
able. It is represented in the XML format as a variable reference (<var
name="X"/> in tagged notation or X in abridged notation). A parameter
of type dvar can also correspond to an integer constant.

3 REPRESENTING CSP INSTANCES 24

list A list of elements in the catalog of global constraints is represented as a
list in the XML format (cf. 2.7).

collection The catalog defines a collection as a collection of ordered items, each item
being a set of <attribute, value> pairs. In our XML representation, this
is directly translated as a list of dictionaries. The keys in each dictionary
correspond to the attributes in the collection.

As an example, the cumulative constraint is defined in the catalog as
cumulative (TASKS; LIMIT) where TASKS is a collection(origin—dvar;
duration—dvar; end-dvar; height-dvar) and LIMIT is an int. For each
task, height must be defined but only two attributes among origin, du-
ration and end can be defined (since by definition origin-end=duration).
A constraint that enforces a maximal height of 4 for 3 tasks starting at
origins represented as a CSP variable and with given duration and height,
can be represented by:

<constraint name="C1" arity="3" scope="X2 X5 X9" reference="global:cumulative">
<parameters>
L
{/origin X2 /duration 10 /height 1}
{/origin X5 /duration 5 /height 2}
{/origin X9 /duration 8 /height 3}
]
4
</parameters>
</contraint>

Note that attributes that are not required are represented as missing keys
in the dictionaries.

Assuming the conventional order origin, duration, end, height is defined
for cumulative, this constraint can also be written as

<constraint name="C1" arity="3" scope="X2 X5 X9" reference="global:cumulative">
<parameters>

L
{X2 10 <nil/> 1}
{X5 5 <nil/> 2}
{X9 8 <nil/> 3}

]

4

</parameters>
</contraint>

Here, missing attributes are represented by the <nil/> element.

For each global constraint, the conventional order of dictionaries is the
order of attributes defined in the global catalog.

When a global constraint has a collection parameter which contains only
one attribute, it is represented as a list of values. For example, the
global_cardinality constraint has a first parameter of type collection

3 REPRESENTING CSP INSTANCES 25

of dvar. Tt is represented directly a list of variables ([X1 X2 X3]) instead
of a list of dictionaries with one single key ([{/var X1} {/var X2} {/var
X3}] or, using conventional order, [{X1} {X2} {X3}]1).

When a global constraint has a collection parameter and this parameter is
known to contain one single item (by definition of the global constraint),
this parameter is represented as a single dictionary (instead of a list con-
taining one single dictionary).

Arguments of a global constraint in the catalog must be translated in XML
as a sequence of elements inside the tag <parameters> in the order defined in
the catalog.

he abridged representation of global constraints will only be given using the

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION
T
conventional order.

Below, we present the description of the 3 global constraints from the cat-
alog that will be used for the competition (together with weightedSum). How-
ever, note that most of the global constraints from the catalog can be directly
translated in format XCSP 2.1. Many examples (e.g. among, cycle, diffn,
global_cardinality, nvalue, etc.) are given in the document fully describing the
format.

Constraint allDifferent It is defined in the catalog as follows:

alldifferent (VARIABLES)

VARIABLES collection(var:dvar)

Following rules given above, we may have in XML:

<constraint name="C1" arity="4" scope="V1 V2 V3 V4" reference="global:allDifferent">
<parameters>
[Vi v2V3 V4]
</parameters>
</constraint>

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION

For allDifferent, parameters must only involve variables (integer constants are
not accepted).

Note that the old syntax, with implicit parameters, is deprecated. On the
other hand, this constraint can be represented in intension by introducing a
predicate that represents a conjunction of inequalities. It can also be converted
into a clique of binary notEqual constraints. For more information about this
constraint, see e.g. [11, 15, 2].

