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Preface

The Third International CSP Solver Competition was organised to improve our under-
standing of the sources of solver efficiency, and the options that should be considered in
crafting solvers. In particular, issues of interdependence and interaction among features
can perhaps only be elucidated by comparing and testing actual implementations. It is
hoped that efforts like this will further our understanding of the important dimensions
of performance, for example robustness or versatility as opposed to problem-specific
efficiency.

These proceedings present the description of some of the solvers submitted to the
competition. Although these descriptions have not been formally reviewed, we believe
that they contain valuable information which deserves to be considered with careful
attention by current and future developers of constraint systems. Due to time constraints
it has been impossible to present the final ranking of the solvers in these proceedings.
The rankings will be presented at CP’08 and a paper will be submitted to a journal.

For this third edition, we considered instances involving constraints defined in ex-
tension and in intension (i.e. by a predicate). In addition to the global allDifferent
constraint, which was already present for the second competition, the global constraints
cumulative, element , and weightedSum have been introduced. Solvers have been eval-
uated for (Ordinary) CSP and Max-CSP, considering instance categories defined by the
arity of the constraints (binary, non-binary) and by their representation (extension, in-
tension, global).

This year there have been three organisational changes. The first change is the cre-
ation of a Working Committee which is responsible for the creation of new instance
classes and tools for converting instances from different languages to the competition’s
specification format. The second change is the installation of two independent judges,
which are not related to any of the teams. The main task of the judges is to ensure that
the selection of the instances and key decisions are made in a fair and transparent way.
The third and final organisational change is the creation of a Problem Selection Com-
mittee, which was installed by the independent judges. Installing the judges and the
Problem Selection Committee has reduced the possibility of interference of the main
organisers with problem selection and other decisions which may affect the outcome of
the competition.

The original version of these proceedings have been made available on a DVD. The
contents of the DVD are the proceedings, the normalised problem instances which were
used for the final evaluation, the original instances from which the normalised instances
were obtained, and the satisfiability of the problem instances.

September 2008 Marc van Dongen
Christophe Lecoutre

Olivier Roussel

Main Organising Committee
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An overview of mddc-solv

Kenil C.K. Cheng and Roland H.C. Yap

School of Computing
National University of Singapore
{chengchi, ryap}@comp.nus.edu.sg

Abstract. This paper describes the design and implementation of mddc-solv.

1 General Description

Written in C++, mddc-solv is a complete solver participating in the category
N-ARY-EXT in CSP 2008 Competition. Its design and implementation aim at
handling large extensional constraints with high arity, rather than (small) binary
or ternary constraints. The overall architecture is as follows:

The variable ordering heuristic is dom/wdeg [1], which selects the variable
x with smallest

|dom(x)|∑
x∈var(C) w(C)

where var(C) is the scope of the constraint C and w(C) is the weight of
C. Initially, the weight is one. Whenever a constraint is found inconsistent
during propagation, its weight is incremented by one. The weights are never
reset.

The value ordering heuristic is static, where the most supported value is
tried first [6].

Two-way branching is used, with the branch x = a chosen before 6= a.
Geometric restart with nogood learning [5] was implemented. The initial

cutoff is 3 times the number of variables, and is subsequently multiplied by
1.5 upon restart, which occurs when the number of fails (due to x = a)
exceeds the current cutoff.

Generalized arc consistency (GAC) is the only consistency available in the
solver; in particular, we implemented mddc [4], a coarse-grained GAC al-
gorithm based on multi-valued decision diagram (MDD) [7]. In mddc-solv,
all extensional constraints, binary or non-binary, are represented as MDDs.
To enforce GAC on a constraint, mddc traverses the MDD recursively and
updates the domains of the relevant variables on the fly. Because of the com-
pactness of MDDs, mddc may run exponentially faster, with exponentially
less memory, than GAC algorithms based on tables (arrays or bit vectors).
Since our current implementation of mddc-solv has no differentiation between
boolean and non-boolean constraints, we didn’t implement bddc [3], which is
a scale-down version of mddc and includes special features such as caching.
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During constraint propagation, the constraint with largest

w(C)∏
x∈var(C) |dom(x)|

is checked first. Intuitively speaking, the weight records how often a con-
straint was found inconsistent in the past, whereas the product of domain’s
size estimates how likely the constraint is going to be inconsistent with re-
spect to the current search space.

The domain of a variable is represented as a set of pruned values, which was
implemented with the same sparse set data structure [2] used in mddc.

We implemented the table-to-MDD procedure (mddReduce) and the GAC
algorithm (mddc) as presented in [4]; some competition-specific changes have
been made, which are described in the remaining sections. Readers may refer to
the original papers [3, 4] for details. Beforehand, we reproduce the definitions of
an MDD and an MDD constraint.

Definition 1. A multi-valued decision diagram (MDD) [7] is either the t-terminal
(tt), the f-terminal (ff), or a directed acyclic graph of the form

G = mdd(x, {a1/G1, . . . , ad/Gd})

where G1, . . . , Gd are MDDs and a1, . . . , ad are distinct integers. Each pair
ak/Gk (1 ≤ k ≤ d) is a branch of G, and Gk is a sub-MDD of G.

Both tt and ff are used because in the competition mddc has to deal with
both positive and negative constraints (the former is defined as a set of solutions
while the latter a set of non-solutions). Fig. 1a depicts a small MDD.

Definition 2. An MDD constraint (represented by an MDD G) is a logical con-
straint

Φ(G) ≡


True : G = tt
False : G = ff∨d

k=1(x = ak ∧ Φ(Gk)) : G = mdd(x, {a1/G1, . . . , ad/Gd})

2 Building an MDD for an Extensional Constraint

Since in the competition, an extensional constraint is represented as its set of
(non-)solutions in lexicographical order, we can build the MDD without first
constructing a trie explicitly [4]. Fig. 2 illustrates the ideas.

3 Modified mddc for Negative Constraints

We slightly modified mddc (lines 1, 2 in Fig. 3) for negative constraints.
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Fig. 1: (a) A graphical representation of a multi-valued decision diagram (MDD).
Each non-terminal node vk is labeled with a variable xi. An outgoing edge of
vk with label a depicts an assignment (xi, a). (b) An MDD is implemented as
a static two-dimensional transition table, where the row k corresponds to the
MDD node vk and the column a corresponds to the assignment (xi, a), i.e., each
cell corresponds to an MDD edge.
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Fig. 2: (a) A semi-constructed MDD for a positive constraint. Every triangle de-
picts a fully constructed sub-MDD. The terminal node in a dashed box means it
is default and temporary (see below). For a positive (negative) constraint, the de-
fault is ff (tt). Arrowheads are omitted and only relevant edges are labeled. The
last input solution is θ = {(x1, 1), (x2, 2), (x3, 2), (x4, 3), (x5, 2), (x6, 2)}. Now,
suppose another solution θ′ = {(x1, 1), (x2, 2), (x3, 3), (x4, 2), (x5, 2), (x6, 2)} has
just been read. In order to insert θ′ into the MDD, the temporary node v1 is
replaced with a new branch. The modified MDD is in (b). We then compress
G into a new sub-MDD because v2 and v3 are fixed (no solution will share the
prefix {(x1, 1), (x2, 2), (x3, 2), (x4, 3)}). This is due to the competition rule that
requires the solutions of an input constraint to be in lexicographic order. The
updated MDD is shown in (c). Notice that θ′ is the new frontier: all sub-MDDs
on its left are fully constructed. An MDD for a negative constraint can be made
in a similar fashion.
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mddc(G) /* MDD constraint Φ(G)(x1, . . . , xr) */
begin

GYES := ∅
restore(GNO)
for i := 1 to r do Si := dom(xi) /* values that have no support yet */
mddcSeekSupports(G) /* update S1, . . . , Sr */
for i := 1 to r do dom(xi) := dom(xi) \ Si

end

mddcSeekSupports(G) /* recursive: Φ(G)(xi, . . . , xr) */
begin

if G = tt then1

for j := i to r do
Sj := ∅ /* True admits any domain values */

return YES

if G = ff then return NO2

if G ∈ GYES then return YES /* visited and consistent */
if G ∈ GNO then return NO /* pruned */
/* let G = mdd(xi, {a1/G1, . . . , ad/Gd}) */
res := NO
for k := 1 to d do

if ak ∈ dom(xi) then
if mddcSeekSupports(Gk) = YES then

res := YES
Si := Si \ {ak}
if ∀i′ ≥ i : Si′ = ∅ then break /* Φ(G)(xi, . . . , xr) is GAC */

Gres := Gres ∪ {G}
return res

end

Fig. 3: Modified mddc and mddcSeekSupports (cf. [4])
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choco: an Open Source Java Constraint
Programming Library

The choco team?

website: choco.emn.fr
contact: choco@emn.fr

École des Mines de Nantes
LINA CNRS

4 rue Alfred Kastler – BP 20722
F-44307 Nantes Cedex 3, France

Abstract. choco is a java library for constraint satisfaction problems
(CSP) and constraint programming (CP). It is built on a event-based
propagation mechanism with backtrackable structures. choco is an open-
source software, distributed under a BSD licence and hosted by source-
forge.net. choco is mainly developped by people at École des Mines
de Nantes (France) and is financially supported by Bouygues SA and
Amadeus SA.

1 Introduction

choco originated in 1999 within the OCRE project, a French national initiative
for an open constraint solver for both teaching and research involving researchers
and practitionners from Nantes (École des Mines), Montpellier (LIRMM), Tou-
louse (INRA and ONERA) and Bouygues SA. Its first implementation was in
CLAIRE [CJL02], Yves Caseau’s language that compiled into C++. It has been
used since then as a teaching tool and the main constraint programming devel-
opping tool in the Constraint Programming research group in Nantes.

In 2003, choco went through its premiere major modification when it has
been implemented into the Java programming language. The objective was to
ensure a greater portability and to ensure an easier takeover for newcomers. As
for this time, choco really started its worldwide expansion.

In 2008, choco is being taken a step further. Thanks to the hiring of a full-
time engineer on the solver (financed by École des Mines de Nantes, Bouygues
SA and Amadeus SA), choco enters a new period of its development. As the v2
version is shipped on Sep. 10th, 2008, it offers a clear separation between the
model and the solving machinery (providing both modelling tools and innovative

? The choco team is composed of people from École des Mines de Nantes (including
Narendra Jussien and Charles Prud’homme), Cork Constraint Computation Center
(including Hadrien Cambazard), Bouygues e-lab (including Guillaume Rochart) and
Amadeus SA (including François Laburthe).
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solving tools), a complete refactoring improving its general performance, and a
more user-friendly API for both newcomers and experienced CP practionners.

choco v2 is an open system distributed as a sourceforge project under a
BSD license authorizing all possible usages. It is a glass box (all the sources
are provided) for teaching (illustrating and implementing all major concepts of
Constraint Programming), research (its open API allows an easy integration of
personal state-of-the-art algorithms and concepts within the solver) and problem
solving (it is now used in real-life contexts in several companies).

In a few words, choco is an efficient yet readable constraint system for re-
search and development ; choco is a readable yet efficient constraint system for
teaching.

2 choco’s general features

choco is a problem modeler and a constraint programming solver available as
a Java library. Moreover, its architecture allows the plugin of other (non CP
based) solvers.

2.1 A Problem Modeler

choco is a problem modeler able to manipulate a wide variety of variable types
(all considered here as first-class citizens):

– integer variables;
– set variables representing sets of integer values;
– real variables representing variables taking their value in an interval of floats;
– expressions representing a integer- or real-based expression using operators

such as plus, mult, minus, scalar, sum, etc.

choco ’s modeler accepts over 70 constraints (provided that the called solver
will be a CP-based solver):

– all classical arithmetical constraints (or integers or reals): equal, not equal,
less or equal, greater or equal, etc.;

– reified constraints i.e. boolean operations between (possibly reified) con-
straints;

– table constraints defining the sets of tuples that (do not) verify the intended
relation for a set of variables;

– a large set of useful classical global constraints including the alldifferent
[Rég94] constraint, the global cardinality [Rég96] constraint, the nvalue
[BHH+05] constraint, the element [BC94] constraint, the cumulative [AB93]
constraint, etc.

Moreover, choco provides access to the most recent state-of-the-art imple-
mentations of global constraints produced in Nantes, France including the tree
[BLF08] constraint and the geost [BCP+07] constraint.
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Finally, the implementation of the regular [Pes04] and cost-regular [DPR06]
constraints provide an automatic1 access to all global constraints whose checker
is either a deterministic finite automaton or a DFA with (array of) counters as
described in the Global Constraint Catalog [BCDP07].

2.2 A Constraint Programming solver

choco is (as expected) a constraint programming solver. It provides:

– several implementations of the various domain types (eg. enumerated, bounded,
list-based, ... integer variables);

– several algorithms for constraint propagation (state-of-the-art AC algorithms
for table constraints, full and bound alldifferent, parameterized cumulative,
etc.).

choco can either be used in satisfaction mode (computing one solution, all
solutions or iterating them) or in optimization mode (maximisation and min-
imisation). Search can be parameterized using a set of predefined variable and
value selection heuristics (including impact-based search [Ref04] and domain over
weighted degree [BHLS04]). User’s parameterization includes designing her own
variable and/or value selectors, as well as precising which should be the decision
variables and even designing cascading variable/value selectors for different sets
of variables.

Finally, when converting the model into a solver-specific problem, choco can
enter into a pre-processor mode that will perform some automatic improvements2
in the model. choco is initially a solver working with intensional constraints and
therefore the pre-processor attempts to use the intensional constraints available
in choco whenever this is possible. It does the following operations:

– choose a level of consistency e.g : alldifferent or boundAlldifferent; arc-
consistency or forward-checking for extensionnal constraints; arc-consistency
on complex expressions or a weaker form of consistency resulting from the
decomposition of the expression by introducing intermediate variables;

– compute maximal cliques in the constraint graph of binary differences or
disjunctions to state the alldifferent global constraint or the disjunctive
global constraint;

– recognize intentional constraints stated as expressions (or predicates) to state
the appropriate intentional constraint : distances (|x− y| < z), linear equa-
tions, min/max constraints. Some constraints stated extensionnaly such as
differences or equalities are also recognized;

– simple value symmetry breaking in case of pure coloring problems.

1 This automatization will be available on the January 2009 release of choco .
2 Those improvements were investigated during the solver competition.
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3 choco’s design

choco is a Java library that chose to provide a clear separation between modeling
and solving. Figure 1 represents the overall architecture of the choco library.
There are two separate parts:

– the first part (from the user’s point of view) is devoted to expressing the
problem. The idea is to manipulate variables and relations to be verified
for these variables (constraints) disregarding their potential implementation
(either from the variable point of view or the constraint point of view). A
complete API is provided to be able to state a problem in a way as user-
friendly as possible.

– the second part is devoted to actually solve the problem. In Figure 1, only
CP related information is provided. Solving includes specific memory man-
agement for tree-based search (as in CP).

Choco
Solver API

Model
(1) generic model of a constraint

(2) generic model of a variable

(3) API for creating variables 
and constraints 

CP-Model

Solver
CP-Solver

Memory

How to make a problem?

How to solve a problem?

(1) trailing

(2) recomputation

(3) copying

(1) constraints data structures 

(2) variables data structures

(3) data structures related to 
the search algorithm 

(1) data structure implementation 

(2) parser from CP-Model to 
CP-Solver

implementation of a Model in 
the CP paradigm 

Fig. 1. choco ’s general architecture. The separate parts are clearly identified: a mod-
elling part for stating the problem and a solving part (here only the CP related infor-
mation is described) for actually solving the modelled problem.

This clear separation between model and solver has been introduced to ease
the usage of constraint programming to newcommers. This architecture is meant
to let newcommers focus on the modeling part of their problem and rely on the
pre-processor of choco that will take over the user to translate its model into a
more CP-like model to be automatically solved by the solver. However, any CP
practitionner or CP specialists is left the right to:

– make annotations within the model to force the pre-processor to use specific
implentations and ways of handling constraints (for example when consider-
ing expressions) ;
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– use the solver’s API to directly program or modify the default behavior of
the solver.

choco in its new version has been designed for allowing tree search related
solvers to be integrated within the platform. For example, we are currently port-
ing PaLM [JB00], an explanation-based constraint solver which does not rely
on a tree-based exploration of the search space. The idea is to provide to the
end user of choco a natural and effortless way to use a given constraint model
in different contexte (explanation-based constraint programming, local search,
etc.)

4 choco in practice

Here is a few lines of code to get the essence of using choco in practice. Notice the
use of annotations when building variables (cp:enum) and the explicit separation
between Model and Solver.

//1- Create the model
Model m = new CPModel();
int n = 6;
//2- declaration of variables
IntegerVariable[] vars = makeIntVarArray("v", n, 0, 5, "cp:enum");
IntegerVariable obj = makeIntVar("obj",0,100,"cp:bound");

//3- add some constraints
String regexp = "(1|2)(3*)(1|4|5)";
m.addConstraint(regular(regexp, vars));
m.addConstraint(neq(vars[0], vars[5]));
m.addConstraint(eq(scalar(new int[]{2,3,1,-2,8,10}, vars), obj));

//4- Create the solver
Solver s = new CPSolver();

//5- read the model and solve it
s.read(m);
s.solve();
if (s.isFeasible()) {

do {
for (int i = 0; i < n; i++) {

System.out.print(s.getVar(vars[i]).getVal());
}
System.out.println("");

} while (s.nextSolution());
}
//6- Print the number of solutions found
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System.out.println("Nb_sol : " + s.getNbSolutions());

Which gives the following output :

133334 72
133335 82
233331 44
233334 74
233335 84
Nb_sol : 5

5 choco as a teaching and research tool

choco is used in many different places for teaching. For example, in France, the
universities of Nantes, Montpellier, Rennes, Toulouse, Clermont-Ferrand; the
engineering schools of École des Mines de Nancy, École des Mines de Nantes,
École Nationale Supérieure des Sciences et Techniques Appliquées, etc. all use
choco for teaching constraint programming. choco is not necessarily the only
solver that is presented but one of its asset is that it is an open solver whose
source code can be browsed and understood easily.

choco is also used in R&D divisions in several companies including Bouygues
SA, Amadeus SA but also Dassault Aviation; research agencies such as ON-
ERA and even NASA. It is worth noticing that a company has been created
in France which exclusively uses choco as its optimization tool: KLS optim
(http://klsoptim.com/).

6 Conclusion

choco is an open, user-oriented constraint solver which provides a clear separa-
tion between model and solver. It paves the way to provide a general problem
solving library not necessarily dedicated to constraint programming. It is im-
proving every day and eager to integrate user improvements, new constraints,
new solvers, propositions, etc.

Visit choco.emn.fr for the latest news, the current version,
teaching material, documentation, etc. about choco
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Abstract. This paper describes the casperzito and casperzao constraint
solvers submitted to the CPAI08 solver competition. These solvers are
instances of the CaSPER library, an open C++ library for constraint
solving that includes a set of specialized propagators for integer global
constraints taken from recent literature. Additionally, we perform auto-
matic symmetry detection and symmetry breaking, and implement orig-
inal work on impact based search and search strategy sampling.

