
Abscon 109
A generic CSP solver

Christophe Lecoutre and Sebastien Tabary

CRIL-CNRS FRE 2499,
Université d’Artois

Lens, France
{lecoutre, tabary}@cril.univ-artois.fr

Abstract. This paper describes the algorithms, heuristics and general
strategies used by the two solvers which have been elaborated from the
Abscon platform and submitted to the second CSP solver competition.
Both solvers maintain generalized arc consistency during search, explore
the search space using a conflict-directed variable ordering heuristic, in-
tegrate nogood recording from restarts and exploit a transposition table
approach to prune the search space. At preprocessing, the first solver
enforces generalized arc consistency whereas the second one enforces ex-
istential SGAC, a partial form of singleton generalized arc consistency.

1 Introduction

A constraint network (CN) is composed of a set of variables (each of them with
an associated domain corresponding to a set of values) and a set of constraints
(defining the tuples of values allowed for variables of each constraint). Finding a
solution to a constraint network involves assigning a value to each variable such
that all constraints are satisfied. The Constraint Satisfaction Problem (CSP) is
the task to determine whether or not a given constraint network, also called CSP
instance, is satisfiable (i.e. admits a solution).

A CSP solver is a program which deals with satisfiability of CSP instances.
It is said complete when it can prove that an instance is either satisfiable or
unsatisfiable. Most of the CSP solvers are composed of two main components:
Inference and Search. Inference is used to transform an instance into an equiva-
lent form which is simpler than the original one, while search is used to traverse
the search space of the instance in order to find a solution. For (most of the)
complete CSP solvers, it respectively corresponds to constraint propagation and
depth-first search with backtracking guided by some heuristics.

In this document, we quickly introduce the inference strategy (Section 2) and
the search strategy (Section 3) used by the two solvers that we have presented
at the second CSP solver competition.

2 Inference Strategy

Many works in the area of Constraint Programming have focused on inference,
and more precisely, on filtering methods based on properties of constraint net-

works. The idea is to exploit such properties in order to identify some nogoods
where a nogood corresponds to a partial assignment (i.e. a set of variable as-
signments) that can not lead to any solution. Properties that allow identifying
nogoods of size 1 are called domain filtering consistencies [7]. The interest of
exploiting domain filtering consistencies is that it is quite easy to deal with no-
goods of size 1. Indeed, as such nogoods correspond to inconsistent values, it
suffices to remove them from domains of variables.

Generalized Arc consistency (GAC) is a domain filtering consistency which
guarantees that each value admits at least a support in each constraint. GAC
remains a fundamental property of constraint networks. It is called AC (Arc
Consistency) when constraints are binary (i.e. only involve 2 variables). M(G)AC
is the algorithm that maintains the (G)AC property at each node of a search
tree.

2.1 AC3bit+rm and GAC3rm

In a (coarse-grained) Arc Consistency (AC) algorithm, revise is the procedure
which determines if a value is supported by a constraint. A residual support,
or residue, is a support that has been found and stored during a previous ex-
ecution of the procedure revise. The point is that a residue is not guaranteed
to represent a lower bound of the smallest current support of a value. In [15],
a study about the theoretical impact of exploiting residues with respect to the
basic algorithm AC3 is given. First, it is proved that AC3rm (AC3 with multi-
directional residues) is optimal for low and high constraint tightness. Second,
it has been shown that during a backtracking search, MAC2001 presents, with
respect to MAC3rm, an overhead in O(µed) per branch of the binary tree built
by MAC, where µ denotes the number of refutations of the branch, e the num-
ber of constraints and d the greatest domain size of the constraint network. One
consequence is that MAC3rm admits a better worst-case time complexity than
MAC2001 for a branch involving µ refutations when either µ > d2 or µ > d in
the case of constraints with low or high tightness.

In [21], we have proposed to exploit bitwise operations to speed up some im-
portant computations such as looking for a support of a value in a constraint, or
determining if a value is substitutable by another one. Considering a computer
equipped with a x-bit CPU, one can then expect an increase of the performance
by a coefficient up to x (which may be important, since x is equal to 32 or 64
in many current processors). To show the interest of enforcing arc consistency
using bitwise operations, we have introduced a new variant of AC3, denoted by
AC3bit, which can be used when constraints are (or can be) represented in exten-
sion. Importantly, we have also shown how to combine bitwise operations with
residues, which happens to be quite useful when domains become large (approx-
imatively more than 300 values). The new algorithm, denoted by AC3bit+rm, is
quite robust. We do believe that, for solving binary instances, when constraints
are given in extension or can be efficiently converted into extension, the generic
algorithm MAC, embedding AC3bit+rm is the most efficient approach. One rea-

son is that, like MAC3rm, no maintenance of data structures is required upon
backtracking by MAC3bit+rm,

For the competition, MAC3bit+rm is the algorithm used by the solver Abscon
109. More precisely, it was used for binary instances involving constraints in
extension and constraints in intention that can be converted efficiently into
extension. For non binary constraints, the algorithm that we have adopted is
MGAC3rm (but, for positive table constraints, we have used the algorithm de-
scribed in the next section). Remark that the propagation scheme we used is
variable-oriented with dom as a revision ordering heuristic [5]. We have also
used the variant R1 [6] which allows avoiding useless revisions.