3 REPRESENTING CSP INSTANCES 26

Constraint cumulative It is defined in the catalog as follows:
cumulative (TASKS,LIMIT)

TASKS collection(origin:dvar, duration:dvar, end:dvar, height:dvar)
LIMIT int

Here, we have a collection of ordered items where each item corresponds to a
task with 4 attributes (origin, duration, end and height), and a limit value. As
an illustration, we can have in XML:

<constraint name="C1" arity="8" scope="01 D1 E1 H1 02 D2 E2 H2"
reference="global:cumulative">
<parameters>
[{01D1E1HL} {02D2E2H21}]
8
</parameters>
</constraint>

As indicated in the constraint restrictions, one attribute among {origin,
duration,end} may be missing. Assume that it is the case for end, we could
have:

<constraint name="C1" arity="6" scope="01 D1 H1 02 D2 H2"
reference="global:cumulative">
<parameters>
[{01D1 <nil/> H1 } { 02 D2 <nil/> H2 }]
8
</parameters>
</constraint>

Constraint element It is defined in the catalog as follows:

element (INDEX, TABLE, VALUE)

INDEX dvar
TABLE collection(value:dvar)
VALUE dvar

As an illustration, we can have in XML:

<constraint name="C1" arity="5" scope="I X1 X2 X3 V" reference="global:element">
<parameters>
I
[X1 X2 X3]
\
</parameters>
</constraint>

3.7 Illustrations

In Figures 2 and 3, one can see the XML representation of the 4-queens instance.
In Figures 4, 5 and 6, one can see the XML representation of a CSP instance
involving 5 variables and the 5 following constraints:

4 REPRESENTING QCSP INSTANCES 27

o CO: X0+ X1

o C1: X3—X0>2

o 02: X2 X0=2

o C3: X142=|X2— X3|
o C4: X1+ X4

Finally, in Figures 7 and 8, one can see the XML representation of the 3-
magic square instance. The global constraints weightedSum and allDif ferent
are used.

4 Representing QCSP instances

This is a proposal for QCSP and QCSP* by M. Benedetti, A. Lallouet and
J. Vautard. QCSP is not considered for the 2008 competition. The interested
reader can find the exhaustive description in the non-abridged version of this
document.

5 Representing WCSP instances

The classical CSP framework can be extended by associating weights (or costs)
with tuples [3]. The WCSP (Weighted CSP) is a specific extension that rely on
a specific valuation structure S(k) defined as follows.

Definition 1 S(k) is a triple ([0,..., k], ®,>) where:

kell,...,00] is either a strictly positive natural or infinity,

[0,1,...,k] is the set of naturals less than or equal to k,

@ is the sum over the valuation structure defined as: a b = min{k,a + b},

> is the standard order among naturals.

A WCSP instance is defined by a valuation structure S(k), a set of variables
(as for classical CSP instances) and a set of constraints. A domain is associated
with each variable and a cost function with each constraint. More precisely, for
each constraint C and each tuple ¢ that can be built from the domains associated
with the variables involved in C|, a value in [0, 1,..., k| is assigned to t. When a
constraint C' assigns the cost k to a tuple ¢, it means that C forbids ¢. Otherwise,
t is permitted by C with the corresponding cost. The cost of an instantiation of
variables is the sum (using operator @) over all constraints involving variables
instantiated. An instantiation is consistent if its cost is strictly less than k. The
goal of the WCSP problem is to find a full consistent assignment of variables
with minimum cost.

It is rather easy to represent WCSP in XML in format XCSP 2.1. This is
described below.

5 REPRESENTING WCSP INSTANCES 28

5.1 Presentation

Here are the extensions to the XML element called <presentation> in order
to deal with a WCSP instance:

e the attribute format must be given the value "XCSP 2.1".

e the attribute type is required and its value must be "WCSP".

5.2 Relations

For WCSP represented in extension, it is necessary to introduce “soft” relations.
These relations are defined as follows:

e the value of the attribute semantics is set to "soft".
e weighted tuples are given as described in Section 2.10

e an new attribute defaultCost is mandatory and represents the cost of
any tuple which is not explicitly listed in the relation. Its value belongs to
[0, ..., k] where k is the maximal cost of the valuation structure, defined by
the attribute maximalCost of the element <constraints> (see below).
Note that it may be the special value ’infinity’.

5.3 Functions

Instead of representing constraints of a WCSP in extension, it is possible to rep-
resent them in intension by introducing cost functions. For any tuple passed to
such a function, its cost is computed and returned. In other words, we employ
here exactly the same mechanism as the one employed for hard constraints rep-
resented in intension. The only difference is that a predicate returns a Boolean
value whereas a cost function must return an integer value.