1 Introduction

CaSPER (Constraint Solving Programming Environment for Research) is an
open C++ library for generic constraint solving. Its outstanding features are cus-
tom propagator scheduling, efficient domain delta information availability, and
a user friendly modeling and searching interface available directly from the pro-
gramming language. These features are implemented at the library core, with the
additional functionality of any typical constraint solver, such as event-driven ex-
ecution, callback scheduling, garbage collection, state handling, and trail-aware
generic data structures. Domain specific reasoning extends the kernel in a mod-
ular fashion - currently there are modules for finite domain variables [18], finite
set domain variables [3], graph domain variables [37], generic interval-based rea-
soning [5] and for 3d space reasoning [20].

Having being idealized to accommodate a quickly changing research envi-
ronment, the library’s design is utterly committed to flexibility and openness.
The implementation is based on generic programming patterns, which have been
proved successful for achieving this goal [25,1,36,9,35].

For the competition we created two instances of the library’s finite domain
constraint solver, named casperzito (light casper) and casperzao (heavy casper).
Both solvers implement a typical finite domain framework with a set of special-
ized propagators for global constraints taken from recent literature. We followed
the approach of [29,31] for breaking symmetries which extends naturally to the
set of global constraints used in the competition. Additionally, we integrated
original work on impact based search [10], and a new propagator for achieving
GAC on negative table constraints.

In the following section we will briefly describe the propagation model used
in the solvers. Section 3 focus on the symmetry breaking techniques used, and
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in section 4 we describe the strategies applied to explore the search space. A
preliminary analysis and discussion of the results is attempted in section 5, and
we conclude in section 6 with some closing remarks and pointers to future work.

2 Propagation

2.1 Propagator scheduling

For many constraints CaSPER provides more than one propagator, usually at-
taining different consistency levels. When more than one propagator exists for
the same constraint, then all of them will eventually participate in the fixpoint
calculation. The procedure is governed by a method known as staged propaga-
tion [34] which basically sorts propagators for execution based on an individual
(hard coded) propagation cost. While there exists other methods for scheduling
propagators with better performance for some class of problems [12], we settled
with this one for its robustness.

2.2 Predicates

Except for global constraints (see below), arithmetic predicates used in the com-
petition are enforced in CaSPER using bounds consistency. In many instances
used in the competition, predicates are grouped together in larger predicates
(using conjunctions), and we found that enforcing bounds consistency in the
decomposition was sometimes penalizing performance. To solve this problem,
we translated these conjunctions of predicates to positive or negative table con-
straints (whichever is smaller) by solving the corresponding subproblems before
search, and enforced GAC on these constraints during search. We only did this
in zao, since we were not sure this was a good idea.

2.3 Global constraints

Table 1 describes the propagators used for the global constraints in the compe-
tition.

constraint value bounds domain

positive table no no [6,16] (a)

negative table custom (b) no custom (b)

distinct custom [22] [33]

element no custom custom

linear no [38] no

cumulative no [4,24] no
Table 1. Global constraint propagators used in solvers.
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For the domain consistency propagator for positive table constraints (a) we
used the first algorithm [6] on zito and the new trie-based propagator of [16] in
zao. While the latter exhibited better results in our tests, we still found the first
more efficient for small arity constraints.

The most popular algorithm for propagating the negative table constraint
(b) seems to be the two watched literal scheme introduced for SAT, which
achieves value (node) consistency. In [6], a domain consistency algorithm for
this constraint that makes heavy use of hashing for checking disallowed tuples
was presented. We have extended the work of [16] which focus on positive table
constraints to handle negative table constraints as well. While we also base our
idea in the trie data structure, this is in fact a completely different propaga-
tor which has the advantage of performing much cheaper tests compared to the
hashing proposal (details will be on a forthcoming paper). For the competition
we used the value consistency propagator for negative table constraints in zito
and our new trie-based propagator in zao.

3 Symmetry breaking

We mostly followed the ideas in [29] for automatic symmetry detection using
computational group theory and [2,31] for symmetry breaking. The basic idea of
the detection process is to translate the given CSP to a graph which expresses
the symmetries associated with each constraint. The automorphism group of
this graph defines the set of symmetries in the original CSP. In [29], Puget
shows how to translate some common global constraints, e.g. the alldifferent
constraint. Extending the idea for the predicates and global constraints used
in the competition is not difficult. Additionally, both solvers perform a small
amount of symbolic computation in order to circumvent some situations where
the symmetries in the CSP would be hidden by the formulation. Although the
detection process is able to identify both variable and value symmetries, we just
focused on the first kind1.

Since the number of detected variable symmetries is quite large for most
problems, we followed the method of [2], that is we restrict to the variable sym-
metries present on the generators of the symmetry group (also referred as the
GEN class in [30]). For actually breaking the symmetries we added a number
of lexicographic ordering constraints [8] before starting search, which is a pop-
ular technique known as static symmetry breaking [28] (SSB). Moreover, both
solvers do some effort to identify symmetries in sets of variables known to be
all different, in which case we break symmetries by enforcing a stronger partial
strict ordering (see also [31]).

It is known that SSB may potentially make the task of solving a satisfiable
problem harder, since it can prune the solutions that would be found first by
the search heuristics. In our preliminary tests we also tried breaking symmetries
using the dynamic lex method [27] which does not have this drawback. Despite

1 We adapted the code from saucy, a graph automorphism generator [13].
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performing slightly better, this method requires a fixed value selection ordering,
which we found too restrictive for our exploration strategies described in the
next section.

4 Search

4.1 Heuristics

It is well known that variable and value selection heuristics play a crucial goal for
guiding search towards a solution, or for proving that no solution exists. Recently,
the dom/wdeg [7] heuristic has been given a lot of attention, although we have
found that impact based heuristics [32] perform better for some problems [11].
For the competition we considered a portfolio composed of the dom/wdeg and
impact variable heuristics for the zito solver, and also the lookahead variable
heuristic (as described in [11]) for the zao solver.

While there has been recent work aiming at informed value selection heuris-
tics [19], the most popular is probably the min-conflicts which selects the value
having less conflicts with the values of other variables. Other common value selec-
tion heuristics select the values in increasing ordering (min), or just randomly
(rand). Unfortunately, for the competition we didn’t have time to implement
anything more sophisticated than the min and rand value selection ordering.

4.2 Sampling

In order to choose which variable-value heuristic combination is finally used for
solving a given instance, we introduced a sampling phase in the solving process
(alg. 1). We evaluate each strategy based on the criteria of first-failness and best-
promise [17,15]. Roughly, first-failness is the ability of the heuristic to easily find
short refutations for large regions of the search tree that contain no solutions,
while best-promise characterizes the potential to guide search quickly towards
a solution. Typical search strategies combine these two components, usually by
associating first-failness with the variable selection heuristic, and best-promise
with the value selection heuristic.

Informally, our sampling phase works by performing several time bounded
search runs (restarts) with each possible strategy while collecting information
regarding its behavior. The time slice is increased geometrically from one run to
the next in order to provide a basis for projecting the behavior of the strategy on
a real (time unbounded) search run. After each run we compute an approxima-
tion of the ratio of the explored search space by analyzing the visited search tree,
and store this information in F . After the sampling process, we compute from
F an estimate of the first-failness and best-promise coefficients for each variable
and value heuristic and select the best combination. Although the approxima-
tion makes a strong assumption that the search tree is uniformly balanced, our
preliminary tests revealed that most of the times this method selects the best
heuristics, specially when the choice of heuristic is crucial.
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Algorithm 1: Search strategy sampling
Input: A set S of possible exploration strategies, initial and final time slice

Ti,Tf , and geometric ratio r
Output: One of SAT,UNSAT or 〈UNKNOWN, F 〉
F ← {}
foreach s ∈ S do

t← Ti

while t ≤ Tf do
f ← search(s,t) /* Search with strategy s, timeout at t. */

if f=SAT or f=UNSAT then
return f

e← ratioOfExploredSearchSpace()
F ← F ∪ 〈s, t, e〉
t← t× r

return 〈UNKNOWN, F 〉

4.3 SAC

Enforcing singleton arc consistency on a constraint network is a popular pruning
technique [14], although its time complexity can be limiting. For the competition,
both solvers enforce a time bounded SAC on the first propagation only. However,
given that RSAC [26], a restricted form of SAC, is achieved while evaluating the
lookahead heuristic (only on zao), then it may happen that RSAC is always
enforced on some instances if it is selected by the method described in the
previous section.

4.4 Restarts

For exploring the search tree we employed depth first search with time bounded
restarts. Completeness is guaranteed by increasing the time allowed for each
restart. We used 2.5 as the geometric ratio.

5 Experimental evaluation

The following discussion will be based on preliminary results which were made
available to the contestants of the competition at the time of this writing.

Currently CaSPER does not implement any learning techniques, smart back-
jumping methods, constraint network analysis and (de)composition, or special-
ized data structures for CSPs given in extension (apart from table constraints).
We think that these are required to be competitive in all categories except the
GLB category, and perhaps on the set of instances from the INT and NINT
categories that are too large to convert to extensional form. We will therefore
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focus on the global constraints category only, despite the solvers are running in
all of them2.

Table 2 summarizes the distribution of the previously discussed features
among both solvers.

zito zao

static symmetry breaking yes yes

predicate tabling no yes

lookahead var heuristic no yes

heuristic sampling yes yes

GAC for negative table no yes
Table 2. Summary of features in each solver.

The solver zito was able to solve 397 instances, while the solver zao solved
390 instances of a total of 556 instances. In order to assess their performance
across the instance space, we plot in fig. 1 the percentage of instances solved by
both solvers for each set of instances solved by a specific number of solvers. The
rationale is that instances solved by less solvers should be harder than those
solved by more solvers (meaning that the instance solving difficulty decreases
along the x axis in the figure).

Fig. 1. Percentage of instances solved by zito and zao (yy) from the sets of instances
solved by a number of solvers (xx). The dotted line shows the number of instances
solved by an hypothetical average solver (assuming that solved instances distribute
uniformly across all solvers).

2 Additionally, there was a bug in the propagator achieving bounds consistency for
the expression mod(X, Y ) = Z which caused both solvers to be disqualified from the
INT category.
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The performances of both solvers are quite similar, although as expected
the solver zao is better on the hard instances, while zito is slightly better on
the medium and easy instances. Comparing to other solvers, the performance of
both solvers is almost always above the average, with zao performing significantly
better than the average on the hard instances. The peaks in the performance
chart suggest that there are sets of problems for which both solvers are not using
the best techniques.

Fig. 2. Number of instances solved by zito in each problem family.

Figure 2 shows the number of instances solved by zito distributed across each
family3 of problems. Considering the instances that were solved by some solver,
zito seems be fairly competitive except on the allSquares, bibd and specially in
the compet family.

A final analysis on the strengths and weakness of the techniques used in our
solvers will be made once we know the ranking and the techniques used by other
solvers. Currently we can only point two known weak points of our approach that
will eventually have a negative effect on our final position. The first is the lack of
a smart value heuristic, and the second is the known conflicting issues between
search heuristics and the method we used for breaking symmetries (SSB). Both
problems can only affect the solving of SAT instances, and this may explain why
the number of unsolved SAT instances is about six times the number of unsolved
UNSAT instances (see fig. 3).

3 We define a family as the set of all instances of a given problem, in contrast with the
grouping used in the competition which often splits instances of the same problem
into smaller groups (called series), e.g. allSquaresSAT and allSquaresUNSAT.
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Fig. 3. Number of SAT and UNSAT instances solved by zito.

6 Conclusion

This paper describes the casperzito and casperzao constraint solvers as submit-
ted to the CPAI08 solver competition. These solvers are small instantiations of
the much larger CaSPER library which aims to provide a comprehensive envi-
ronment for doing applied research in constraint programming.

After a brief description of the propagation model, we focused on the less
standard features which were added specifically to the competition, such as au-
tomatic symmetry detection and symmetry breaking, or are product of our own
research, such as search strategy sampling, and impact based search. Finally,
we have made a preliminary analysis of the results from the competition, which
suggest that the overall performance of both solvers is above the average.

There is much room for improvement, both in the black box solvers sub-
mitted to the competition and more extensively in the CaSPER library. At the
propagation level a careful analysis on the best propagator to use for a given
constraint when there is more than one choice could lead to significant speedups.
The symmetry breaking framework could be made more dynamic and complete
and extended to value symmetries as well. Search would certainly benefit from
ideas such as learning from restarts [21], conflict-based static value ordering [23]
and better integration of our own work on impact based search.

As short term goals we intend to formalize the search sampling procedure de-
scribed in section 4, and perform consistent testing of trie-based data structures
for propagating GAC on negative tables.

The CaSPER library is currently being developed at CENTRIA, and can be
found at http://proteina.di.fct.unl.pt/casper.
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Abstract. This paper describes the two solvers MDG-noprobe and MDG-
probe submitted to the 2008 CSP Solver competition. The two solvers differ in
their approach to search, whereas one uses the weighted degree heuristic in its
normal fashion, the other attempts to boost the power of the heuristic by perform-
ing a small amount of information gathering prior to search. We provide a detailed
comparison of the performance of the two solvers and assess the advantages and
disadvantages of each approach with regard to the results.

1 Introduction

The solvers MDG-noprobe and MDG-probe are based on a version of the solver mis-
tral of Emmanuel Hebrard, which is a C++ based complete constraint solver. MDG-
noprobe combines complete binary branching search with the weighted-degree heuris-
tic variant dom/wdeg as introduced by Boussemart et al. [BHLS04]. MDG-probe is
an implementation of the random probing procedure of Grimes and Wallace [GW07],
where a number of random probes are performed prior to complete search in order to
gather information in the form of constraint weights, which are then used to improve
the early decisions of dom/wdeg on the run to completion.

The weighted degree heuristic was introduced as a means to identify contentious
variables during search and move them up the variable ordering. This has the result
of reducing thrashing (by identifying, through the constraint weights, the source of the
thrashing and selecting it earlier upon backtracking), and improving the fail-firstness
(handling contentious variables higher in the search tree should increase the likelihood
of early mistake detection).

Refalo emphasised the importance of making good choices at the top of search, as
these decisions generally have the largest impact on the following search effort required
to solve the problem [Ref04]. However the weighted-degree heuristic has no weight
information at the start of search, other than the degrees of the variables. Grimes and
Wallace proposed a number of methods for dealing with this issue. One such method
was random probing, which can be viewed as combining a form of iterative sampling
with learning in the form of constraint weighting.

In its original form, iterative sampling [Lan92] involves repeatedly selecting a vari-
able and value randomly until either a solution is found or a deadend is reached. In
the case of a deadend, search is restarted. Note that no information is stored regarding
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previous exploration so search may revisit the same tree. Crawford and Baker point out
that this approach is only suited for problems with many solutions [CB94].

In the approach of Grimes and Wallace, only the variable ordering is random. Search
runs to a fixed cutoff tinit for a fixed number of restarts R. On the final run, the cut-
off is removed and search runs to completion using the dom/wdeg heuristic with the
information from the ‘random probes’ guiding the heuristic’s early decisions. Weights
continue to be updated on the final run.

The purpose of performing these random probes of the search space is to generate
a global weight profile of the problem, i.e. a weighted degree ranking of the variables
which is reflective of their constraints’ participation in failures across the search space.
It can be viewed as an attempt to find the best starting point for search.

Combining the weighted degree heuristic with restarting is quite a popular search
approach, indeed at least three of the solvers in the previous CSP solver competition
employed such an approach to good effect.Two of those (Abscon and Tramontaine)
combined the heuristic directly with a geometric restarting strategy and produced very
impressive results. The probing strategy studied here is somewhat different to the nor-
mal use of restarting (as a means to escape a bad subtree), where the probes are mainly
intended as an information gathering phase, albeit with the capability of solving the
problem prior to the final run.

2 Probing Parameters

The parameters used for probing were 100 runs with a cutoff of 30 failures per run.
A small cutoff is generally best as it gives an overview of contention within the spe-
cific search tree explored without overweighting local points of contention. Clearly we
would like a diverse sample from which to assess the globality of the contention associ-
ated with a variable. 100 probes should provide a sufficient sample. Defining the cutoff
in terms of number of failures guarantees that learning will occur on each run and is
problem independent compared to a cutoff defined in terms of nodes or time.

Binary branching also allows for increased diversification within each probe, com-
pared to d-way branching. In fact if search backtracks to level 1, then it the subsequent
search is similar to performing a new probe. An overall time-limit of 10 minutes was
imposed on the probing phase, which was checked after each probe.

There are a number of modeling options available in mistral. The options which
were used by both solvers in the competition involved the addition of auxiliary variables
in certain situations (e.g. problems with large predicate constraints), and the inference
of all-different constraints.

3 Experimental Comparison

Table 1 gives a summary of the results of each solver in the 5 different categories. It
should be noted that MDG-probe was disqualified from the N-EXT category because it
gave a wrong answer to a problem. This was due to a small bug in the version of mistral
(which was independent of the probing procedure) which depended on a number of
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factors happening simultaneously to occur. I reran on this problem with various random
seeds and the only seed which produced the error was the seed used in the competition.
Thus I believe that the rest of the results for MDG-probe in this category are correct.

Table 1. Summary of results

Category Solver # inst # solved % solved Avg time per
solved instance

B-EXT MDG-noprobe 635 558 88% 76.91
MDG-probe 635 561 88% 68.19

B-INT MDG-noprobe 696 499 72% 73.04
MDG-probe 696 515 74% 102.34

GLOBAL MDG-noprobe 556 353 63% 46.85
MDG-probe 556 337 61% 52.43

N-EXT MDG-noprobe 704 570 81% 85.89
MDG-probe 704 564 80% -

N-INT MDG-noprobe 716 530 74% 34.18
MDG-probe 716 560 78% 35.98

Notes: MDG-probe was disqualified from the category
N-EXT because it gave a wrong answer for a problem.

Overall MDG-probe solved the most problems, although there were only clear
differences in the binary intensional and n-ary intensional categories. However probing
proved detrimental in the global category, and to a lesser degree in the n-ary extensional
category. One would expect that the cost of probing would result in poorer average
times. However, the average time per solved instance for MDG-probe was less than
MDG-noprobe for the binary extensional category, and only 1 second worse for the
n-ary intensional category. The lack of a handicap due to cost of probing can be seen
most clearly by the graphical comparisons available at the competition website, where
there is no discernible difference between the times for both on the top 50% fastest
solved problems for both approaches. Figure 1 below shows a sample graph comparing
the two approaches on the binary intensional category.

3.1 In Depth Comparison

We now look at problem types where one approach was clearly better than the other,
either in number of problems solved or in time to solve the problems, and provide pos-
sible explanations why one approach is suited/unsuited. This should provide indications
as to when one approach should be used over the other.

In the binary extensional category there were very few problem types where one
approach was clearly better than the other. MDG-probe solved 5 more QCP problems.
It was also the only solver to solve one of the rand-2-50-23 problems, and was the
quickest solver on two other of these random problems.

The main reason for the better performance of MDG-probe in the binary inten-
sional category (it solved 16 more problems) was down to the scheduling problems: job
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shop, open shop and super-open shop. It solved 13 more of these types of problem, and
was generally faster on the harder instances. Most of the easier instances (e.g. jobshop-
e*ddr) were solved during the probing phase, while most of the harder instances were
solved on the run to completion. The problems were often solved in less than 1 second
on the run to completion (and virtually backtrack free).

These problems generally have loose constraints and large domains. Thus a poor
choice at the top of the search tree can result in the exploration of an extremely large
insoluble subtree, from which search may never recover in a feasible amount of time.
This is known as the early mistake problem [CB94]. The weights learnt during probing
clearly identify certain variables as bottleneck variables, and by selecting these variables
first on the final run, the problems can be solved quite quickly.

Figure 2 shows the weight profile generated for the problem os-taillard-20-100-0
using the same random seed as was used in the competition. The variables are ranked
in order of largest weighted degree increase (i.e. weighted degrees after probing minus
their original degrees). As one can see, most of the weight is collected by a tenth of
the variables, with roughly half the variables receiving no weight increase at all. The
slope of the line indicates the discrimination between successively ranked variables,
the greater the slope the clearer the difference between the weighted degrees of the
variables. This shows that some variables are clearly more contentious than others.

MDG-probe also performed well on the radio link frequency allocation problems
(rlfaps), solving 1 more and was much quicker on the harder instances. These problems
are all unsatisfiable and contain an insoluble core which is identified by the probing ap-
proach. Although MDG-noprobe was quicker in general on the frequency assignment
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Fig. 2. Weight profile after probing, sample os-taillard-20 problem.

problems with polarization constraints (fapps), probing actually solved 3 more prob-
lems. On closer inspection the cost of probing was extremely high for these problems,
it hit the 10 minute cutoff on a number of problems. However many of the problems
were solved extremely quickly on the run to completion, in some cases they were solved
virtually backtrack free.

Interestingly, one problem type that probing was expected to perform well on turned
out to the contrary. On the queens-knights problems, weights learnt by probing actu-
ally proved detrimental to the subsequent search compared to MDG-noprobe. The
reason for this is that mistral generated auxiliary variables to handle the queens diag-
onal constraint, which consisted of a large number of predicates. Probing branched on
these variables and subsequently failed with the result that there was more weight on
queens variables than on the knights after probing.

In the global category MDG-noprobe was vastly superior to probing on the bal-
anced incomplete block design problems (BIBDs), in particular on the BIBDVariousK
problems. Overall it solved 17 more of these problems than probing, 15 of which were
BIBDVariousK problems (often solving problems, that probing couldn’t solve, in less
than 1 second). These problems contain a large amount of symmetry, it is only when
the first variable is assigned that the symmetry begins to break and so local weight in-
formation is much more important than global weight information. Probing in this case
would result in jumping around in disparate parts of the search space diminishing the
buildup of contention. MDG-noprobe was also better on the magic square problems,
solving 3 more problems.

Problems which probing outperformed no probing in this category were the timetabling
from the 08 competition (probing solved 3 more and in most cases the vast majority of
the time was spent in probing), and the costas array problems where probing solved 1
more and was generally much quicker on the larger instances.

In the n-ary extensional category MDG-noprobe was consistently quicker on the
large BDD problems, as the probing phase took 100s and then solved the problem in
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roughly equivalent time on the run to completion. MDG-noprobe was also consistently
quicker on the Dimacs dubois boolean problems. In this case weights learnt during
probing were detrimental to the subsequent search. Probing was also ineffective on
the blank grid crossword problems with large dictionaries (OgdV g and UkV g), where
probing solved 6 problems less and was generally slower (although this may in part
be because probing took nearly 300 seconds and 100 seconds respectively for these
problem sets).

Finally the category n-ary intensional, where the largest difference in the number
of problems solved by one approach over the other occurred (probing solved 30 more
problems than no probing). In general this was down to solving problems in the ran-
dom probing phase, as opposed to solving problems on the run to completion with the
weights learnt. For example, MDG-probe solved 9 more of the pseudo boolean prob-
lems ii (which encode inductive inference problems), all of which were solved during
the probing phase. Similarly it solved 14/15 of the all-interval series problems, again all
of which were solved during probing. This was 4 more problems than MDG-noprobe
solved.

4 Conclusions

In this paper we have described the two solvers MDG-noprobe and MDG-probe
which were submitted to this years CSP solver competition. We have provided an anal-
ysis of the experimental results of each approach and provided insight as to why one
approach was better than the other on some problem types. Surprisingly the cost of
probing was generally much less of a handicap than expected.

References

[BHLS04] F. Boussemart, F. Hemery, C. Lecoutre, and L. Saı̈s. Boosting systematic search
by weighting constraints. In Proc. Sixteenth European Conference on Artificial
Intelligence-ECAI’04, pages 146–150, 2004.

[CB94] J. M. Crawford and A. B. Baker. Experimental results on the application of satisfia-
bility algorithms to scheduling problems. In AAAI, pages 1092–1097, 1994.

[GW07] D. Grimes and R. J. Wallace. Learning to identify global bottlenecks in constraint
satisfaction search. In 20th International FLAIRS Conference, 2007.

[Lan92] P. Langley. Systematic and nonsystematic search strategies. In Proceedings of the first
international conference on Artificial intelligence planning systems, pages 145–152,
San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

[Ref04] P. Refalo. Impact-based search strategies for constraint programming. In M. Wallace,
editor, Principles and Practice of Constraint Programming-CP’04. LNCS No. 3258,
pages 557–571, 2004.
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Abstract. Mistral is an open source constraint library written in C++.
In this short paper we describe with some level of detail two constraint
solvers based on Mistral that entered the 2008 CSP Solver Competition.

1 Introduction

In Mistral, as in most constraint programming libraries, three main types of
objects are defined:

1. A set of data structures to represent and manipulate variables and other
backtrackable objects such as primitive types and containers.

2. A set of constraint propagators as well as methods to handle the communi-
cation between these propagators and the variables. For instance, around 30
constraints, and for each at least one propagators are predefined in Mistral.
They include the usual arithmetical (+,−, ∗, /, %) relational (≤, <,≥, >, =
, 6=) and logical (∧,∨,¬) constraints and predicates, as well as some com-
monly used global constraints, such as AllDifferent and Global Cardinality
Constraint (Bounds consistency, algorithm and code from Quimper et al. [10,
13] for both), Element [5], WeightedSum, LexOrder [6], Occurrence, Slide [1],
Tree [12] or Distance [3].

3. A set of search heuristics and algorithms such as variable ordering (dom/wdeg [2],
impact [14], impact/wdeg,...), restart policies (Geometric [15], Luby [11]),
tree search algorithms (depth first search and limited discrepancy search)
and branching strategies.

During the 2008 CSP Solver Competition, two solvers, written on top of
Mistral were submitted. These solvers use Roussel’s XML parser to read the
input file, and make a number of decisions in order to model the problem instance
according to the XML specification and using the best suited Mistral ’s objects
and classes. This short paper is organized as follows. For each one of the three
aspects above, we describe the objects and methods that were used during the
competition and show how the modelling choices were made.

2 Data Structures

2.1 Primitive types and Containers

Reversible Primitive Types: In Mistral, all primitive numerical types have their
reversible, or backtrackable, version. The code is extremely simple, and com-
pact due to the use of genericity. All reversible objects inherit from the class
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ReversibleObj, and they all access to a global stack of pointers to reversible
objects. When a reversible object saves its current state, it also puts a pointer
to itself on this stack. Then, when withdrawing a decision, all reversible objects
saved after this decision was taken are notified, triggering their restoration. The
class ReversibleNum<T>, where T is type in {char,int,double,float,..} simply
keeps a vector of values for each decision along a branch, as well as a vector of
integers to index decisions that triggered a saving operation. The space complex-
ity is thus O(n) where n is the maximal length of a branch in the search tree.
Moreover, two useful container types, bitsets and lists also have their reversible
counterparts in Mistral.

Bitset: To represent a set S, the bitset itself requires max(S)−min(S) + 1 bits.
Then for each 32-bits word, and for each bit set to one in this word, a “trailed”
32-bits word is allocated. Whenever a 32-bits word changes for the first time
for a given level in the search tree, it is first copied in the next available trailed
word, and this new one is used instead in that subtree. The space complexity
for a set S implemented in this way is therefore: O(max(S)−min(S)). That is,
max(S)−min(S) + 1 bits for the original bitset, and 32 ∗ |S| bits for the trailed
memory.

List: Finally, reversible lists of integer are implemented using simply two integer
arrays, one to keep the current list of values, and one to keep the index of
these values in the list, and a reversible integer standing for the size of the list.
Insertions and deletions can be done in constant time by swapping with the
last element and changing the size. Upon backtrack the list is restored to its
previous state in constant time as well, by restoring the size attribute to its
previous value. Notice that in this data structure, the list does not stay in any
particular order. The space complexity for a set S implemented in this way is
therefore: O(min(n, (max(S) − min(S)))) Where n is the maximum depth of
the search tree. That is, at most 64 ∗min(n, (max(S) −min(S))) bits to keep
the size of the list and its trail, 32 ∗ (max(S)−min(S) + 1) bits for the indexing
array, and 32 ∗ |S| bits for the list array.

2.2 Variables

Five different types of variables are implemented in Mistral, all subclasses of
VariableInt. All are finite domain integer variables and specialisations thereof.

Specialised Finite Domain Variables: Three such types are used for usual spe-
cialisations of integer variables. The simplest one (VariableConstant) encodes
constants, that is constrained objects with a single immutable value. When possi-
ble, constant values are absorbed into the constraint definition before the search
objects are actually created. For instance if one post an AllDifferent constraint
where one of the variable is a constant k, then k will be removed from the domain
of all other constrained variables and this variable will be ignored. However, it
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is not always possible nor easy to do this, and the Constant type acts a safety
net for such cases.

Next, there is specialised type for variables with Boolean domains (VariableBool).
The domain is stored on an Int, the value 0 stands for an empty domain, 1 stands
for {0}, 2 stands for {1} and 3 stands for {0, 1}. Notice that the binary encoding
corresponds to the bitset representation of the domain (respectively 00, 01, 10
and 11). This makes the operations involving Boolean variables and general finite
domain variables represented with bitsets easier and faster. When the domain
of a Boolean variable need to be restored, we know it can only be restored to
{0, 1}, hence upon backtrack, the Boolean variable whose domains have changed
are simply assigned the value 3 (11 in binary).

Finally, the classical Range variables (VariableRange) are available for bound
reasoning. They are implemented using two reversible integers, for lower and up-
per bounds. During the modeling phase, any variable constrained by a relation
that can remove non-extremal values are flagged so that this representation is
not available for them.

Integer Variables as bit-vectors (VariableBit): In this implementation, a do-
main D(x) is represented as a reversible bitset such as the one described above.
All set operations, such as union, intersection or difference can be performed in
O(n/32) where n = max(D(x))−min(D(x)). Of course, membership, insertion
and deletion can be performed in constant time.

Integer Variables as lists (VariableList): In this implementation, a domain
D(x) is represented as a reversible list (see description above), coupled with a
non-reversible bitset. The value of the bitset is synchronized to the reversible
list on domain modification and on backtrack. This bitset is used mainly for the
AC3bitset algorithm.

2.3 Competition Setting

During the competition, a variable x is represented using the “best suited” data
structure using the relatively simple following rules:

1. If |D(x)| = 1: use VariableConstant
2. Else if D(x) = {0, 1}: use VariableBool
3. Else if |D(x)| > 64, and the constraints on x are all convex: use VariableRange
4. Else if the constraints on x only use the methods remove() and setDomain()

during propagation: use VariableList
5. Else: use VariableBit

3 Constraint Propagation

3.1 Variables and Constraints Queue

The closure algorithm is a simple AC3-like first in, first out queue. With two
slight modifications. The first modification is that, like in Ilog Solver for instance,
three types of domain modification event are distinguished.
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1. A Value event is thrown when variable is assigned a value.
2. A Range event is thrown when at least one variable’s bound changes.
3. A Domain event is thrown whenever a domain changes.

Notice that these events go from more specific to more general. In other word,
a value event is necessarily a range event, which is necessarily a domain event.
Therefore, for each variable, the list of constraints has a very specific order.
First come the constraints that should be triggered on any event, then those
that should be triggered on range or value events, and last those that should
be triggered only on value events. Three lists (Domain, Range and Value) are
thus defined, where the last elements of a list are those of the next. When
an event is caught, we traverse the corresponding list until the end. It means
that a constraint that should be triggered only on value events, such as 6=, is
never called nor induces any computation or test unless a variable is assigned.
The second modification is that particularly expensive propagators are delayed.
That is, they are put on a second queue (of constraints rather than variables).
A constraint on this queue is propagated only when the variable queue is empty
(that is, a fixed point has been reached on the non-delayed constraints).

3.2 Extensional Constraints

Three algorithm for extensional constraints are implemented in Mistral.

AC3bitset: The first algorithm, restricted to binary relations is an implemen-
tation of the AC3 algorithm using the “&” operation on bitsets to check the
existence of a support as described in [8].

GAC3rValid: The second algorithm can handle non-binary constraints and uses
the notion of residual supports ([9, 7]). The relations are stored as bitset standing
for a flattened matrix, or can be given as an intentional check() method. When
looking for a support, we loop through the Cartesian product of the domain.

GAC2001Allowed: The third algorithm keeps, for each pair (variable, value), a
list of allowed tuples as well as a pointer to the last element of the list that
was used as support earlier during search. The pointer is implemented simply
with a reversible integer. When looking for a support, we loop through the list
of supports, starting from the pointed one, until we reach a valid one (that is,
a tuple whose elements are currently in their respective domains), or we fail.
This algorithm is optimal, each list of supports is traversed at most once along a
branch of the search tree, hence the complexity is in O(rdr) where r stands for
the arity of the constraint and d for the domain size. Another optimisation is to
order the domain membership checks by increasing domain size of the variables,
so that the likelihood to abort a validity check early is greater.

3.3 Intentional Predicates

Two different representations of predicates were used.
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Decomposition: Given a tree of binary and unary predicates, a set of as many re-
spectively ternary and binary reified constraints and extra variables are created.
For instance for the predicate:

eq(add(mul(X0, X1), X2), X3)

the following constraints will be posted:

mul(X0, X1, Y0) ∧ add(Y0, X2, Y1) ∧ eq(Y1, X3)

where Y0 and Y1 are extra variables; mul(X0, X1, Y0) constrains the product of
X0 and X1 to be equal to Y0; add(Y0, X2, Y1) constrains the sum of Y0 and X2 to
be equal to Y1; and eq(Y1, X3) will substitute X3 to Y1 in all other constraints.
Notice that the latter substitution is only possible because the constraint eq is
at the root of the predicate tree, otherwise a ternary constraint eq(Y1, X3, Y2)
would be posted, constraining Y2 to be the truth value of the relation Y1 = X3.

Generalised Arc Consistency: The second representation is used for low arity
constraints encoded as a predicates tree. In this case instead of extra variables
and constraints, a unique constraint is posted. This constraint is propagated
using the generic arc consistency algorithm GAC3rValid, that is, the algorithm
used for extensional constraints. However, instead of implementing constraint
checks using a Boolean matrix, the predicate tree is stored and queried at each
constraint check. This is essentially equivalent to transforming the predicate into
a table constraint, albeit with slightly worse time complexity and better space
complexity.

3.4 Global Constraints

Four global constraints were used during the competition: AllDifferent, Cumulative,
Element and WeightedSum. Since the constraint Cumulative is not implemented
in Mistral, a decomposition [4] using Boolean variables and WeightedSum con-
straint was used instead.

3.5 Competition Setting

Given an extensional constraint with arity r and tightness t, we use the following
rules to select what algorithm should be used:

1. If r = 2 and t < .999: AC3bitset is used.
2. Else if t < .98: GAC3rValid is used.
3. Else: GAC2001Allowed is used.

Given an intentional constraint specified as a tree of predicates, we need to
decide whether we are going to use a generic GAC algorithm (GAC3rValid), or
decompose it into small arity predicates using additional variables. We compute
a complex and heuristic value based on the following criteria:
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1. Constraint arity (higher arity is more favourable to a decomposition)
2. Individual predicate types (some predicates have better propagators than

others)
3. Ratio nodes/leaves in the predicate tree (Bushier trees are more favourable

to GAC)
4. Domain continuity (Holes in the domain are more favourable to GAC)
5. Size of the Cartesian product of the domains (The decomposition can better

adjust the complexity)
6. Boolean domains (When domains are all Boolean, BC is equivalent to AC,

hence is favours the decomposition)
7. Total number of constraints in the problem (The GAC approach is much

more space efficient)

For each one of the aspects some values are reported and weighted in a completely
heuristic and empirical way, the final number tells which representation should
be used.

4 Search Heuristics

4.1 Variable Ordering

Mistral -prime used a slightly modified version of domain over weighted degree [2]
which we call domain over weighted-by-level degree. As in the regular framework,
each constraint C(V ) over a set of variable V is associated with a weight w(C)
and the variable with minimum ratio domain size over sum of neighbouring
constraints weights is chosen:

choose x such that
|D(x)|∑

x∈V w(C(V ))
is minimum

However, on failure during the GAC closure procedure, the constraint responsible
for the failure gets its weight incremented by maxlevel − level + 1 instead of
1, where maxlevel is the deepest level in the search tree explored so far. The
intuition behind this choice is that a failure early in the search is more meaningful
than a failure later, since less decisions have been taken.

Mistral -option used domain over weighted degree for extensional constraints.
On intentional benchmarks, a variation of the Impact heuristic [14] was used in-
stead. Notice that on most implementations of the Impact heuristics, complements-
to-one of the impact are stored instead of the direct impact value. By doing so it
is possible to select the variable with minimum sum of these complement-to-one,
hence simulating Minimum domain when all impacts are equal. Therefore it is
natural to use impact along with degree or weighted degree information. We used
impact over weighted degree which as its name suggests choose the variable with
minimum sum of impact complement over the sum of its neighboring constraints
weighted degree:

choose x such that

∑
j∈D(x) 1− I(x = j)∑

x∈V w(C(V ))
is minimum
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In this formula, I(x = j) is the impact of the decision x = j as defined in [14].
Surprisingly this approach seems far inferior domain over weighted degree on
most benchmarks of the competition.

4.2 Competition Setting

In Mistral -prime, variables are ordered by increasing domain over weighted-by-
level degree and values are explored in lexicographical order. In Mistral -option,
on the other hand, when the domain was large enough and the constraints inten-
tional, domain-splitting was used instead. That is, given a variable x we branched
on the left side with the constraint x ≤ (max(x)−min(x)

2 ) and on the right side
with the constraint x > (max(x)−min(x)

2 ). Moreover, Mistral -option chooses its
Variable ordering using the following rules:

1. If the total number of values is greater than 16000 or if all constraints are
extensional, then domain over weighted degree [2] is used.