If present, the XML element called <functions> admits an attribute which
is called nbFunctions and contains some occurrences (at least, one) of an
element called <function>, one for each function associated with at least a
constraint of the instance. The attribute nbFunctions is of type integer and
its value is equal to the number of occurrences of the element <function>. The
<functions> element must be a direct child of the <instance> element.

Each element <function> admits two attributes, called name and return,
and contains two elements, called <parameters> and <expression>. It is de-
fined as follows:

<function name = ’put here the name of the function’ return=’return type’>
<parameters>
put here a list of formal parameters
</parameters>
<expression>
Put here one (or several) representation(s) of the function expression
</expression>
</function>

6 RESTRICTIONS FOR THE COMPETITION 29

The attribute name corresponds to the name of the function and its value
must be a valid identifier.

The attribute return indicates the return type of the function. In this ver-
sion of the format, the only return type used is ’'int’. Then elements <parameters>
and <expression> are defined exactly as those defined for <predicate> el-
ements. The only difference is that the expression must be of type integer
instead of being of type Boolean.

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION
Functions will not be considered.

5.4 Constraints

For any WCSP instance, it is required to introduce an attribute maximalCost
to the element <constraints>. The value of this attribute is of type integer
(and must be strictly positive) and represents the maximum cost of the WCSP
framework (the k value). Remember that it corresponds to a total violation and
may be equal to ’infinity’ (whereas 0 corresponds to a total satisfaction). Also,
an optional attribute initialCost to the element <constraints> is introduced.
If present, the value of this attribute is of type integer and represents a constant
cost that must be added to the sum of constraints cost. This is the cost of the
0-ary constraint of the WCSP framework which is sometimes assumed (e.g. see
[10]). When not present, it is assumed to be equal to 0.

Remark 2 When representing a WCSP instance, it is possible to refer to hard
constraints (defined in extension or intension). For such constraints, an allowed
tuple has a cost of 0 while a disallowed tuple has a cost equal to the value of the
attribute maximalCost.

RESTRICTION FOR THE 2008 CSP SOLVER COMPETITION

maximalCost will be a constant integer (and, so different from ’infinity’).
initialCost will always be equal to 0 and therefore unspecified.

5.5 Illustration

The representation in XCSP 2.1 of an illustrative WCSP instance is given by
Figure 9.

6 Restrictions for the competition

6.1 Concerning CSP and MaxCSP

The restrictions considered for the 2008 CSP (and Max-CSP) solver competition
are:

6 RESTRICTIONS FOR THE COMPETITION 30

e only the abridged representation is considered.

e name of domains, variables, relations, predicates, constraints and so on
are normalized.

e all domain values and all intermediate computations (when evaluating
expressions according to their functional representation) must fit into 32-
bits signed integers.

e constraints are sorted by lexicographic order of their normalized scope.

e only the four global constraints (allDif ferent, weightedSum, cumulative
and element) illustrated in this document will be considered for the CSP
category “global constraints”, Besides, the abridged representation of global
constraints will only be given using the conventional order.

Here are the differences between the format XCSP 2.0* (the restriction of
the format XCSP 2.0 considered for the 2006 CSP solver competition) and the
format XCSP 2.1* (the restriction of the format 2.1 considered for the 2008 CSP
solver competition).

1. the attribute name of the element presentation has become optional,

2. two new operators (iff and if) have been introduced to be used when
building predicate expressions,

3. constraints of same scope are gathered,

4. three new global constraints are introduced.

In other words, if you have a CSP (or Max-CSP) solver that already recog-
nizes the format XCSP 2.0, the only thing you have to do is to extend it to take
into account the two new operators (if f and if). Note that parsers in C(++)
and Java for XCSP 2.1 are available from http://www.cril.univ-artois.fr/
CPATI08/. On the other hand, if you want to submit a solver for the category of
global constraints, you also should recognize the three new global constraints.
A tool that allows validating XML representations of CSP instances in format
2.1 for the 2008 competition is also available from the URL given above.

On the other hand, it is important to provide some information about com-
putations.

Roundings As all domain values and all (intermediate) computations (when
evaluating expressions) are (signed) integers, no rounding problem may occur.