2. Else: impact over weighted degree is used.

Both versions of Mistral used a geometric restart policy for problems involv-
ing intentional constraints. The initial cutoff on the number of backtracks was
set to min(n, 1000) where n is the number of variables in the problem definition.
Then it is multiplied by 1 + 1

3 upon every restart.

5 Conclusion

We described the two Mistral -based solvers that entered the 2008 CSP Solver
Competition. At the time we write this paper, only Mistral ’s, Choco’s, Abscon’s
and cpHydra’s results are known to the authors, we give a short summary (using
the best overall version of the above solvers) in Table 1.

Table 1. Results summary: Percentage of instances solved among those solved by at
least one solver, and average CPU-time on solved instances for each category.

Category (#instances) cpHydra Abscon Choco Mistral
Solved CPU-time Solved CPU-time Solved CPU-time Solved CPU-time

Binary Extensional (622) 92% 62.44 s 88% 93.26 s 89% 95.78 s 89% 70.21 s
Binary Intentional (634) 94% 71.37 s 81% 43.40 s 82% 55.89 s 82% 58.23 s
Global (501) 84% 80.83 s 37% 170.62 s 69% 69.69 s 80% 56.59 s
N-ary Extensional (607) 97% 78.20 s 90% 80.09 s 73% 189.10 s 94% 83.67 s
N-ary Intentional (660) 86% 54.70 s 74% 53.21 s 78% 49.70 s 80% 32.02 s
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Abstract. This paper describes the three main improvements made
to the solver Abscon 109 [9]. The new version, Abscon 112, is able to
automatically break some variable symmetries, infer allDifferent con-
straints from cliques of variables that are pair-wise irreflexive, and use
an optimized version of the STR (Simple Tabular Reduction) technique
initially introduced by J. Ullmann for table constraints.

1 From Local to Global Variable Symmetries

In [10], we have proposed to automatically detect variable symmetries of CSP
instances by computing for each constraint scope a partition exhibiting locally
symmetrical variables. From this local information that can be obtained in poly-
nomial time, we can build a so-called lsv-graph whose automorphisms correspond
to (global) variable symmetries. Interestingly enough, our approach allows us to
disregard the representation (extension, intension, global) of constraints. Be-
sides, the size of the lsv-graph is linear wrt the number of constraints (and
their arity). To break symmetries from the generators returned by a graph au-
tomorphism algorithm, a classical approach is to post lexicographic ordering
constraints defined on two vectors of variables. We have proposed a new variant
of an algorithm enforcing GAC (generalized arc consistency) on such constraints
which is able to deal with shared variables. This algorithm is quite simple to
implement and well-adapted to general-purpose constraint solvers. Our experi-
mental results show the robustness of the overall approach with different search
heuristics: on a large number of series, more instances can be solved while the
cpu time required for symmetry identification is observed as negligible. These
results confirm that automatically breaking symmetries constitutes a significant
breakthrough for black-box CSP solvers.

In order to show the practical interest of this approach, we have then con-
ducted an extensive experimentation on a cluster of Xeon 3.0GHz with 1GiB
of RAM under Linux. Here, performance is measured in terms of cpu time (in
seconds) and number of visited nodes. We have integrated to the classical MAC
algorithm, that is to say the algorithm that maintains (generalized) arc consis-
tency at each node of the search tree, several variants of the symmetry breaking
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MAC MACLe MACLex MAC∗
Le MAC∗

Lex

scen11-f12
cpu 1.88 2.0 2.05 1.71 1.82

nodes 390 614 721 4, 140 4, 140

scen11-f11
cpu 1.77 1.97 1.95 1.82 1.83

nodes 390 614 721 4, 216 4, 216

scen11-f10
cpu 1.77 1.82 2.08 1.81 1.9

nodes 468 327 722 109 77

scen11-f9
cpu 2.15 1.96 2.23 1.84 1.97

nodes 1, 064 576 922 109 90

scen11-f8
cpu 2.1 2.09 2.28 2.02 2.0

nodes 1, 354 558 997 112 115

scen11-f7
cpu 4.83 2.28 2.37 1.91 2.05

nodes 8, 369 955 1, 247 121 135

scen11-f6
cpu 8.29 2.14 2.37 2.1 2.08

nodes 17, 839 571 1, 333 172 157

scen11-f5
cpu 32.0 2.2 3.13 2.19 2.13

nodes 85, 104 988 3, 465 253 226

scen11-f4
cpu 112 2.66 3.88 2.36 2.53

nodes 345K 1, 983 5, 007 593 903

scen11-f3
cpu 403 3.41 7.98 2.55 2.45

nodes 1, 300K 3, 926 17, 259 946 696

scen11-f2
cpu time-out 4.32 16.4 2.95 2.92

nodes − 6, 014 40, 615 1, 700 1, 591

scen11-f1
cpu time-out 7.56 19.7 3.49 3.4

nodes − 14, 997 47, 318 3, 199 2, 609

Table 1. Cost of running MAC and its symmetry breaking variants on hard RLFAP
instances (38 generators). The variable ordering heuristic is dom/wdeg.

approach described in [10]. For this experimentation, no restarts and no nogood
recording were activated.

To identify variable symmetries, we have used Saucy. For each generator
of the symmetry group returned by Saucy, we have considered four distinct
symmetry breaking procedures. For the first one, denoted by MACLe, a binary
constraint of difference Le (constraint of the form x ≤ y) that involves the
two first variables of the first cycle of the generator is posted. For the second
one, denoted by MACLex, a lexicographic ordering constraint Lex (involving all
variables of all cycles of the generator) is posted. Clearly, a Lex constraint is
stronger than the corresponding Le constraint: its filtering capability is greater.
Notice that when the two first variables of the first cycle of the generator are
included in the scope of a (non-global) constraint c of the network, one can
merge c with a binary constraint Le. In practice, if c is defined in intension,
its associated predicate is modified whereas if c is defined in extension, the set
of tuples disallowing the constraint Le are removed from the table associated
with c. When such a merging method is applied, one obtains two additional
procedures, denoted by MAC∗Le and MAC∗Lex.
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Here, we only provide some results (see Table 1) obtained for the hardest
instances (which involve 680 variables and a greatest domain size of about 50
values) built from the real-world Radio Link Frequency Assignment Problem
(RLFAP). Clearly, the symmetry breaking methods allow us to be far more effi-
cient than the classical MAC algorithm. In practice, MAC∗Lex has been observed
as the best method and has been used for the CSP competition.

2 Exploiting Cliques

Some instances contain hidden structures such as backbones, (strong) backdoors
and unsatisfiable cores. Cliques also belong to this category. A clique is a graph
such that there exists an edge between any two vertices. Interestingly, sometimes,
we observe that for any pair (x, y) of variables of a sub-network P ′ of P whose
constraint graph is a clique, the relation associated with the constraint involving
x and y is irreflexive. Otherwise stated, we know that ∀{x, y} ⊂ vars(P ′), x 6= y.
We can then infer an additional global constraint allDifferent that can be
useful to better prune the search space. However, in some constraint solvers,
the filtering procedure (propagator) attached to allDifferent achieves a local
consistency weaker than generalized arc consistency. But, even in this case, in-
ferring allDifferent global constraints can be quite effective provided that the
following (trivial) proposition is exploited.

Proposition 1. Let c : allDifferent(x1, . . . , xr) be a constraint. If we have
| ∪r

i=1 dom(xi)| < r, then c is disentailed (i.e. the set of supports of c is empty).

This approach is quite simple, and to the best of our knowledge, employed by
some other solvers engaged in the 2008 competition. It suffices to detect cliques
in a greedy manner, determine if irreflexivity is guaranteed between each pair of
variables, and post a constraint allDifferent that at least exploits Proposition
1. Interestingly, it is not so rare to find cliques in non-random problems. As an
illustration, the instance blackHole-4-4-e-0 (see its constraint graph in Figure 1)
contains a 16-clique that enables us to infer a global constraint allDifferent. As
one can show that this additional constraint is disentailed by using Proposition
1, the instance is directly proved to be unsatisfiable.

3 Simple Tabular Reduction

Table constraints play an important role within constraint programming. Re-
cently, many schemes or algorithms have been proposed to propagate table con-
straints or/and to compress their representation. In [7], we have shown that
simple tabular reduction (STR), a technique proposed by J. Ullmann [11] to
dynamically maintain the tables of supports, is very often the most efficient
practical approach to enforce generalized arc consistency within MAC. We have
also described an optimization of STR which allows limiting the number of op-
erations related to validity checking or search of supports. Interestingly enough,
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Fig. 1. The constraint graph of the instance blackHole-4-4-e-0 contains a 16-clique. A
constraint allDifferent generated from this clique can be shown to be disentailed.



Abscon 112 Toward more Robustness 45

this optimization makes STR potentially r times faster where r is the arity
of the constraint(s). The results of an extensive experimentation that we have
conducted with respect to random and structured instances indicate that the op-
timized algorithm we propose is usually around twice as fast as the original STR
and can be up to one order of magnitude faster than previous state-of-the-art
algorithms on some series of instances.

In order to show the practical interest of simple tabular reduction, and in par-
ticular the optimization we propose, we have then experimented using a cluster of
Xeon 3.0GHz with 1GiB of RAM under Linux, employing MAC with dom/ddeg
and lexico as variable1 and value ordering heuristics, respectively. We have com-
pared classical schemes to enforce GAC on (positive) table constraints with
STR. More precisely, we have implemented the three schemes GACv, GACa and
GACva described in [8]. We do believe that GACva is a representative state-of-
the-art algorithm for table constraints. Our own experience confirms the results
reported in [4]: GACva and the trie approach are quite robust and close in terms
of performance.

Here, we only provide some results obtained for some series of Crossword
puzzles. For each grid, there is a variable per white square which can be assigned
any of the 26 letters of the Latin alphabet, and a constraint for any sequence of
white squares which corresponds to a word that we must put in the grid. Such
constraints are defined by a table which contains all words of the right length.
The series prefixed by cw-m1c are defined from blank grids and only contain
positive table constraints (contrary to model m1 in [1] where no two identical
words can be put in the grid, which is then naturally expressed in intension).
The arity of the constraints is given by the size of the grids: for example, cw-
m1c-lex-vg5-6 involves table constraints of arity 5 and 6 (the grid being 5 by
6).

The results that we have obtained (see Table 2) with respect to 4 dictionaries
(lex, words, uk, ogd) of different length show the good performance of STR for
such series. GACstr is the original algorithm, GACstr2 is the optimized version
and GACstr2+ is GACstr2 made incremental. On the most difficult instances,
GACstr2+ is about two times faster than GACstr and one order of magnitude
faster than GACva. Note that we do not provide mean results for these series
because many instances cannot be solved within 1, 200 seconds.

4 What about Max-CSP?

In order to participate to the part of the competition dedicated to Max-CSP, we
have implemented in Abscon a variant of the PFC-MRDAC algorithm [6]. This
variant lies between PFC-MRDAC and PFC-MPRDAC [5].

For preprocessing, we have used a tabu search algorithm in order to obtain
an initial lower bound of good quality. For (complete) search, we have used our
PFC-MRDAC variant. We have integrated the pruning approach presented in [2].
1 In our implementation, using dom/wdeg does not guarantee exploring the same

search tree with classical and STR schemes.
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Classical GAC schemes Simple Tabular Reduction
GACv GACa GACva GACstr GACstr2 GACstr2+

Crossword puzzles with dictionary lex (24, 974 words)

cw-m1c-lex-vg5-6 cpu > 1, 200 38.8 54.2 14.3 12.4 10.7
#nodes=26, 679 mem 2, 889K 2, 928K 2, 932K 2, 935K 2, 968K

cw-m1c-lex-vg5-7 cpu > 1, 200 357 875 134 114 96.3
#nodes=171K mem 4, 134K 4, 173K 8, 005K 8, 055K 8, 059K

cw-m1c-lex-vg6-6 cpu > 1, 200 2.98 4.29 1.28 1.05 0.91
#nodes=1, 602 mem 4, 422K 4, 344K 4, 226K 4, 203K 4, 296K

cw-m1c-lex-vg6-7 cpu > 1, 200 436 1, 174 176 143 118
#nodes=152K mem 5, 887K 5, 692K 9, 458K 9, 437K 9, 555K

Crossword puzzles with dictionary words (45, 371 words)

cw-m1c-words-vg5-5 cpu > 1, 200 0.04 0.05 0.05 0.05 0.04
#nodes=38 mem 4, 969K 4, 987K 4, 823K 4, 791K 4, 809K

cw-m1c-words-vg5-6 cpu > 1, 200 1.19 1.46 0.48 0.37 0.33
#nodes=718 mem 6, 508K 6, 526K 6, 348K 6, 273K 6, 348K

cw-m1c-words-vg5-7 cpu > 1, 200 18.6 36.0 6.61 5.21 4.03
#nodes=6, 957 mem 8, 470K 8, 489K 8, 276K 8, 145K 8, 237K

cw-m1c-words-vg5-8 cpu > 1, 200 866 > 1, 200 273 229 187
#nodes=256K mem 4, 604K 10M 10M 10M

Crossword puzzles with dictionary uk (225, 349 words)

cw-m1c-uk-vg5-5 cpu > 1, 200 0.05 0.05 0.1 0.07 0.07
#nodes=28 mem 12M 12M 12M 12M 12M

cw-m1c-uk-vg5-6 cpu > 1, 200 0.55 0.5 0.21 0.17 0.17
#nodes=145 mem 17M 17M 16M 16M 16M

cw-m1c-uk-vg5-7 cpu > 1, 200 2.97 5.18 0.51 0.37 0.34
#nodes=408 mem 22M 22M 22M 22M 22M

cw-m1c-uk-vg5-8 cpu > 1, 200 82.5 71.9 7.08 5.71 4.78
#nodes=8, 148 mem 12M 12M 11M 11M 11M

Crossword puzzles with dictionary ogd (435, 705 words)

cw-m1c-ogd-vg6-6 cpu > 1, 200 0.37 0.31 0.23 0.17 0.15
#nodes=98 mem 46M 47M 46M 46M 48M

cw-m1c-ogd-vg6-7 cpu > 1, 200 95.3 56.1 12.0 8.01 6.81
#nodes=9, 522 mem 11M 11M 11M 11M 11M

cw-m1c-ogd-vg6-8 cpu > 1, 200 53.0 6.44 2.91 2.0 1.72
#nodes=2, 806 mem 24M 23M 22M 22M 24M

cw-m1c-ogd-vg6-9 cpu > 1, 200 727 214 35.1 25.1 19.1
#nodes=23, 283 mem 42M 41M 39M 37M 40M

Table 2. Representative results obtained on series of Crossword puzzles using dictio-
naries of different length. Cpu time is given in seconds and mem(ory) in MiB. The
number of nodes (#nodes) explored by MAC is given below the name of each instance.
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As a consequence, a requirement was that the value ordering heuristic always
selects the value with the lowest aic (arc-inconsistency count). Two variable
ordering heuristics were tested: dom/wdeg [3] and dom ∗ gap/ddeg that involves
the aic gap of the variables [2]. More precisely, the ratio dom/ddeg is multiplied
by the aic gap in order to favour variables for which there is a large gap between
the best value and the following one.

Unfortunately, we omitted to remove a trace used for debugging. Conse-
quently, the solvers have been considerably slowed down.

5 Some Deficiencies

Abscon 112 has suffered from two main deficiencies. First, in the category of
global constraints, the solver was not ready altogether. Indeed, the constraint
cumulative was not implemented and the filtering procedure for the constraint
element not optimized. Second, as mentioned above, for Max-CSP, a trace output
by the solver has considerably slowed down the resolution.
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Abstract. This document provides a short description of a MAC-based
solver written by the author for the Third International CSP Solver
Competition (2008).

1 Features

SPIDER (“SPider Is a Dull solvER”) is a complete CSP solver written in C
for solving problems with binary and non-binary extensional constraints, using
standard binary-branching MAC [2–4]. The solver is based on the CSP solver
code from CPlan [1]. It uses the revision-queue structure for propagating the
effect of AC [5]. The solver that ran in the competition has the following features.

– variable ordering. The heuristic dom/wdeg [6] was used.

– binary branching. After the second branch, the effect of the refutation is
propagated. That is, when value a of variable X is tried and the search failed,
a is removed from the domain of X and arc consistency is re-enforced.

Interestingly, a binary-branching MAC with no propagation after the refu-
tation branch can be just as good as the binary-branching MAC with propa-
gation. It was found that for some benchmark instances, one version can be
several times better than the other while the performance reverses on some
other benchmarks.

It was shown in [2, 3] that binary-branching is strictly more powerful than d-
way branching (d is the domain size). However, propagation is not essential
to the proof: with or without propagation, binary-branching is still more
powerful than d-way branching. More studies need to be done to see under
what conditions is the propagation more effective.

– value ordering. Values are statically ordered. Each value has an associated
integer weight. The value with the largest weight will be picked first for
instantiation. Before the search starts, the solver goes through each tuple in
each extensional constraint and increases a value’s weight by 1 if that value
appears in the tuple and the constraint is of type “support”, or decreases
the weight by 1 if the constraint is of type “conflict”.
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– residue. For each constraint C, variable X in the scope of C, and value a in
the domain of X, two caches were used to record previous supports for a in
C. One is for direct residue [7]. The other is for multi-directional residue [8]

– restart. Search is restarted if the number of nodes encountered during back-
tracking search exceeds some limit. The limit is initially set to 2n where n
is the number of variables, and increased by two-fold every time the limit is
reached. Weights for dom/wdeg are retained from previous runs.

Rather than using the number of nodes visited during search as the limit,
counting the number of backtracks is another possible choice. However, it
seems to make little difference.

– propagation-queue ordering. Queue of variables is used to record which vari-
ables should be revised next. Variables are picked using the same dom/wdeg
heuristic as that for variable instantiation.

It is worth noting that because dom/wdeg is used for variable ordering
heuristic, the heuristic for queue revision will have an effect on the weights
for wdeg. For dom/wdeg, the main reason we order the queue is not to make
the wipeout occur as soon as possible (if the network has become arc incon-
sistent), but rather to make sure the constraint found to cause the wipeout
is the one that matters most when its weight is increased. In other words,
for the usual dom/future-degree variable ordering heuristic, queue ordering
would affect the number of constraint checks but not the number of nodes
visited, while for dom/wdeg (or simply wdeg) it would affect both.

Using dom/wdeg to pick variables for both propagation and instantiation
could accelerate the increase in weight for a constraint with already high
weight as well as cutting down on the propagation. But in general it is not
clear whether a good heuristic for queue revision will always perform well for
variable selection and vice versa, but for dom/wdeg there may be a possible
synergy between the two.

– constraint subdivision. For each extensional constraint C, tables C(X, a) for
each X in the scope of C and a in the domain of X are created. The contents
of the table are index to location of the corresponding tuples in C. This
can be considered a very crude form of tries [9]. For example, if scope(C)=
(X,Y ,Z) and C = {(3,6,7), (0,1,4), (3,0,4)}. Then C(X, 0) = {2}, C(X, 3) =
{1,3}, C(Y, 1) = {2}, C(Y, 0) = {3}, C(Y, 6) = {1}, C(Z, 4) = {2,3}, C(Z, 7)
= {1}.

– preprocessing. No preprocessing was performed.

1.1 Specific features for solving non-binary instances

– GAC. The GAC algorithm by Lecoutre and Szymanek was implemented [10].

– trigger for GAC. For normal GAC, once a variable is instantiated any con-
straint involved must be revised. For this solver however, GAC is called only
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when the number of instantiated variables in a constraint is greater than a
fixed number k. For the competition, k is set to 5.

Strictly speaking, SPIDER does not perform full MGAC since there is no
GAC preprocessing and GAC during search is carried out selectively.

2 Current Status and Future Work

It was found out in the preliminary round that SPIDER reported an incorrect
answer in one non-binary instances. This was traced back to some bug in the
implementation of GAC algorithm. The solver still remains in the competition
for the binary-instance category.

As of this writing, GAC based on multiple-valued decision diagrams is one
the fastest algorithms [11]. Future work on SPIDER will focus on incorporating
this algorithm.
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Abstract. It has been shown in areas such as satisfiability testing and integer lin-
ear programming that a carefully chosen combination of solvers can outperform
the best individual solver for a given set of problems. This selection process is
usually performed using a machine learning technique based on feature data ex-
tracted from constraint satisfaction problems. In this paper we present CPHYDRA,
an algorithm portfolio for constraint satisfaction that uses case-based reasoning to
determine how to solve an unseen problem instance by exploiting a case base of
problem solving experience. We used data from the 2006 CSP Solver Competi-
tion to set up the case base and to assess the superiority of our portfolio approach
over each of its constituent solvers.

1 Introduction

It is recognised within the field of constraint programming that different solvers are
better at solving different problem instances, even within the same problem class [3].
It has been shown in other areas, such as satisfiability testing [13] and integer linear
programming [5], that the best on-average solver can be out-performed by carefully
exploiting a portfolio of possibly poorer on-average solvers. Selecting from a portfolio
usually relies on a machine learning technique based on feature data extracted from
constraint satisfaction problems.

Several related pieces of work have been reported in the literature. The SATZILLA1

system builds runtime prediction models using linear regression techniques based on
structural features computed from instances of the Boolean satisfiability problem. Given
an unseen instance of the satisfiability problem, SATZILLA selects the solver from its
portfolio that it predicts to have the fastest running time on the instance. In the In-
ternational SAT Competition 2007, SATZILLA won two of the categories, and came
second and third in two others. The AQME system is a portfolio approach to solving
quantified Boolean formulae, i.e. SAT instances with some universally quantified vari-
ables [9]. AQME is built on the Weka data-mining library2. Three versions of AQME have

? This work was supported by Science Foundation Ireland (Grant No. 05/IN/I886).
1 http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
2 http://www.cs.waikato.ac.nz/ml/weka/
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competed in the International Competitive Quantified Boolean Formula Evaluation3: a
version using decision trees to select which solver to use, a version using logistic regres-
sion, and another using 1-nearest neighbour. Like SATZILLA, AQME selects one solver
to run for a given unseen formula. Our approach contrasts with both of these in that we
select a set of solvers to run on the given instance rather than a single solver. Streeter
et al. [12] build upon the work of Sayag et al. [11], by using optimisation techniques
to produce a schedule of solvers that should be tried in a specific order, for specific
amounts of time, in order to maximise the probability of solving the given instance.
This work is similar to ours, except we use a much more “knowledge-light” approach
by relying on case-based reasoning (CBR) to advise on the composition of our sched-
ule of solvers. A related work to our own is by Gebruers et al. [2], who use case-based
reasoning to select solution strategies for constraint satisfaction. Our approach is quite
different since we do not tune a particular solver, but make a more high-level decision
about which solvers to run.

The motivation for this research is two-fold. Firstly, constraint programming sys-
tems are often quite difficult for non-expert users to apply in practice. We address this
concern by developing a system that uses artificial intelligence techniques to automat-
ically select an appropriate solver for a given unseen problem instance. Secondly, we
aim to show that given the current state of CSP Solver development, one could win
the International CSP Solver Competition by not implementing any new solvers, but by
using machine learning to select between a small set of common solvers that have al-
ready been developed. Our approach uses case-based reasoning to inform the selection
process. We build a case base of problem solving experience by solving a variety of
typical problem instances with each solver in our algorithm portfolio. Then we employ
case retrieval methods in a number of increasingly sophisticated ways, giving better
performance in each case.

2 Portfolios of Solvers

It often occurs that there is a low correlation between the performance of different
search techniques. This may, fortuitously, offer the prospect of combining various search
mechanisms so that we form a portfolio of algorithms amongst which computing re-
sources are shared so that the combined effectiveness of multiple solvers outperforms
the single most effective solver. There is a balance between risk (the variability in search
performance) and reward (the expected search performance) that must be achieved. In
previous work, Huberman et al. [4] developed a theory of algorithm portfolio design
that employed an economics-based approach in an effort to balance risk and reward.
Theirs was a general method for combining existing programs in a static portfolio so
that the combinations were unequivocally superior to any of the individual algorithms.
They employed Modern Portfolio Theory, as described by Markowitz [8], to model the
efficient frontier. An efficient portfolio is one that has the highest possible reward for a
given level of risk, or the lowest risk for a given reward.

3 http://www.qbflib.org/index_eval.php
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2.1 Case-Based Reasoning

Case-Based Reasoning is a machine learning methodology that adopts a lazy learning
approach and contains no explicit model of the problem domain. Instead a set of past
examples called cases are retained. Each case is made up of a description of a past
example or experience and its respective solution. The full set of past experiences en-
capsulated in individual cases is called the case base.

In CBR problems are solved “by using or adapting solutions to old problems” [10].
When a new problem is presented, the case base is searched, similar past examples are
found and these are used to solve the presented problem. The need to detect and model
general patterns over the entire problem space is avoided. This approach to problem
solving in CBR has a number of advantages. In particular, CBR has proven to be suc-
cessful in solving weak-theory problems, in which little insight into the problem exists
and the problem domain may be complex. This characteristic makes CBR a good can-
didate for the tasks of solver selection and portfolio generation in CSPs. While many
different solving techniques exist, it is a difficult task even for domain experts to predict
which techniques, or combination thereof, will be effective on a given problem instance.

Given its apparent suitability, it is not surprising that CBR has previously been con-
sidered for the task of strategy selection in Constraint Programming. CBR has been
outlined as part of a framework for capturing expert knowledge in terms of CP prob-
lem modelling [6]. CBR has also successfully outperformed other CP strategy selection
techniques when tested on two different CSPs [2]. Within CPHYDRA, the CBR method-
ology is used to inform a portfolio approach to problem solving.

2.2 CPHYDRA

The most fundamental element of any CBR system is the case base. In CPHYDRA,
cases contain the feature values describing a particular CSP problem instance. Each
problem instance in the CSP Solver Competition is described in XML and we can use
this to help generate the feature values for a particular problem instance. We do this in
two distinctly different ways. Firstly, we extract a set of syntactic features such as max-
imum constraint arity, average and maximum domain size, number of variables and of
constraints, domain continuity, ratio of different types of constraints (extensional, in-
tentional or global) and ratio of subclasses of constraints within these main categories.
Then we complement these static features with solver specific features by running a
constraint solver, Mistral, for a limited amount of time (typically two seconds) and
recording its modeling choices and search statistics, such as number of variables whose
domains are represented as a range/boolean/bitset, number of extra variables created to
represent constraint reification, number of nodes explored, number of constraint propa-
gation calls and average constraint weighting.

We used 36 features in total to describe the problem instances. Of these features,
14 were generated using Mistral. It is also important to note that quantified features,
such as maximum domain size, were log-scaled whereas the ratios were all percent-
ages. As well as the set of feature-values, each case contains a list of how long each
solver being used by CPHYDRA took to solve that problem instance. This formed the
‘experience’ element of each case.
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Fig. 1. Overview of CPHYDRA.

The CBR methodology can be broken down into four distinct phases: Retrieval,
Reuse, Revision and Retention. These phases are often referred to as the ‘Four REs’-
cycle [1]. The first two are of particular importance to CPHYDRA, as can be seen in
Figure 1. However, the final two phases are relevant too. We will now discuss each of
these four phases relates to CPHYDRA in turn.

Retrieval. To begin with, a query case is first produced. The XML presentation of the
problem instance is used to generate both the static and the dynamic feature-values as
described previously. Using the query case the case base is searched and the most simi-
lar cases to the present problem description are retrieved. A simple k-nearest neighbour
(K-NN) algorithm is used for this task; we set k = 10. In situations where similarity
ties occur all cases with similarity equal to the kth-ranked case are also returned. Since
all features are real valued the Euclidean similarity measure is used.

Reuse. The objective of CPHYDRA is not simply to supply a prediction but a schedule
describing how long each solver should run. This makes the Reuse phase of CPHYDRA
more complex than many other CBR systems where the objective is a classification. As
can be seen in Figure 1 the retrieval process returns the set of solver times for each of
the k most similar problem instances found in the case base along with their similarities
to the Query Case. This information is then used to generate a solver schedule. This
process will be explained in detail in Section 2.3.

Revision. During this phase the proposed solution is evaluated and validated. This pro-
cess involves running each of the solvers for the proportion of time allocated by the
scheduler and determining if the problem is successfully solved by one of the solvers
within its allocated time slot. If at least one solver solves the problem instance within
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its time slot then the schedule is deemed a success. In competition conditions there is
no opportunity to revise a solution in light of its performance or to update the case base.
However, in non-competition conditions this would be desirable.

Retention. Normally once a satisfactory solution has been determined the problem de-
scription and solution are added to the case base. However, in CPHYDRA the ‘solution’
or experience attached to each case, the solver times, are only indirectly used to produce
a solution. In order to create a complete case that could be retained each solver would
have to run until it solved the problem instance or timed-out. This phase is not possible
in competition conditions but could form part of a continuous online learning system.

As we have already stated, the most involved action in this cycle is the generation
of a schedule given the solver performances on similar past examples. We will now
discuss this process in greater detail.

2.3 Solver Scheduling

Typically, in previous CSP Solver Competitions runtime distributions for each solver
display a very fast rate of decay. That is, the number of problems solved for a given
amount of CPU-time decreases rapidly. Moreover, when analysing the competition re-
sults, it turns out that no solver is completely dominated. For example, sixteen of the
twenty-two solvers are the fastest on at least one instance, and nine of them are the
fastest on at least one hundred instances. The conjunction of these two conditions en-
tails that partitioning CPU-time between solvers is inherently a good strategy. We show,
however, that one can improve a naive partitioning by taking into account the informa-
tion given by the case base reasoner. We define a method for computing good CPU-time
partitions, i.e., solver schedules.

Our goal is to compute a solver schedule, that is a function f : S 7→ R mapping an
amount of CPU-time to each element of a set S of solvers. Given a query instance, the
case base reasoner returns a set C of similar cases. Informally, we compute the schedule
so that the number of cases in C that would be solved using this schedule is maximised.
More formally, consider a set C of similar cases. For a given solver s ∈ S and a time
point t ∈ [0..1800] we define C(s, t) as the subset of C solved by s if given at least time
t. The schedule f can be computed using the following constraint program:

maximise |
⋃

s∈S C(s, f (s))| (1)
subject to

∑
s∈S f (s) ≤ 1800 (2)

Notice that this problem is NP-hard as a generalisation of the knapsack problem. How-
ever, because the number of solvers is small, solving this problem to optimality is easy
in practice. We refined the objective function (1) by weighting the elements of the sets
(cases) according to their similarity to query case. Let d(c) be the distance of case c ∈ C
to the query case, we can modify the objective function in the following way:

maximise
∑

c∈
S

s∈S C(s,f (s))
1

d(c)+1 (3)



58 O’Mahony et al.

We solved this problem using a very simple complete search procedure. The low num-
ber of solvers in CPHYDRA (5) and number of similar cases (10 to 50) makes the prob-
lem tractable. However, for a large number of solvers a more sophisticated approach
would be necessary.

Often, the constraint program above can be trivially solved by allocating to each
solver s an amount of CPU-time t such that |C(s, t)| is maximised. For instance con-
sider the situation where we have five solvers, and none of them can solve any more
instances after t = 100. In this case the objective function is trivially maximised, with-
out violating the constraints, by allocating 100 seconds to each solver. In other words, in
this type of situation the schedule, as defined previously, is useless. We, therefore, dis-
tinguish these cases and apply a simple alternative procedure. We first disregard solvers
that are dominated by some others. That is, let t be a time point such that no case can be
solved by any solver in less than t seconds. We say that s1 is dominated iff (1) ∃s2 ∈ S
such that C(s1, t) ⊂ C(s2, t), or (2) there exists s2 ∈ S such that C(s1, t) = C(s2, t)
and there exists t′ such that C(s2, t

′) = C(s2, t) and C(s1, t
′) ⊂ C(s2, t

′), or (3)
C(s1, t) = C(s2, t) for all t and s2 comes before s1 for some arbitrary static order (tie
breaking). Since we are focusing on maximising the probability of solving the query
instance within the time limit, the order does not matter. However, it is important to
notice that if one wants to minimise the expected solving time, the chosen order can
be significant. Once dominated solvers are eliminated, the remaining CPU-time is dis-
tributed amongst non-dominated solvers proportionally to the amount of CPU-time al-
ready assigned. This corresponds to the maximally risk-aggressive algorithm portfolio
that seeks to maximise the probability of finding a solution. However, this does not
necessarily minimise the expected time for finding a solution.

3 Experimental Results

Experimental Aims. Given that our aim is to produce a portfolio of solvers for the
CSP Competition, to test different strategies we use the percentage of problems solved
by each strategy as a metric, where the total number of problems is the number of
problems that were solved by at least one solver within the corresponding time cutoff.
Notice that in Figure 2 the solver Buggy has a higher percentage of solved problems
after five minutes than when it is able to use the full thirty minutes, i.e., it solved more
instances in five minutes relative to other solvers, but not in absolute value.

Experimental Data and Methodology. The following tests ran on data from the 2006
CSP Solver Competition. We used this data as it is complete and has a diverse range
of solvers. The complete case base therefore contains 3013 cases, one for each instance
solved by at least one entrant of the competition within a 30 minutes cutoff. All the
results were obtained by running a randomised ten-fold cross validation ten times and
averaging the results. We compared the five best solvers of the previous competition
(Buggy, Bprolog, Sugar, Mistral and Abscon) against CPHYDRA with the
same solvers in the portfolio, and using the three following strategies:

Split schedule: A schedule giving each solver an equal portion of the total time.
Static schedule: A schedule generated as in Section 2.3 using the entire case base.
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Dynamic schedule: A schedule generated as in Section 2.3 using the k nearest neigh-
bours of the target case (k = 10).

Experimental Results. It is clear from Figure 2 that even a naive schedule such as
dividing the time evenly between the solvers performs very well compared to the best
individual solver with an 8-10% greater success rate. In this graph, we plot the per-
centage of instances solved, within either 30 minutes, 5 minutes of 1 minutes, for each
individual solver and each of the time splitting strategies described above. Notice that
the percentages are over the number of instances that were solved by at least one solver
in the respective duration. However, the best scheduling approach only marginally out-
performs the others (See Table 1). The performance of the split schedule degrades as the
available time is decreased. There is a 1% difference between it and a dynamic sched-
ule when 30 minutes is available whereas there is a 3% gap when the time available is
decreased to 5 minutes and a 10% gap when there is only 1 minute available.

Fig. 2. A graph comparing the percentage of problems solved by different strategies when there
are different amounts of time available. Running each solver in the portfolio exclusively, splitting
the time evenly between the solvers, and two different schedules.

This is illustrated in Figure 3. The static and dynamic schedules begin to outperform
a split schedule rapidly as the time available decreases. The static and dynamic sched-
ules are roughly equivalent in terms of problems solved when the time allowed is more
than 5 minutes. We believe the reason for this is that most of the problems in the CSP
Solver Competition are solved in very short time period. Thus, given generous time
constraints, any distributed schedule should do well. The efficiency of these approaches
becomes apparent when the time available decreases and algorithm selection becomes
more critical. The dynamic schedule clearly outperforms the static schedule when the
time allowed is shorter.
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Fig. 3. Percentage (avg) of solved instances for each approach for different time-limits (minutes).

From Table 1 it is clear that the relative performance gap increases as the time
available decreases. There is a clearly discernable trend as the time available approaches
30 seconds. The static and dynamic schedules go from being within 0.2% of each other
at 30 minutes and at 15 minutes to being 1% apart at 5 minutes, 1.8% apart at 2 minutes
to 3% apart at 1 minute. This is evidence that the case-based reasoning system is having
a beneficial effect and the schedules generated on local neighbours are more robust than
schedules generated from all known data.

Table 1. Table detailing the performance of each approach.

Split Static Dynamic
Time (Mins) Solved Best Worst Avg Dev Best Worst Avg Dev

30 96.76 97.63 97.42 97.56 0.075 98.16 97.13 97.86 0.28
15 96.30 97.83 97.76 97.79 0.02 97.76 97.39 97.59 0.12
5 95.24 96.39 96.18 96.33 0.07 97.50 97.22 97.34 0.08
2 93.25 95.60 95.31 95.49 0.1 97.95 97.02 97.25 0.31
1 90.45 93.77 93.26 93.54 0.14 96.79 96.32 96.54 0.15

0.5 85.38 92.24 92.12 92.22 0.04 95.63 95.02 95.39 0.18

Preformance at the 2008 CSP Solver Competition. At the time of writing the final
version of this paper, preliminary results from the 2008 CSP Solver Competition were
available, showing that we achieved our goal to obtain better performance than each of
the constituent solvers of the portfolio. Our competition entry of CPHYDRA comprised
three solvers: Abscon, Choco and Mistral. Unfortunately the results of other en-
trants are not available yet. The results are summarized in Table 2. For each solver, we
give the percentage of instances solved by each solver, as well as the average CPU-time
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Table 2. Results summary for CPHYDRA and its constituent solvers at the 2008 CSP Solver
Competition.