Overflows It is well-known that, when evaluating arithmetic expressions,
overflow may occur. It is a real problem in the context of a competition as a
solver that products an overflow can be considered as bugged. Any instance se-
lected for the 2008 competition will be guaranteed to be overflow-free. However,
be careful, it only means that no overflow will occur if values and all interme-
diate computations are represented using 32-bits signed integers and predicate
expressions are evaluated in the order fixed by the functional representation.

REFERENCES 31

Divisions There are several possible definitions of the quotient and remainder
of a division when dividend and divisor are not necessarily positive. We adopt
the convention which is used virtually by all modern processors (including the
ones used in the competition), the C99 standard and the Java specification. The
quotient produced for div(n,d) is an integer value ¢ whose magnitude is as large
as possible while satisfying |dg| < |n|. Moreover, g is positive when |n| > |d|
and n and d have the same sign, but ¢ is negative when |n| > |d| and n and d
have opposite signs. The remainder produced for rem(n,d) produces a result
value r such that g xd + r = n where ¢ = div(n,d). It follows from this rule
that the result of the remainder operation can be negative only if the dividend
is negative, and can be positive only if the dividend is positive; moreover, the
magnitude of the result is always less than the magnitude of the divisor.

Divisions by Zero Any instance selected for the 2008 competition will be
guaranteed to be free of any division by zero. However, be careful, it only means
that it will not occur if values and all intermediate computations are represented
using 32-bits signed integers and predicate expressions are evaluated in the order
fixed by the functional representation.

Finally, for the competition, some traps must be avoided:

e unary constraints may occur (e.g. zebra.xml).
e several constraints may share the same scope (e.g. fapp01-0200-0.xml).

e several constraints may share the same scope under permutations (e.g. see
constraints CO and C13 in langford-2-4-ext.xml).

6.2 Concerning WCSP

The restrictions considered for the 2008 WCSP solver competition are:
e only the abridged representation is considered,

e name of domains, variables, relations, constraints and so on are normal-
ized.

e all domain values and all intermediate computations (i.e. the cost any full
instantiation) must fit into 32-bits signed integers.

e constraints are sorted by lexicographic order of their normalized scope.

e 1o function and no global constraint are considered.

References

[1] K.R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

REFERENCES 32

2]

[3]

[15]

[16]

[17]

N. Beldiceanu, M. Carlsson, and J. Rampon. Global constraint catalog.
Technical report, Swedish Institute of Computer Science, 2005.

S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and
H. Fargier. Semiring-based csps and valued csps: Frameworks, properties,
and comparison. Constraints Journal, 4(3):199-240, 1999.

M. Garcia de la Banda, K. Marriott, R. Rafeh, and M. Wallace. The
modelling language Zinc. In Proceedings of CP’06, pages 700-705, 2006.

R. Dechter. Constraint processing. Morgan Kaufmann, 2003.

P. Flener, J. Pearson, and M. Agren. Introducing ESRA, a relational lan-
guage for modelling combinatorial problems. In LOPSTR’03: Revised Se-
lected Papers, pages 214-232, 2004.

A. Frisch, M. Grum, C. Jefferson, B. Martinez Hernandez, and I. Miguel.
The design of ESSENCE: A constraint language for specifying combinato-
rial problems. In Proceedings of IJCAI'07, pages 80-87, 2007.

P. Van Hentenryck. The OPL Optimization Programming Language. The
MIT Press, 1999.

J. Larrosa. Node and arc consistency in weighted CSP. In Proceedings of
AAATD02, pages 48-53, 2002.

J. Larrosa and T. Schiex. In the quest of the best form of local consistency
for Weighted CSP. In Proceedings of IJCAI’03, pages 363-376, 2003.

J.C. Régin. A filtering algorithm for constraints of difference in CSPs. In
Proceedings of AAAI’9, pages 362—-367, 1994.

J.C. Régin and M. Rueher. A global constraint combining a sum constraint
and difference constraints. In Proceedings of CP’00, pages 384—395, 2000.

G. Renker and H. Ahriz. Building models through formal specification. In
Proceedings of CPAIOR’04, pages 395401, 2004.

E. Tsang, P. Mills, R. Williams, J. Ford, and J. Borrett. A computer-aided
constraint programming system. In Proceedings of PACLP’99, pages 81-93,
1999.

W.J. van Hoeve. The alldifferent constraint: a survey. In Proceedings of
the Siaxth Annual Workshop of the ERCIM Working Group on Constraints,
2001.