Category (#instances) CPHYDRA Abscon Choco Mistral
Solved CPU-time Solved CPU-time Solved CPU-time Solved CPU-time

Binary Extensional (622) 92% 62.44 s 88% 93.26 s 89% 95.78 s 89% 70.21 s
Binary Intentional (634) 94% 71.37 s 81% 43.40 s 82% 55.89 s 82% 58.23 s
Global (501) 84% 80.83 s 37% 170.62 s 69% 69.69 s 80% 56.59 s
N-ary Extensional (607) 97% 78.20 s 90% 80.09 s 73% 189.10 s 94% 83.67 s
N-ary Intentional (660) 86% 54.70 s 74% 53.21 s 78% 49.70 s 80% 32.02 s

spent on solved instances. CPHYDRA dominates its constituent solvers in every cate-
gory for the percentage of instances solved (the criterion used to rank solvers during the
competition). More surprisingly, it is also competitive in average CPU-time. Therefore,
CPHYDRA would win a competition against its constituent solvers.

4 Conclusion

We introduced CPHYDRA, a portfolio of constraint solvers exploiting a case base of
problem solving experience. We detailed the novelties of our approach with respect to
related work. In particular, CPHYDRA combines machine learning (CBR) with the idea
of partitioning CPU-time between components of the portfolio in order to maximise
the expected number of solved problem instances within a fixed time limit. Finally, we
assessed the effectiveness of our portfolio over each of its constituent solvers using data
from the most recent CSP Solver Competition showing the dominance of CPHYDRA.
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Abstract. This document presents the key techniques used in toulbar2 solver
submitted to the Max-CSP competition 2008. toulbar2 solves Weighted Con-
straint Satisfaction Problems (WCSPs), a generalisation of Max-CSP. Two com-
plete solving methods that have been used for the competition are presented in
this paper: Depth-First Branch and Bound (DFBB) and a new algorithm, Russian
Doll Search with tree decomposition (RDS-BTD), which exploits the problem
structure.
DFBB is commonly used to solve constraint optimization problems such as WC-
SPs. The worst-case time complexity of this algorithm can be improved by ex-
ploiting the constraint graph structure, identifying independent subproblems and
caching their optima. However, the exploitation of the structure is done a poste-
riori: each time a new subproblem occurs, it has to be solved before its optimum
can be used. RDS-BTD solves a relaxation of every subproblem before solving
the whole problem, in the spirit of the Russian Doll Search algorithm. This relax-
ation allows to exploit subproblem lower bounds in a more proactive way.

1 Weighted Constraint Satisfaction Problem

A Weighted CSP (WCSP) is a quadruplet (X ,D,W,m). X and D are sets of n variables
and finite domains, as in a standard CSP. The domain of variable i is denoted Di. The
maximum domain size is d. For a set of variables S ⊂ X , we note `(S) the set of tuples
over S. W is a set of cost functions. Each cost function (or soft constraint) wS in W
is defined on a set of variables S called its scope and assumed to be different for each
cost function. A cost function wS assigns costs to assignments of the variables in S i.e.
wS : `(S)→ [0,m]. The set of possible costs is [0,m] and m ∈ {1, . . . ,+∞} represents
an intolerable cost. Costs are combined by the bounded addition ⊕, such as a⊕ b =
min{m,a+b} and compared using ≥. The operation 	 subtracts a cost b from a larger
cost a where a	b = (a−b) if a 6= m and m otherwise.

For unary/binary cost functions, we use simplified notations: a unary (resp. binary)
cost function on variable(s) i (resp. i and j) is denoted wi (resp. wi j). If they do not exist,
we add to W a unary cost function wi for every variable i, and a nullary cost function,
noted w∅ (a constant cost payed by any assignment). All these additional cost functions
have initial cost 0, leaving the semantics of the problem unchanged.
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The cost of a complete assignment t ∈ `(X) in a problem P =(X ,D,W,m) is ValP(t)=L
wS∈W wS(t[S]) where t[S] denotes the usual projection of a tuple on the set of variables

S. The problem of minimizing ValP(t) is an optimization problem with an associated
NP-complete decision problem.

Enforcing a given local consistency property on a problem P consists in trans-
forming P = (X ,D,W,m) in a problem P′ = (X ,D,W ′,m) which is equivalent to P
(ValP = ValP′ ) and which satisfies the considered local consistency property. This en-
forcing may increase w∅ and provide an improved lower bound on the optimal cost.
Enforcing is achieved using Equivalence Preserving Transformations (EPTs) moving
costs between different scopes [12, 8, 4, 6, 1, 3, 2].

A classical complete solving method is Depth-First Branch and Bound (DFBB).
We give its pseudo-code in Algorithm 1. It enforces at each search node a given local
consistency property Lc (line 1). The pruning condition is applied if the resulting w∅ ≥
m (line 2). m is updated to the cost of the last solution found (line 3). The initial call
is DFBB(P, X , /0). It assumes an already local consistent problem P and returns its
optimum. P/A denotes the subproblem P under assignment A. The operator . is used to
get an element of P. Function pop(S) returns an element of S and remove it from S.

DFBB worst-case time complexity is O(dn) and it uses linear space. In the next
section, we briefly present how DFBB can be extended to exploit the problem structure.

2 Depth-First Branch and Bound with tree decomposition

Assuming connected problems, a tree decomposition of a WCSP is defined by a tree
(C,T ). The set of nodes of the tree is C = {C1, . . . ,Ck}where each Ce is a set of variables
(Ce ⊂ X) called a cluster. T is a set of edges connecting clusters and forming a tree (a
connected acyclic graph). The set of clusters C must cover all the variables (

S
Ce∈C Ce =

X) and all the cost functions (∀wS ∈W,∃Ce ∈C s.t. S⊂Ce). Furthermore, if a variable i
appears in two clusters Ce and Cg, i must also appear in all the clusters C f on the unique
path from Ce to Cg in T .

For a given WCSP, we consider a rooted tree decomposition (C,T ) with an arbitrary
root C1. We denote by Father(Ce) (resp. Sons(Ce)) the parent (resp. set of sons) of Ce
in T . The separator of Ce is the set Se = Ce∩Father(Ce). The set of proper variables of
Ce is Ve = Ce \Se.

The essential property of tree decompositions is that assigning Se separates the ini-
tial problem in two subproblems which can then be solved independently. The first
subproblem, denoted Pe, is defined by the variables of Ce and all its descendant clusters
in T and by all the cost functions involving at least one proper variable of these clus-
ters. The remaining cost functions, together with the variables they involve, define the
remaining subproblem.

Example 1. Consider the MaxCSP problem depicted in Figure 1. It has eleven variables
with two values (a,b) in their domains. Binary cost functions of difference (wi j(a,a) =
wi j(b,b) = 1,wi j(a,b) = wi j(b,a) = 0) are represented by edges connecting the corre-
sponding variables. In this problem, the optimal cost is 5 and it is attained with e.g. the
assignment (a,b,b,a,b,b,a,b,b,a,b) in lexicographic order. A C1-rooted tree decom-
position with clusters C1 = {1,2,3,4},C2 = {4,5,6},C3 = {5,6,7},C4 = {4,8,9,10},
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Fig. 1. The constraint graph of Example 1 and its associated tree decomposition.

and C5 = {4,9,10,11}, is given on the right hand-side in Figure 1. For instance, C1
has sons {C2,C4}, the separator of C3 with its father C2 is S3 = {5,6}, and the set of
proper variables of C3 is V3 = {7}. The subproblem P3 has variables {5,6,7} and cost
functions {w5,7,w6,7,w7} (w7 initially empty). P1 corresponds to the whole problem.

Depth-First Branch and Bound with Tree Decomposition (BTD) [7, 5] exploits this
property by restricting the variable ordering. Imagine all the variables of a cluster Ce are
assigned before any of the remaining variables in its son clusters and consider a current
assignment A. Then, for any cluster C f ∈ Sons(Ce), and for the current assignment A f
of the separator S f , the subproblem Pf under assignment A f (denoted Pf /A f ) can be
solved independently from the rest of the problem. If memory allows, the optimal cost
of Pf /A f may be recorded which means it will never be solved again for the same
assignment of S f .

In [5], we show how to exploit a better initial upper bound for solving Pf . However
this has the side-effect that the optimum of Pf may be not computed but only a lower
bound. The lower bound and the fact it is optimal can be recorded in LBPf /A f and
OptPf /A f respectively, initially set to 0 and false.

As in DFBB, BTD enforces local consistency during search. However, local con-
sistency may move costs between clusters, thereby invalidating previously recorded
information. We store these cost moves in a specific backtrackable data structure ∆W
as defined in [5]. During the search, we can obtain the total cost that has been moved
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out of the subproblem Pf /A f by summing up all the ∆W f
i (a) for all values (i,a) in the

separator assignment A f and correct any recorded information: LB′Pf /A f
= LBPf /A f 	L

i∈S f
∆W f

i (A f [i]).
Moreover, we keep the nullary cost function local to each cluster: w∅ =

L
Ce∈C we

∅.
For pruning the search, BTD uses the maximum between local consistency and

recorded lower bounds as soon as their separator is completely assigned by the current
assignment A. We denote by lb(Pe/A) this lower bound:

lb(Pe/A) = we
∅⊕

M
C f∈Sons(Ce)

max(lb(Pf /A),LB′Pf /A f
) (1)

Example 2. In the problem of Example 1, variables {1,2,3,4} of C1 are assigned first,
e.g. using a dynamic variable ordering min domain / max degree inside each cluster.

Let assume A = {(4,a),(1,a),(2,b),(3,b)} be the current assignment5. Enforcing
EDAC local consistency [6] on P1/A produces w1

∅ = 2,w2
∅ = w4

∅ = 1,w3
∅ = w5

∅ = 0,
resulting in lb(P1/A) =

L
Ce∈C we

∅ = 4 (no lower bound recorded yet).
Then, subproblems P2/{(4,a)} and P4/{(4,a)} are solved independently, resulting

in LBP2/{(4,a)}= 1, LBP4/{(4,a)}= 2, OptP2/{(4,a)}= OptP4/{(4,a)}= true (no initial upper
bound) which are recorded. A first complete assignment of cost w1

∅⊕ LBP2/{(4,a)}⊕
LBP4/{(4,a)} = 5 (all ∆W costs are zero in this case) is found.

In Algorithm 1, we present the pseudo-code of the BTD algorithm combining tree
decomposition and a given level of local consistency Lc. This algorithm uses our initial
enhanced upper bound (line 4), value removal based on local cuts [5] and lower bound
recording (lines 6 and 7). The initial call is BTD(P1, V1, /0, 0), with P1 = P, an already
local consistent problem, returning its optimum.

The lower bound lb(Pe/A) of Equation 1 does not take into account a possible
recorded lower bound LBPe/Ae , which may exist if OptPe/Ae =false and the same sub-
problem is solved again. We therefore ensure a monotonically increasing lower bound
during the search by passing the best lower bound found recursively (line 5 and 9),
resulting in a stronger pruning condition (line 8).

BTD time complexity is O(mdw+1) with w = maxCe∈C |Ce|−1, the maximum clus-
ter size minus one, called the tree-width of the tree decomposition. Its memory com-
plexity is bounded by O(ds) with s = maxCe∈C |Se|, the maximum separator size [5].

3 Russian Doll Search with tree decomposition

The original Russian Doll Search (RDS) algorithm [13] consists in solving n nested
subproblems of an initial problem P with n variables. Given a fixed variable order, it
starts by solving the subproblem with only the last variable. Next, it adds the preceding
variable in the order and solves this subproblem with two variables, and repeats this
process until the complete problem is solved. Each subproblem is solved by a DFBB

5 Variable 4 has been selected first as it has the highest degree in C1.
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Algorithm 1: DFBB, BTD, and RDS-BTD algorithms.
Function DFBB(P, V , A) : [0,+∞]

if (V = /0) then
return P.w∅ /* A new solution is found for P */ ;

else
i :=pop(V ) /* Choose an unassigned variable of P */ ;
d := P.Di ;
/* Enumerate every value in the domain of i */ ;
while (d 6= /0 and P.w∅ < P.m) do

a :=pop(d) /* Choose a value */ ;
P′ :=Lc(P/A∪{(i,a)}) /* Enforce local consistency on P/A∪{(i,a)} */ ;1
if (P′.w∅ < P.m) then2

P.m :=DFBB(P′, V , A∪{(i,a)}) ;3

return P.m ;

Function BTD(Pe, V , A, blb) : [0,+∞]
if (V = /0) then

S := Sons(Ce) ;
/* Solve all cluster sons whose optima are unknown */ ;
while (S 6= /0 and lb(Pe/A) < Pe.m) do

C f :=pop(S) /* Choose a cluster son */ ;
if (not(OptPf /A f

)) then
Pf .m := Pe.m	 lb(Pe/A)⊕ lb(Pf /A f ) ;4
res :=BTD(Pf , V f , A, lb(Pf /A f )) ;5

LBPf /A f
:= res⊕

L
i∈S f

∆W f
i (A[i]) ;6

OptPf /A f
:= (res < Pf .m) ;7

return lb(Pe/A) /* A new solution is found for Pe */ ;
else

i :=pop(V ) /* Choose an unassigned variable in Ce */ ;
d := Pe.Di ;
/* Enumerate every value in the domain of i */ ;
while (d 6= /0 and max(blb, lb(Pe/A)) < Pe.m) do

a :=pop(d) /* Choose a value */ ;
P′e :=Lc(Pe/A∪{(i,a)}) /* Enforce local consistency on Pe/A∪{(i,a)} */ ;
if (max(blb, lb(P′e/A∪{(i,a)})) < Pe.m) then8

Pe.m :=BTD(P′e, V , A∪{(i,a)}, max(blb, lb(P′e/A∪{(i,a)}))) ;9

return Pe.m ;

Function RDS-BTD(P, PRDS
e ) : [0,+∞]

foreach C f ∈ Sons(Ce) do
RDS-BTD(P, PRDS

f ) ;

PRDS
e .m := P.m	 lb(P/ /0)⊕ lb(PRDS

e / /0) ;10

LBPRDS
e

:=BTD(PRDS
e , Ve, {(i,EAC(i))|i ∈ Se}, lb(PRDS

e / /0)) ;11

Set to false all recorded OptPf /A such that C f is a descendant of Ce, S f ∩Se 6= /0, A ∈ `(S f ) ;12
return LBPRDS

e
;
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algorithm with a static variable ordering heuristic following the nested subproblem de-
composition order. The lower bound combines the optimum of the previously solved
subproblems with the lower bound produced by enforcing soft local consistency.

RDS-BTD, recently proposed in [10], applies the RDS principle to a tree decompo-
sition. The main difference with RDS is that the set of subproblems to solve is defined
by a rooted tree decomposition (C,T ).

We define PRDS
e as the subproblem defined by the proper variables of Ce and all its

descendant clusters in T and by all the cost functions involving only proper variables of
these clusters. PRDS

e has no cost function involving a variable in Se, the separator with
its father, and thus its optimum is a lower bound of Pe for any assignment of Se.

RDS-BTD solves |C| subproblems ordered by a depth-first traversal of T , starting
from the leaves to the root PRDS

1 = P1.
Each subproblem PRDS

e is solved by BTD instead of DFBB. This allows to exploit
decomposition and caching done by BTD. Because caching is only performed on com-
pletely assigned separators, and considering all possible assignments of Se would be
too costly in memory and time, we assign Se before solving PRDS

e . This is needed since
otherwise, caching on Pf , a descendant of Ce, with S f ∩Se 6= /0, would use a partially as-
signed A f . To assign Se, we use the fully supported value of each domain6 (maintained
by EDAC [6]) as temporary values used for caching purposes only.

The advantage of using BTD is that recorded lower bounds can be reused during
the next iterations of RDS-BTD. However, the optimum found by BTD for a given
subproblem Pf when solving PRDS

e is no more valid in PRDS
Father(e)

due to possible cost
functions between variables in CFather(e) and in Pf . At each iteration of RDS-BTD,
after PRDS

e is solved, we reset all OptPf /A f such that S f ∩Se 6= /0 (line 12).
During search, RDS-BTD exploits the maximum between local consistency, recorded,

and RDS lower bounds. Let LBPRDS
e

denote the optimum of PRDS
e found by one iteration

of RDS-BTD. Because costs can be moved between clusters, this information has to
be corrected in order to be valid in the next iterations of RDS-BTD. For that, we use
the maximum of ∆W on each current domain of the (possibly unassigned) separator
variables. The lower bound corresponding to the current assignment A is then:

lb(Pe/A) = we
∅⊕

M
C f∈Sons(Ce)

max(lb(Pf /A),LB′Pf /A f
,LBPRDS

f
	

M
i∈S f

max
a∈Di

∆W f
i (a)) (2)

Example 3. Applied on the problem of Example 1, RDS-BTD solves five subproblems
(PRDS

3 ,PRDS
2 ,PRDS

5 ,PRDS
4 ,P1) successively. For instance, PRDS

3 has variable {7} and cost
function {w7}. Before solving PRDS

3 , RDS-BTD assigns variables {5,6} of the separator
S3 to their fully supported value ({(5,a),(6,a)} in this example). In solving PRDS

2 , it
can record e.g. the optimum of P3/{(5,a),(6,a)}, equal to zero (recall that w5,6 does
not belong to P3), that can be reused when solving P1. In solving PRDS

4 , it can record
e.g. the optimum of P5/{(4,a),(9,a),(10,a)}, also equal to zero. However, due to the
fact that variable 4 belongs to S5 ∩ S4 and PRDS

4 does not contain w4,11, this recorded
information is only a lower bound for subsequent iterations of RDS-BTD. So, we set

6 Fully supported value a∈Di such that wi(a) = 0 and ∀wS ∈W with i∈ S,∃t ∈ `(S) with t[i] = a
such that wS(t) = 0.
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OptP5/{(4,a),(9,a),(10,a)}= false before solving P1. The resulting optima are: LBPRDS
3

=
LBPRDS

5
= 0,LBPRDS

2
= LBPRDS

4
= 1 and LBPRDS

1
= 5, the optimum of P1.

In this simple example, for A = {(4,a),(1,a),(2,b),(3,b)}, lb(P1/A) using Equa-
tion 1 or 2 is the same because EDAC propagation provides lower bounds equal to
RDS lower bounds. In the contrary, for A = /0, lb(P1/ /0) = LBPRDS

2
⊕LBPRDS

4
= 2 using

Equation 2 and lb(P1/ /0) = 0 using Equation 1 (assuming EDAC local consistency in
preprocessing and no initial upper bound).

We present the pseudo-code of the RDS-BTD algorithm in Algorithm 1. RDS-BTD
call BTD to solve each subproblem PRDS

e (line 11), using Equation 2 instead of Equation
1 to compute lower bounds. An initial upper bound for PRDS

e is deduced from the global
problem upper bound and the already computed RDS lower bounds (line 10). It initially
assigns variables in Se to their fully supported value (given by EAC function at line 11)
as discussed above. The initial call is RDS-BTD(P, PRDS

1 ). It assumes an already local
consistent problem PRDS

1 = P and returns its optimum.
Notice that as soon as a solution of PRDS

e is found having the same optimal cost
as lb(PRDS

e / /0) =
L

C f∈Sons(Ce) LBPRDS
f

, then the search ends thanks to the initial lower
lound given at line 11.

The time and space complexity of RDS-BTD is the same as BTD.

4 Implementation details

We implemented DFBB and RDS-BTD in an open-source C++ solver named toulbar27.
DFBB uses default parameter values of toulbar2.

Dynamic variable ordering (min domain / max degree, breaking ties with maximum
unary cost) is used inside clusters (RDS-BTD) and by DFBB. EDAC local consistency
is enforced on binary [6] and ternary [11] cost functions during search. Larger arity cost
functions are delayed from propagation until they become ternary or less.

We use the Maximum Cardinality Search heuristic to build a tree decomposition
and choose the largest cluster as the root. In order to relax the restriction imposed by
RDS-BTD on the dynamic variable ordering heuristic, we propose to merge clusters
with their parent if their separator is too large. Starting from the leaves of a given tree
decomposition, we merge a cluster with its parent if the separator size is strictly greater
than r = 4 (parameter B2r4 in toulbar2).

Recorded (and if available RDS) lower bounds are exploited by local consistency
enforcing as soon as their separator variables are fully assigned. If the recorded lower
bound is optimal (OptPe/Ae =true) or strictly greater than the one produced by lo-
cal consistency, i.e. max(LB′Pe/Ae

,LBPRDS
e
	

L
i∈Se ∆W e

i (A[i]) >
L

Pf⊆Pe w f
∅, then the

corresponding subproblem (Pe/Ae) is deconnected from local consistency enforcing
and the positive difference in lower bounds is added to its parent cluster lower bound

(wFather(Ce)
∅ ), allowing possible new value removals by node consistency enforcing on

the remaining problem.

7 Version 0.7 available at http://mulcyber.toulouse.inra.fr/gf/project/toulbar2
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All the solving methods exploit a binary branching scheme depending on the do-
main size d of the branching variable. If d > 10 then it splits the ordered domain into
two parts (by taking the middle value), else the variable is assigned to its EDAC fully
supported value or this value is removed from the domain. In both cases, it selects the
branch which contains the fully supported value first, except for RDS-BTD where it
selects the branch which contains the value corresponding to the last solution(s) found
first if available.

At each search node, before branching, DFBB and RDS-BTD eliminate all variables
(except variables occuring in a separator for RDS-BTD) with a degree less than or equal
to two, possibly creating new binary cost functions on the fly. They apply successively
EDAC propagation (which may assign some variables and reduce current degrees) and
2-degree variable elimination until there is no more elimination nor propagation.

The dynamic variable ordering heuristic is modified by a conflict back-jumping
heuristic as suggested in [9]. It branches on the same variable again if the first branch
in the binary branching scheme was directly pruned by propagation.

No initial upper bound is provided.

Acknowledgments toulbar2 solver has been partly funded by the French Agence
Nationale de la Recherche (STALDECOPT project).

References
1. M. Cooper. High-order consistency in valued constraint satisfaction. Constraints, 10(3):283–

305, 2005.
2. M. Cooper, S. de Givry, M. Sanchez, T. Schiex, and M. Zytnicki. Virtual arc consistency for

weighted csp. In Proc. of AAAI-08, Chicago, IL, 2008.
3. M. Cooper, S. de Givry, and T. Schiex. Optimal soft arc consistency. In Proc. of IJCAI-07,

pages 68–73, Hyderabad, India, 2007.
4. M. Cooper and T. Schiex. Arc consistency for soft constraints. Artificial Intelligence,

154:199–227, 2004.
5. S. de Givry, T. Schiex, and G. Verfaillie. Exploiting Tree Decomposition and Soft Local

Consistency in Weighted CSP. In Proc. of AAAI-06, Boston, MA, 2006.
6. S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa. Existential arc consistency: Getting closer

to full arc consistency in weighted CSPs. In Proc. of IJCAI-05, pages 84–89, Edinburgh,
Scotland, 2005.

7. P. Jégou and C. Terrioux. Decomposition and good recording. In Proc. of ECAI-2004, pages
196–200, Valencia, Spain, 2004.

8. J. Larrosa and T. Schiex. Solving Weighted CSP by Maintaining Arc-consistency. Artificial
Intelligence, 159(1-2):1–26, 2004.

9. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Last conflict based reasoning. In Proc. of
ECAI-2006, pages 133–137, Trento, Italy, 2006.

10. M. Sanchez, D. Allouche, S. de Givry, and T. Schiex. Russian doll search with tree decom-
position. In Workshop on Preferences and Soft Constraints, Sydney,Australia, 2008.

11. M. Sanchez, S. de Givry, and T. Schiex. Mendelian error detection in complex pedigrees
using weighted constraint satisfaction techniques. Constraints, 13(1):130–154, 2008.

12. T. Schiex. Arc consistency for soft constraints. In Proc. of CP-2000, pages 411–424, Singa-
pore, 2000.

13. G. Verfaillie, M. Lemaı̂tre, and T. Schiex. Russian Doll Search for Solving Constraint Opti-
mization Problems. In Proc. of AAAI-96, pages 181–187, Portland, OR, 1996.



System Description of a SAT-based CSP Solver
Sugar

Naoyuki Tamura1, Tomoya Tanjo2, and Mutsunori Banbara1

1 Information Science and Technology Center, Kobe University, JAPAN
{tamura,banbara}@kobe-u.ac.jp

2 Graduate School of Engineering, Kobe University, JAPAN

Abstract. This paper gives the system description of a SAT-based CSP
solver Sugar submitted to the Third International CSP Solver Compe-
tition. The Sugar solver solves a finite linear CSP and MAX-CSP by
translating it into a SAT problem using the order encoding method and
then solving the translated SAT problem with an external SAT solver
(e.g. MiniSat). In the order encoding method, a comparison x ≤ a is
encoded by a different Boolean variable for each integer variable x and
integer value a.

1 Introduction

This paper gives the system description of a SAT-based CSP solver Sugar3

submitted to the Third International CSP Solver Competition.
The Sugar solver solves a finite linear CSP and MAX-CSP by translating it

into a SAT problem by using order encoding method [1, 2] and then solving the
translated SAT problem by a SAT solver, such as MiniSat [3] and PicoSAT [4].

The method of the order encoding is basically the same with the one used for
job-shop scheduling problems by Crawford and Baker in [5] and studied by Soh,
Inoue, and Nabeshima in [6–8]. It encodes a comparison x ≤ a by a different
Boolean variable for each integer variable x and integer value a.

The benefit of this encoding is the natural representation of the order relation
on integers compared with the other encoding methods, such as direct encoding
and support encoding, used by other SAT-based CSP solvers [9–13].

Axiom clauses with two literals, such as {¬(x ≤ a), x ≤ a+1} for each integer
a, represent the order relation of an integer variable x. Clauses, for example
{x ≤ a,¬(y ≤ a)} for each integer a, can be used to represent the constraint
among integer variables, i.e. x ≤ y.

2 Implementation

This section describes some implementation details of the Sugar solver.

3 http://bach.istc.kobe-u.ac.jp/sugar/
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(domain D0 0 2)

(int V0 D0)

(int V1 D0)

(predicate (P0 X0 X1) (ne X0 X1))

(relation R0 2 (conflicts (0 0) (1 1) (2 2)))

(P0 V0 V1)

(R0 V0 V1)

(alldifferent (V0 V1))

Fig. 1. Example of Sugar CSP description

2.1 Preprocessing

At a preprocessing stage, XCSP 2.1 file in the abridged notation is translated
into a Sugar CSP file written in a Lisp-like list format.

Fig. 1 shows an example of the Sugar CSP file.

2.2 Conversion to a Clausal Form CSP

Before encoding CSP to SAT, Sugar converts the CSP into its clausal form (that
is, Conjunctive Normal Form).

A clausal form CSP consists of a set of CSP literals, and a CSP literal is one
of the followings:4

– A Boolean literal: p or ¬p where p is a Boolean variable.
– A linear comparison literal:

∑
aixi ≤ b where ai’s and b are integer constants

and xi’s are integer variables.
– A relation literal: a set of conflict tuples or support tuples with integer

variable arguments (for example, (R0 V0 V1) in the Fig. 1 is represented as
a relation literal).

Expressions other than
∑

aixi ≤ b are translated by using the conversion
rules described in the Fig. 2 where E div c and E mod c are integer quotient
and remainder of E divided by an integer constant c respectively.

Basically, Sugar is not able to handle non-linear expressions in the current
implementation except some special cases. For example, xy < 0 is translated
into ((x < 0) ∧ (y > 0)) ∨ ((x > 0) ∧ (y < 0)), and xy is translated into
if(x = a1, a1y, a2y) when the domain of x is {a1, a2}.

The alldifferent(x1, x2, . . . , xn) constraint is translated into
∧

i<j(xi 6= xj)
with extra pigeon hole constraints ¬

∧
(xi < lb+n−1) and ¬

∧
(xi > ub−n+1)

where lb and ub are the lower and upper bounds of {x1, x2, . . . , xn}. Other global
constraints are translated in a straightforward way.

Finally, constraints are converted into clausal form by using the Tseitin trans-
formation of introducing new Boolean variables.
4 Literals for multiplications and power functions will be used in a future implemen-

tation.
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Expression Replacement Extra condition

E < F E + 1 ≤ F
E = F (E ≤ F ) ∧ (E ≥ F )
E 6= F (E < F ) ∨ (E > F )

max(E, F ) x (x ≥ E) ∧ (x ≥ F ) ∧ ((x ≤ E) ∨ (x ≤ F ))
min(E, F ) x (x ≤ E) ∧ (x ≤ F ) ∧ ((x ≥ E) ∨ (x ≥ F ))

abs(E) x (x ≥ E) ∧ (x ≥ −E) ∧ ((x ≤ E) ∨ (x ≤ −E))
E div c q (E = c q + r) ∧ (0 ≤ r) ∧ (r < c)
E mod c r (E = c q + r) ∧ (0 ≤ r) ∧ (r < c)

if(C, E, F ) x (C ⊃ x = E) ∧ (¬C ⊃ x = F )

Fig. 2. Encoding expressions other than
∑

aixi ≤ b

2.3 Constraint Propagation

Constraint propagation is done for the clausal form CSP to reduce the redundant
integer variable values, CSP clauses, and CSP literals. AC-3 algorithm is used
in the current implementation.

For example, more than half billion values were removed in the FISCHER11-
6-fair instance.

2.4 SAT encoding

The clausal form CSP is encoded into a SAT problem by using the order encoding
method [1].

Compared with the previous version submitted to the Second CSP solver
competition [2], conflict tuples in extensional constraints are combined into con-
flict regions. For example, conflict tuples ((0, 1), (0, 2)) for variables x and y
was encoded into two clauses ¬((x ≥ 0) ∧ (x ≤ 0) ∧ (y ≥ 1) ∧ (y ≤ 1)) and
¬((x ≥ 0) ∧ (x ≤ 0) ∧ (y ≥ 2) ∧ (y ≤ 2)) in the previous version. They are now
encoded into one clause ¬((x ≥ 0) ∧ (x ≤ 0) ∧ (y ≥ 1) ∧ (y ≤ 2)) by combining
into coflict regions.

Support tuples are encoded by considering their complement space.

2.5 SAT solver

Sugar can use MiniSat [3] or PicoSAT [4] as an external SAT solver.
MiniSat is well known to be very efficient especially for unsatisfiable problems

and widely used in many application areas. PicoSAT is a solver based on MiniSat
with rapid restarts and reusing phases of assigned variables.

In our experiments, MiniSat is slightly better for many problems, PicoSAT,
however, uses less memory and can solve some problems which are not solved
by MiniSat under the CSP solver competition environment (that is, 900MiB
memory limitation).
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3 Conclusion

In this paper, we have described some implementation details of Sugar constraint
solver submitted to the Third International CSP Solver Competition. The Sugar
solver solves a finite linear CSP and MAX-CSP by translating it into a SAT
problem using the order encoding method and then solving the translated SAT
problem with an external SAT solver (e.g. MiniSat).
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Abstract. This paper briefly describes some features of Sugar++, a
SAT-based MAX-CSP/COP solver entering the Third International CSP
Solver Competition. In our approach, a MAX-CSP is translated into a
Constraint Optimization Problem (COP), and then it is encoded into
a SAT problem by the order encoding method. SAT-encoded COP can
be efficiently solved by using the incremental search feature of MiniSat
solver.

1 Introduction

This paper briefly describes some features of Sugar++, a SAT-based MAX-
CSP/COP solver entering the Third International CSP Solver Competition.

In our approach, a MAX-CSP is translated into a Constraint Optimization
Problem (COP), and then it is encoded into a SAT problem by the order encoding
method [1]. SAT-encoded COP can be efficiently solved by repeatedly using the
MiniSat solver [2].

The order encoding method encodes a comparison x ≤ a by a different
boolean variable for each integer variable x and integer value a. Sugar [3] is
a SAT-based CSP solver based on order encoding, and its effectiveness has been
shown through application to Open-Shop Scheduling in [1].

A solution to COP can be obtained by repeatedly solving a certain number of
CSPs. In Sugar, each CSP is solved by a different MiniSat process independently.
Therefore the learnt clauses generated in each process disappear and can not be
reused. This slows down the execution speed.

To solve this problem, we have developed a SAT-based MAX-CSP/COP
solver Sugar++ that is an enhancement of Sugar by using the incremental search
feature of MiniSat. Sugar++ invokes only one MiniSat process to solve MAX-
CSP/COP and can reuse the learnt clauses generated during the search.

2 Translating MAX-CSP into COP

Definition 1 (CSP). A Constraint Satisfaction Problem (CSP) is defined as a
tuple (V, d, C) where

– V = {x1, . . . , xm} is a set of variables,
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– d is a mapping from xi to a finite domain Di containing possible values xi

may take, and
– C = {C1, . . . , Cn} is a set of constraints.

A solution to a CSP is an assignment α, a mapping from every variable xi ∈ V
to an element of Di so that every constraint in C is satisfied.

Definition 2 (COP). A Constraint Optimization Problem (COP) is defined
as a tuple (V, d, C, v) where

– (V, d, C) is a CSP, and
– v ∈ V is an objective variable to be minimized 3.

A solution to a COP(V, d, C, v) is an assignment α which is a solution of CSP(V, d, C)
taking the minimum α(v) value.

Given a CSP, the Max-CSP problem is to find an assignment that mini-
mizes the number of violated constraints. Therefore, the Max-CSP problem for
a CSP(V, d, C) can be translated into a COP(V ∗, d∗, C∗, cost) where

– V ∗ = V ∪ {c1, . . . , cn, cost}
Each ci represents the penalty of the constraint Ci, and cost is the objective
variable to be minimized.

– d∗(x) =

{0, 1} if x = ci (1 ≤ i ≤ n)
{0, . . . , n} if x = cost
d(x) otherwise

– C∗ = {(ci ≥ 1) ∨ Ci | 1 ≤ i ≤ n} ∪ {cost ≥
∑
ci}

It is also possible to translate Weighted-CSP into COP in the same way by
replacing d∗(cost) with {0, . . . ,

∑
wi} and cost ≥

∑
ci with cost ≥

∑
wici where

wi is the given positive weight for the constraint Ci.

3 Solving COP by using the incremental search of SAT
solver

The Sugar constraint solver [3] can solve a finite linear COP by encoding it
into a SAT problem based on the order encoding method [1], and then a SAT-
encoded COP is solved by using the MiniSat solver [2]. The main feature of
order encoding can be the natural representation of order relation on integers by
encoding a comparison x ≤ a into a different boolean variable for each integer
variable x and integer value a. In the followings, “p(x, a)” is used to represent
the boolean variable for the comparison x ≤ a.

The optimal value of COP(V, d, C, v) can be obtained by repeatedly solving
CSPs.

min {a ∈ d(v) | CSP (V, d, C ∪ {v ≤ a}) has a solution}
3 Without the loss of generality, we assume COPs as minimization problems.
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A solution to COP can be efficiently found by bisection search with varying a
as proposed in previous works [4–6].

Let P be a COP whose objective variable is v. Fig. 1 shows the mini-
mization procedure of Sugar to find the optimal value of P . The outline of
minimize(P, v) is as follows:

(1) Encodes P into a SAT problem and sets S to it. The S represents a SAT file
in the actual implementation.

(2) Sets found to false. The found is a flag indicating whether a solution is
found or not.

(3) Sets lb and ub to v’s lower bound and v’s upper bound + 1 respectively.
(4) If lb < ub does not hold, goes to the step (10).
(5) Sets a to the value of b(lb+ub)/2c.
(6) Sets c to a unit clause {p(v, a)} where p(v, a) represents the boolean variable

for the comparison v ≤ a.
(7) Executes the MiniSat with S ∪ {c} as an input SAT problem.
(8) Updates ub to the value of a and also sets found to true if the result is

satisfiable. Otherwise updates lb to the value of a+1.
(9) Goes back to the step (4).

(10) If found is true, this procedure succeeds to find the optimal value of P .
Otherwise fails.

Sugar encodes a COP into a SAT once at first, and repeatedly modifies only
the clause corresponding v ≤ a. However there has still remained some points
to be improved.

– A number of MiniSat processes are invoked until the optimal value is found.
– The learnt clauses generated in each MiniSat process are not reused.

Reusing learnt clauses is effective to significantly reduce the search space. It is
therefore very important to reuse learnt clauses. To solve this problem, we take
advantage of the incremental search of MiniSat [2].

First, we modify the MiniSat so that it can deal with the following three
commands from the standard input, where Li means a literal:

– add L1 L2 · · · Ln

This command adds a clause {L1, L2, . . . , Ln} to the SAT clause database.
The clause is never removed, and the conflict analysis in the further search
uses this clause as well as those in the initial database.

– solve L1 L2 · · · Lm

This command makes the MiniSat to solve the SAT problem with an as-
sumption {L1 L2 · · · Lm}. This assumption is passed as an argument to
the solve method of MiniSat and temporarily assumed to be true during the
search. After solving the problem, this assumption is undone. It is noted
that the assumption does not affect learnt clauses to be generated since the
MiniSat’s conflict detecting mechanism is independent of it.

– exit
This command makes the MiniSat terminate.
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procedure minimize(P, v);
begin

S := SAT encoding of P;

found := false;

lb := lower bound of v;
ub := upper bound of v + 1;

while lb < ub do
a := b(lb+ub)/2c;
c := {p(v, a)};
result := execute MiniSat for S ∪ {c};
if result is satisfiable then

found := true;

ub := a;

else
lb := a + 1;

end if
end while
if found then

OPTIMUM FOUND ;

else
UNSATISFIABLE ;

end if
end

Fig. 1. The minimization procedure of Sugar

We have developed the Sugar++ system that is an enhancement of Sugar to
use the incremental version of MiniSat described above. The main features of
Sugar++ are as follows:

– Bi-directional IO is used to communicate between Sugar++ and the incre-
mental version of MiniSat.

– MiniSat is invoked only once, therefore, SAT file is parsed only once.
– Learnt clauses are reused during the search.