World Wide Web Consortium (W3C). Eztensible Markup Language (XML).
http://www.w3.org/XML/, 1997.

J. Zhou. Introduction to the constraint language NCL. Journal of Logic
Programming, 45(1-3):71-103, 2000.

REFERENCES

<instance>

<presentation name="Queens" mnbSolutions="at least 1" format="XCSP 2.1">

This is the 4-queens instance represnted in extension.
</presentation>

<domains nbDomains="1">
<domain name="DO" nbValues="4">
1..4
</domain>
</domains>

<variables nbVariables="4">
<variable name="VO0" domain="DO"/>
<variable name="V1" domain="DO"/>
<variable name="V2" domain="DO"/>
<variable name="V3" domain="DO"/>
</variables>

<relations nbRelations="3">
<relation name="RO" arity="2" nbTuples="10" semantics="conflicts">
1111 212 112 2]2 3|3 213 313 414 3|4 4
</relation>
<relation name="R1" arity="2" nbTuples="8" semantics="conflicts">
1111 312 2]2 413 113 314 2|4 4
</relation>
<relation name="R2" arity="2" nbTuples="6" semantics="conflicts">
1111 412 2|3 3|4 114 4
</relation>
</relations>

<constraints nbConstraints="6">
<constraint name="CO" arity="2" scope="VO V1" reference="R0"/>
<constraint name="C1" arity="2" scope="VO V2" reference="R1"/>
<constraint name="C2" arity="2" scope="VO V3" reference="R2"/>
<constraint name="C3" arity="2" scope="V1 V2" reference="R0"/>
<constraint name="C4" arity="2" scope="V1 V3" reference="R1"/>
<constraint name="C5" arity="2" scope="V2 V3" reference="R0"/>

</constraints>

</instance>

Figure 2: The 4-queens instance in extension

33

REFERENCES

<instance>
<presentation name="Queens" nbSolutions="at least 1" format="XCSP 2.1">
This is the 4-queens instance represented in intention.
</presentation>

<domains nbDomains="1">
<domain name="DO" nbValues="4">
1..4
</domain>
</domains>

<variables nbVariables="4">
<variable name="VO" domain="DO"/>
<variable name="V1" domain="DO"/>
<variable name="V2" domain="DO"/>
<variable name="V3" domain="DO"/>
</variables>

<predicates nbPredicates="1">
<predicate name="P0O">
<parameters> int X0 int X1 int X2 </parameters>
<expression>
<functional> and(ne(X0,X1),ne(abs(sub(X0,X1)),X2)) </functional>
</expression>
</predicate>
</predicates>

<constraints nbConstraints="6">
<constraint name="CO" arity="2" scope="VO V1" reference="P0">
<parameters> VO V1 1 </parameters>
</constraint>
<constraint name="C1" arity="2" scope="VO V2" reference="P0">
<parameters> VO V2 2 </parameters>
</constraint>
<constraint name="C2" arity="2" scope="VO V3" reference="P0">
<parameters> VO V3 2 </parameters>
</constraint>
<constraint name="C3" arity="2" scope="V1 V2" reference="P0">
<parameters> V1 V2 1 </parameters>
</constraint>
<constraint name="C4" arity="2" scope="V1 V3" reference="P0">
<parameters> V1 V3 2 </parameters>
</constraint>
<constraint name="C5" arity="2" scope="V2 V3" reference="P0">
<parameters> V2 V3 1 </parameters>
</constraint>
</constraints>
</instance>

Figure 3: The 4-queens instance in intention

REFERENCES

<instance>
<presentation name="Test" format="XCSP 2.1">
This is another instance represented in extension.
</presentation>

<domains nbDomains="3">
<domain name="DO" nbValues="7">
0..6
</domain>
<domain name="D1" nbValues="3">
1510
</domain>
<domain name="D2" nbValues="10">
1..5 11..15
</domain>
</domains>

<variables nbVariables="5">
<variable name="VO0" domain="DO"/>
<variable name="V1" domain="DO"/>
<variable name="V2" domain="D1"/>
<variable name="V3" domain="D2"/>
<variable name="V4" domain="DO"/>
</variables>