Fig. 2 shows the new minimization procedure of Sugar++. The outline of
minimize(P, v) is as follows:

(1) Encodes P into a SAT problem and sets S to it. The S represents a SAT file
in the actual implementation.

(2) Sets found to false. The found is a flag indicating whether a solution is
found or not.

(3) Sets lb and ub to v’s lower bound and v’s upper bound + 1 respectively.
(4) Starts the incremental version of MiniSat process with S, and the process

waits for the commands: add, solve, and exit.
(5) If lb < ub does not hold, goes to the step (10).
(6) Sets a to the value of b(lb+ub)/2c.
(7) Sends the command ‘solve p(v, a)’ to the MiniSat process.
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procedure minimize(P, v);
begin

S := SAT encoding of P;

found := false;

lb := lower bound of v;
ub := upper bound of v + 1;

Start a MiniSat process with S;

while lb < ub do
a := b(lb+ub)/2c;
Send ‘solve p(v, a)’ to MiniSat ;

result := receive the result from MiniSat ;

if result is satisfiable then
found := true;

ub := a;

Send ‘add p(v, a)’ to MiniSat ;

else
lb := a + 1;

Send ‘add -p(v, a)’ to MiniSat ;

end if
end while
Send ‘exit’ to MiniSat ;

if found then
OPTIMUM FOUND ;

else
UNSATISFIABLE ;

end if
end

Fig. 2. The new minimization procedure of Sugar++

(8) Sends the command ‘add p(v, a)’ to the MiniSat process after updating ub
to the value of a and setting found to true if the result is satisfiable. Other-
wise updates lb to the value of a+1 and sends the command ‘add -p(v, a)’.

(9) Goes back to the step (5).
(10) Sends the command ‘exit’ to the MiniSat process.
(11) If found is true, this procedure succeeds to find the optimal value of P .

Otherwise fails.

Compared with Sugar, Sugar++ succeeds not only in reducing the overhead
of parsing SAT problems but also in reusing learnt clauses during the search.

4 Conclusion

In this paper, we have described some features of Sugar++, a SAT-based MAX-
CSP/COP solver entering the Third International CSP Solver Competition.
Sugar++ solves a MAX-CSP by translating it into a COP, and encoding it into
a SAT problem by the order encoding method. SAT-encoded COP is solved by
using the incremental version of MiniSat solver.
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Abstract. This paper provides details of the B-Prolog CSP solver (bp-
solver) submitted to the Third International CSP Solver Competition.
This version has several improvements over the version submitted to the
previous competition, including new propagators for extensional con-
straints and more efficient propagators for non-linear constraints. This
paper also describes the implementation of the global constraints for the
competition.

1 Introduction

This paper provides details of bpsolver submitted to the Third International
CSP Solver Competition. The constraint propagators used in the solver are im-
plemented in AR (action rules) [5], a language available in B-Prolog, and the
search part is implemented using labeling mix, a built-in in B-Prolog, that
allows for the use of mixed strategies and time limits in labeling variables.

The new version has several improvements over the version submitted to the
previous competition [6]. First, unlike in the previous version where extensional
constraints are represented as hashtables, extensional constraints in the new
version are encoded as finite-domain variables. This encoding, which has been
employed by other solvers (e.g., Mistral [2]), is much more space efficient than
hashtables especially for dense relations. Second, improved propagators are used
for non-linear constraints. The dom event is intensively used in the implementa-
tion of the propagators to speed up propagation. Third, new global constraints
including element and cumulative are considered for the third competition
in addition to all distict. The implementation of all distinct remains the
same. It is based on a weak version of the hall-set finding algorithm [4], which
is weaker in terms of pruning power than Régin’s filtering algorithm [3]. Chan-
neling constraints, which are facilitated by the dom any event in AR, are used
to remedy the weakness of the algorithm. The implementation of element also
relies on the dom event. A weak-form edge-finding algorithm [1] is implemented
for cumulative when jobs are required to be mutually disjunctive.

The B-Prolog system is available at www.probp.com, and the submitted solver
which accepts the XCSP format will be made available at www.probp.com/solvers.

2 Action Rules and Events

The AR (Action Rules) language is designed to facilitate the specification of
event-driven functionality needed by applications such as constraint propagators
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and graphical user interfaces where interactions of multiple entities are essential
[5]. An action rule takes the following form:

Agent, Condition, {Event} => Action

where Agent is an atomic formula that represents a pattern for agents, Condition
is a conjunction of conditions on the agents, Event is a non-empty disjunction
of patterns for events that can activate the agents, and Action is a sequence of
arbitrary subgoals. An action rule degenerates into a commitment rule if Event
together with the enclosing braces are missing. In general, a predicate can be
defined with multiple action rules. For the sake of simplicity, we assume in this
paper that each predicate is defined with only one action rule possibly followed
by a sequence of commitment rules.

Definition 1. A subgoal is called an agent if it can be suspended and activated
by events. For an agent α, a rule “H, C, {E} => B” is applicable to the agent if
there exists a matching substitution θ such that Hθ = α and the condition Cθ
is satisfied.

When an agent is created, the system checks if the action rule in its predicate
is applicable to it.1 If so, the agent will be suspended until it is activated by one
of the events specified in the rule.

Whenever the agent is activated by an event, the condition of the action
rule is tested again. If it is met, the action is executed. The agent does not
vanish after the action is executed, but instead sleeps until it is activated again.
There is no primitive for killing agents explicitly. An agent vanishes only when
a commitment rule is applied to it. The reader is referred to [5] for a detailed
description of the language and its operational semantics.

The following event patterns are supported for programming constraint prop-
agators:

– generated: After an agent is generated but before it is suspended for the
first time. The sole purpose of this pattern is to make it possible to specify
preprocessing and constraint propagation actions in one rule.

– ins(X): when the variable X is instantiated.
– bound(X): when a bound of the domain of X is updated. There is no dis-

tinction between lower and upper bounds changes.
– dom(X,E): when an inner value E is excluded from the domain of X. Since
E is used to reference the excluded value, it must be the first occurrence of
the variable in the rule.

– dom(X): same as dom(X,E) but the excluded value is ignored.
– dom any(X,E): when an arbitrary value E is excluded from the domain of
X. Unlike in dom(X,E), the excluded value E here can be a bound of the
domain of X.

1 Notice that since one-directional matching rather than full-unification is used to
search for an applicable rule and only tests are allowed in the condition, the agent
will remain the same after an applicable rule is found.
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– dom any(X): equivalent to the disjunction of dom(X) and bound(X).

Note that when a variable is instantiated, no bound or dom event is posted.
Consider the following example:

p(X),{dom(X,E)} => write(dom(E)).
q(X),{dom any(X,E)} => write(dom any(E)).
r(X),{bound(X)} => write(bound).
go:-X :: 1..4, p(X), q(X), r(X), X #\= 2, X #\= 4, X #\= 1.

The query go gives the following outputs: dom(2), dom any(2), dom any(4) and
bound.2 The outputs dom(2) and dom any(2) are caused by X #\= 2, and the
outputs dom any(4) and bound are caused by X #\= 4. After the constraint
X #\= 1 is posted, X is instantiated to 3, which posts an ins(X) event but not
a bound or dom event.

A rule is allowed to specify multiple event patterns, but the dom(X,E) and
dom any(X,E) patterns are allowed to co-exist with ins patterns only. For each
co-existing ins(X) pattern, there must be a condition var(X) in the guard so
that the action is never executed when the rule is triggered by an ins event.

Note also that the dom any(X,E) event pattern should be used only on small-
sized domains. If used on large domains, constraint propagators could be flooded
with a huge number of dom any events. For instance, for the propagators defined
in the previous example, the query

X :: 1..1002, q(X), X #>1000

posts 1000 dom any events, while it would post only one bound event if q(X) were
p(X) or r(X). For this reason, in the real implementation propagators for han-
dling dom any(X,E) events are generated only after constraints are preprocessed
and the domains of variables in them become small.

For each event type, each domain variable has a slot for the list of watching
propagators. Therefore, the dom event imposes little space overhead: one slot
for dom(X,E) and another slot for dom any(X,E) for each domain variable X.
There is almost no time overhead because an event is posted only when the
watching list is not empty.

3 Propagators for Extensional Constraints

An extensional constraint, whether conflict or support, is encoded as a finite
domain variable. Since a conflict constraint can be easily converted to a support
constraint by replacing the relation with its complement, we only consider how
to encode support constraints.

Let (V1, . . . , Vn) in R be a support constraint, where V1, . . ., Vn are compo-
nent variables and R be a relation, i.e., a set of tuples. Let Ci is the set of values
2 In the current implementation of AR, when more than one agent is activated the one

that was generated first is executed first. This explains why dom(2) occurs before
dom any(2) and also why dom any(4) occurs before bound.
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obtained by projecting R to the ith column. The domain constraint Vi in Ci is
posted first so that no value in the domain of Vi can remain unless it is also in
Ci. Let Di be the domain of Vi after this filtering. A tuple (e1, . . . , en) in the
relation is said to be valid if for any i = 1, . . . , n, ei ∈ Di. We assume that R
contains valid tuples only. A value e is said to be supported in the ith column if
a tuple exists in the relation whose ith argument is e.

Let li be the lower bound and ui be the upper bound of Di, and si = ui−li+1.
The code for a tuple (e1, . . . , en) is defined as follows:

code(en) = en − ln.
code(ei,ei+1,. . .,en) = ei − li + si×code(ei+1,. . .,en).

For a support constraint (V1, . . . , Vn) in R, a new finite domain variable V
is created whose domain contains the codes of the tuples in R. A bit vector of
s1 × . . . × sn bits is needed to represent the finite domain. This representation
is very compact when the relation is dense. For sparse relations, however, this
representation can be very space consuming. The relationship between V and
the component variables is maintained. Whenever the domain of a component
variable is updated, the domains of the other component variables are filtered
to contain only supported values. The time complexity is not good because it is
in the order of s1 × . . .× sn, not the size of the relation.

4 Propagators for Linear Constraints

The B-Prolog solver performs forward checking on disequality (6=) constraints,
maintains interval consistency for inequality (>,≥,<, and ≤) constraints, arc
consistency for binary equality constraints, and a hybrid of interval and arc
consistency for n-ary constraints [5].

The dom(X,E) event facilitates implementing propagators for maintaining
arc consistency for binary equality constraints. For an equality binary constraint,
there is only one supporting value for each value in a domain. Therefore, when-
ever a value is excluded from a domain, we only need to exclude its counterpart
from the other domain to maintain arc consistency. Consider, for example, the
constraint X+Y #= C where X and Y are domain variables and C is an integer.
The propagator defined in the following propagates exclusions of values from
the domain of Y to X to achieve arc consistency:

’X in C-Y_ac’(X,Y,C),var(X),var(Y),
{dom(Y,Ey)}
=>
Ex is C-Ey,
exclude(X,Ex).

’X in C-Y_ac’(X,Y,C) => true.

For the original constraint X+Y #= C, we need to generate two propagators,
namely, ’X in C-Y ac’(X,Y,C) and ’X in C-Y ac’(Y,X,C), to maintain the
arc consistency. Note that in addition to these two propagators, we also need to
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generate propagators for maintaining interval consistency since no dom(Y,Ey)
event is posted if the excluded value happens to be a bound. Note also that we
need to preprocess the constraint to make it arc consistent before the propagators
are generated.

5 Propagators for Nonlinear Constraints

The dom event also plays a big role in the implementation of non-linear con-
straints. Consider the nonlinear constraint abs(X) = Y . For each value in the
domain of X, there should exist a unique support in the domain of Y . Whenever
a value y has been excluded from the domain of Y , both y and −y must be
excluded from the domain of X to make the constraint arc consistent. For each
value in the domain of Y , there may exist two supports in the domain of X.
Whenever a value x has been excluded from the domain of X, if −x no longer
exists in the domain of X, then abs(x) must be excluded from the domain of Y
to make the constraint arc consistent.

6 The all distinct Constraint

Many algorithms have been proposed for maintaining different levels of consis-
tency for the all distinct constraint [4]. The filtering algorithm by Régin [3]
achieves hyper-arc consistency. However, because of the almost cubic order of
complexity, B-Prolog adopts a Hall-set finding algorithm.

Definition 2. For the constraint all distinct([X1,. . .,Xn]) where Xi has the
domain Di (1 ≤ i ≤ n), a set H is a Hall set if the number of subsets of H
among D1, . . ., Dn is greater than or equal to the size of H. Formally, H is a
Hall set if |{Di | Di ⊆ H}| ≥ |H|.

Since there are an exponential number of potential Hall sets, we have to rely
on some heuristics to choose what sets to test. The implementation presented
in [5] checks if the domain of each variable is a Hall set when a constraint is
installed and when the domain is updated. Understandably, since no union of
domains is considered, this heuristic has its limitations. Consider, for example,
the constraint all distinct([X1,X2,X3,X4]) where the variables have the fol-
lowing domains:

X1 X2 X3 X4

{1, 2} {1, 3} {2, 3} {1, 2, 3, 4}

The heuristic fails to find the Hall set {1, 2, 3} and thus fails to bind X4 to 4.
B-Prolog uses channeling constraints to increase the pruning power. By adding

the constraints primal dual(Xs,Y s) and all distinct(Y s), the dual variables
have the following domains:

Y1 Y2 Y3 Y4

{1, 2, 4} {1, 3, 4} {2, 3, 4} {4}
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After Y4 is instantiated to 4, 4 is excluded from the domains of Y1, Y2, and Y3,
and X4 is instantiated to 4 because of the existence of the channeling constraint.
As demonstrated by this example, using dual models can to some extent remedy
the limitation of the Hall-set finding algorithm.

With the dom event, we can use only 2 × n propagators to implement the
channeling constraint ∀i,j(Xi 6= j ⇔ Yj 6= i). Let DualVarVector be a vector
created from the list of dual variables. For each primal variable Xi (with the
index I), a propagator defined below is created to handle exclusions of values
from the domain of Xi.

primal_dual(Xi,I,DualVarVector),var(Xi),
{dom_any(Xi,J)}
=>
arg(J,DualVarVector,Yj),
exclude(Yj,I).

primal_dual(Xi,I,DualVarVector) => true.

Each time a value J is excluded from the domain of Xi, assume Yj is the Jth
variable in DualVarVector, then I must be excluded from the domain of Yj. We
need to exchange primal and dual variables and create a propagator for each
dual variable as well. Therefore, in total 2× n propagators are needed.

Note that a preprocessing phase is needed to ensure that the channeling
constraints are consistent before any propagator is generated. The preprocessing
phase takes O(n2) time.

7 The element Constraint

The constraint element(I,L,X) means that the Ith element of L is X, where I
and X are domain variables, and L a list of domain variables.

Let L be a list [e1, . . .,en]. Then I must be in the range of 1..n. On one
hand, each value in the domain of I must be supported by X. As long as X is
known not to be equal to some element ei, i can be excluded from the domain
of I. This relationship can be expressed by the following entailment constraint
X #\= ei #=> I #\= i.

When L is a list of integers, we can have more efficient propagators. We use
a counter Cei for ei that tells the number of occurrences of ei in L. Each time a
value i is excluded from the domain of I, the counter Cei is decremented. If it
becomes zero, then we can post the constraint X #\= ei.

The entailment constraints X #\= ei #=> I #\= i (1 ≤ i ≤ n) can be encoded
using only one propagator thanks to the availability of the dom any event. To
achieve this, we represent L as an association map so that for each ei its in-
dexes and counter can be returned in constant time. The following shows the
propagator:

element_X_to_I(X,I,Map),var(X),
{dom_any(X,E)}
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=>
map_get_indexes(Map,E,Indexes),
I notin Indexes.

element_X_to_I(X,I,Map) => true.

Whenever a value E is excluded from X’s domain, the constraint I notin Indexes
ensures that I cannot take the index of any occurrence of E. When X is instan-
tiated to be a non-variable term, the propagator vanishes.

On the other hand, each value in the domain of X must be supported by
values in the domain of I as well. The propagation from I to X can be done
using only one propagator as well. Let Vect be a vector representation of L,
with which the element of a given index can be returned in constant time. The
following defines the propagator:

element_I_to_X(I,X,Vect,Map),var(I),
{dom_any(I,Ii)}
=>
arg(Ii,Vect,Ei),
decrement_counter(Map,X,Ei).

element_I_to_X(I,X,Vect,Counters) => true.

The call decrement counter(Map,X,Ei) decrements the counter of Ei and ex-
ecutes the primitivet exclude(X,Ei) if Ei’s counter becomes zero.3

In addition to the two propagators element X to I and element I to X, we
need two extra propagators to handle ins(I) and ins(X) events. When I is
instantiated to an integer i, the constraint X #= ei is generated, and when X
is instantiated, the domain of I is reduced to contain only the indexes of the
occurrences of X in L.

8 The cumulative Constraint

The constraint cumulative(Starts,Durations,Resources,Limit) is useful for
describing and solving scheduling problems. The arguments Starts, Durations,
and Resources are lists of integer domain variables of the same length and
Limit is an integer domain variable. Let Starts be [S1,. . .,Sn], Durations
be [D1,. . .,Dn] and Resources be [R1,. . .,Rn]. For each job i, Si represents
the start time, Di the duration, and Ri the units of resources needed. Limit
is the units of resources available at any time. The constraint ensures that the
amount of resources used at any time does not exceed the limit. When evey job
consumes only a unary resource (i.e., Resources is a list of 1’s) and Limit is 1,
then the constraint ensures that the jobs are mutually disjunctive.

For each job and each point over the time span, a Boolean variable is gener-
ated. The cumulative constraint entails that the cumulative sum of the resources
used at each time point is not greater than the limit. Assume the time span is
3 To be more efficient, the primitive exclude(X,Ei) is executed when Ei’s counter is

equal to 1 before it is decremented.
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from 1 to m, and the Boolean variables generated for each job i are Bi1, . . . , Bim

(i = 1, ..., n). The cumulative constraint means that Σn
i=1(Bij × Ri) ≤ Limit

holds for every time point j.
A weak-form edge-finding algorithm [1] is implemented for cumulative when

the jobs are required to be mutually disjunctive. The idea of edge finding is to
examine a job with respect to a set of other jobs and to find out if the job must be
processed before or after the set of jobs. Let A be a job and Ω be a set of jobs that
does not contain A. Let p(Ω) denotes the total duration time, min(start(Ω))
the earliest possible start time and max(end(Ω)) the latest possible end time of
the jobs in Ω. If

min(start(Ω)) + p(Ω ∪ {A}) > max(end(Ω ∪ {A}))

then the job A must be processed before any job in Ω. Similarly, if

min(start(Ω ∪ {A})) + p(Ω ∪ {A}) > max(end(Ω))

then the job A must be processed after any job in Ω.
Since there are an exponential number of subsets of jobs to consider for a

given job, it is inviable to examine all subsets. In our implementation, three
random sequences are maintained and for each job the subsets of jobs that occur
before the job in the sequences are examined. Of course, this is very ad hoc and
a systematic and advanced algorithm developed in the scheduling community
needs to be employed.
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