<relations nbRelations="4">
<relation name="RO" arity="2" nbTuples="7" semantics="conflicts">
0 0l1 112 213 314 4|5 516 6
</relation>
<relation name="R1" arity="2" nbTuples="25" semantics="conflicts">
10/1 111 211 3|1 4|1 511 612 1|2 2|2 3|2 4|2 5|2 613 2|3 3|
3413 5|3 614 314 4/14 5|4 615 4|5 5|5 6
</relation>
<relation name="R2" arity="2" nbTuples="1" semantics="supports">
53
</relation>
<relation name="R3" arity="3" nbTuples="17" semantics="supports">
0 13|05 3|0 10 12|11 1 411 5 2|1 10 13|12 1 5|2 5 1|2 10 14|
310 513 10 15/4 5 1114 10 415 5 12]|5 10 3|6 5 136 10 2
</relation>
</relations>

<constraints nbConstraints="5">
<constraint name="CO" arity="2" scope="VO V1" reference="R0"/>
<constraint name="C1" arity="2" scope="V3 VO" reference="R1"/>
<constraint name="C2" arity="2" scope="V2 VO" reference="R2"/>
<constraint name="C3" arity="3" scope="V1 V2 V3" reference="R3"/>
<constraint name="C4" arity="2" scope="V1 V4" reference="R0"/>

</constraints>

</instance>

Figure 4: Test Instance in extension

REFERENCES 36

<instance>
<presentation name="Test" format="XCSP 2.1">
This is another instance represented in intention.
</presentation>

<domains nbDomains="3">
<domain name="dom0" nbValues="7">
0..6
</domain>
<domain name="doml" nbValues="3">
15 10
</domain>
<domain name="dom2" nbValues="10">
1..5 11..15
</domain>
</domains>

<variables nbVariables="5">
<variable name="VO" domain="domO"/>
<variable name="V1" domain="domO"/>
<variable name="V2" domain="doml"/>
<variable name="V3" domain="dom2"/>
<variable name="V4" domain="dom0"/>
</variables>

<predicates nbPredicates="4">
<predicate name="P0">
<parameters> int X0 int X1 </parameters>
<expression>
<functional> ne(X0,X1) </functional>
</expression>
</predicate>
<predicate name="P1">
<parameters> int X0 int X1 int X2 </parameters>
<expression>
<functional> ge(sub(X0,X1),X2) </functional>
</expression>
</predicate>
<predicate name="P2">
<parameters> int X0 int X1 int X2 </parameters>
<expression>
<functional> eq(sub(X0,X1),X2) </functional>
</expression>
</predicate>
<predicate name="P3">
<parameters> int X0 int X1 int X2 int X3 </parameters>
<expression>
<functional> eq(add(X0,X1),abs(sub(X3,X4))) </functional>
</expression>
</predicate>
</predicates>

Figure 5: Test Instance in intention (to be continued)

REFERENCES

<constraints nbConstraints="5">
<constraint name="CO" arity="2" scope="VO V1" reference="P0">
<parameters> VO V1 </parameters>
</constraint>
<constraint name="C1" arity="2" scope="VO V3" reference="P1">
<parameters> V3 VO 2 </parameters>
</constraint>
<constraint name="C2" arity="2" scope="VO V2" reference="P2">
<parameters> V2 VO 2 </parameters>
</constraint>
<constraint name="C3" arity="3" scope="V1 V2 V3" reference="P3">
<parameters> V1 2 V2 V3 </parameters>
</constraint>
<constraint name="C4" arity="2" scope="V1 V4" reference="P0">
<parameters> V1 V4 </parameters>
</constraint>
</constraints>
</instance>

Figure 6: Test Instance in intention (continued)

37

REFERENCES

<instance>

<presentation name="Magic Square"
This is the magic square of order 3.

</presentati

on>

<domains nbDomains="1">
<domain name="domO"

1..9
</domain>
</domains>

nbValues="9">

<variables nbVariables="9">

<variable
<variable
<variable
<variable
<variable
<variable
<variable
<variable
<variable
</variables>

name="X0"
name="X1"
name="X2"
name="X3"
name="X4"
name="X5"
name="X6"
name="X7"
name="X8"

domain="dom0"/>
domain="dom0"/>
domain="dom0" />
domain="dom0"/>
domain="dom0"/>
domain="dom0"/>
domain="dom0" />
domain="dom0" />
domain="dom0"/>

<constraints nbConstraints="8">

<constraint name="CO"
<parameters>
[{1x0}{1x1
<eq/>
15
</parameters>
</constraint>
<constraint name="C1"
<parameters>
[{1x3}{1x4
<eq/>
15
</parameters>
</constraint>
<constraint name="C2"
<parameters>
[{1x62}{1X7
<eq/>
15
</parameters>
</constraint>
<constraint name="C3"
<parameters>
[{1x02}{1x3
<eq/>
15
</parameters>
</constraint>

arity="3" scope="X0 X1 X2"

F{1x21}]

arity="3" scope="X3 X4 X5"

Y{1x53%1

arity="3" scope="X6 X7 X8"

Yy{1x8%1]

arity="3" scope="X0 X3 X6"

Y{1x6}1]

38

format="XCSP 2.1">

reference="global:weightedSum">

reference="global:weightedSum">

reference="global:weightedSum">

reference="global:weightedSum">

Figure 7: The 3-magic square instance (to be continued)

REFERENCES 39

<constraint name="C4" arity="3" scope="X1 X4 X7" reference="global:weightedSum">
<parameters>
[{1X13}3{1x4}Y{1X71}]1]
<eq/>
15
</parameters>
</constraint>
<constraint name="C5" arity="3" scope="X2 X5 X8" reference="global:weightedSum">
<parameters>
[{1Xx2}{1Xx5}{1Xx81}]
<eq/>
15
</parameters>
</constraint>
<constraint name="C6" arity="3" scope="X0 X4 X8" reference="global:weightedSum">
<parameters>
[{1X0}r{1Xx4}r{1X81}1]
<eq/>
15
</parameters>
</constraint>
<constraint name="C7" arity="3" scope="X2 X4 X6" reference="global:weightedSum">
<parameters>
[{1Xx23}r{1Xx4}r{1X61}1]
<eq/>
15
</parameters>
</constraint>
<constraint name="C8" arity="9" scope="X0 X1 X2 X3 X4 X5 X6 X7 X8"
reference="global:allDifferent" />
</constraints>
</instance>

Figure 8: The 3-magic square instance (continued)

REFERENCES 40

<instance>
<presentation name="ExampleWCSP" format="XCSP 2.1" type="WCSP">
This is a WCSP instance.
</presentation>

<domains nbDomains="1">
<domain name="DO" nbValues="3">0..2</domain>
</domains>

<variables nbVariables="4">
<variable name="VO" domain="DO"/>
<variable name="V1" domain="DO"/>
<variable name="V2" domain="DO"/>
<variable name="V3" domain="DO"/>
</variables>

<relations nbRelations="6">
<relation name="RO" arity="2" nbTuples="10" semantics="soft" defaultCost="0">
5:0 010 111 011 1]1 2|2 1]2 2|2 313 2|3 3
</relation>
<relation name="R1" arity="1" nbTuples="2" semantics="soft" defaultCost="0">
1:113
</relation>
<relation name="R2" arity="1" nbTuples="2" semantics="soft" defaultCost="0">
1:1]2
</relation>
<relation name="R3" arity="1" nbTuples="2" semantics="soft" defaultCost="0">
1:012
</relation>
</relations>

<functions nbFunctions="2">
<function name="F0" return="int">
<parameters> int X int Y </parameters>
<expression>
<functional> if(eq(X,Y),0,5) </functional>
</expression>
</function>
<function name="F1" return="int">
<parameters> int X int Y int Z </parameters>
<expression>
<functional> if(gt(mul(add(X,Y),Z),5),0,2) </functional>
</expression>
</function>
</functions>

<constraints nbConstraints="7" initialCost="0" maximalCost="5">
<constraint name="CO" arity="2" scope="VO V1" reference="RO" />
<constraint name="C1" arity="2" scope="VO V2" reference="FO0 />
<constraint name="C2" arity="3" scope="V1 V2 V3" reference="F1" />
<constraint name="C3" arity="1" scope="VO" reference="R1" />
<constraint name="C4" arity="1" scope="V1" reference="R2" />
<constraint name="C5" arity="1" scope="V2" reference="R3" />

</constraints>

</instance>

Figure 9: A WCSP instance