2.2 GAC for positive table constraints

In [20], we have introduced a new algorithm to establish GAC on positive ta-
ble constraints. A table constraint is a constraint which is defined in extension
by a set of tuples - when tuples are allowed (resp. disallowed) for the variables
involved in the constraint, the table constraint is said positive (resp. negative).
Table constraints are commonly used in configuration applications or applica-
tions related to databases.

The approach that we propose is a refinement of two approaches called GAC-
valid and GAC-allowed. In order to find supports, GAC-valid iterates over valid
tuples (i.e. tuples that can be built from the current domains of constraint
variables) whereas GAC-allowed iterates over allowed tuples (i.e. combinations
of values which are allowed by a constraint). Recall that a tuple is called a
support if and only if it is valid and allowed. Roughly speaking, GAC-valid
and GAC-allowed respectively correspond to GAC-schema-predicate and GAC-
schema-allowed presented in [3].

The principle of the algorithm proposed in [20] is to avoid considering irrel-
evant tuples (when a support is looked for) by jumping over sequences of valid
tuples containing no allowed tuple and over sequences of allowed tuples contain-
ing no valid tuple. It has been shown that the new schema (GAC-valid+allowed)
admits on some instances a behaviour quadratic in the arity of the constraints
whereas classical schemas (GAC-valid and GAC-allowed) admit an exponential
behaviour.

On the practical side, the results that we have obtained demonstrate the
robustness of GAC-valid+allowed. In fact, they are comparable to the ones ob-
tained with a GAC-allowed+valid scheme [22] which allows to skip irrelevant
allowed tuples from a reasoning about lower bounds on valid tuples. On the
one hand, we believe that our model is simpler, and, importantly, can be easily
grafted to any generic GAC algorithm. On the other hand, as the two approaches
are different, it should be worthwhile combining them.

For the competition, GAC3rm-valid+allowed is the algorithm used by the
solver Abscon 109 for positive table constraints.

2.3 Existential SAC

It is natural to conceive algorithms to enforce partial forms of singleton arc
consistency such as First-SAC, Last-SAC and Bound-SAC [16]. Indeed, it suf-
fices to remove all values detected as arc inconsistent and bound values (only the
minimal ones for First-SAC and the maximal ones for Last-SAC) detected as sin-
gleton arc inconsistent. When enforcing a constraint network P to be First-SAC,
Last-SAC or Bound-SAC, one then obtains the greatest sub-network of P which
is First-SAC, Last-SAC or Bound-SAC. However, enforcing Existential-SAC on
a constraint network is meaningless. Either the network is (already) Existential-
SAC, or the network is singleton arc inconsistent. It is then better to talk about
checking Existential-SAC. An algorithm to check Existential-SAC will have to
find a singleton arc consistent value in each domain. As a side-effect, if singleton
arc inconsistent values are encountered, they will be, of course, removed. How-
ever, we have absolutely no guarantee about the network obtained after checking
Existential-SAC due to the non-deterministic nature of this consistency.

In [14], an original approach to establish SAC has been proposed. The prin-
ciple is to perform several runs of a greedy search, where at each step arc-
consistency is maintained. As a result, the incrementality of arc-consistency al-
gorithms is exploited but in a different manner that the one proposed in [1].
Unfortunately, a bound-SAC version of this approach does not seem to be feasi-
ble. Indeed, the main goal is to build branches (corresponding to greedy runs) as
long as possible in order to benefit from incrementality, and potentially to find
solutions during inference. When we are exclusively maintaining Bound-SAC via
this approach the resultant propagation branches tend to be short, and there-
fore uneconomical. However, using a greedy approach to check Existential-SAC
seems to be quite appropriate. In particular, it is straight forward to adapt the
algorithm SAC3 [14] to guarantee ∃-SAC. This is what is done in [16].

For the competition, we have used ∃-SAC3 [16] at preprocessing for Abscon
109 ESAC.

3 Search Strategy

3.1 Search heuristics

The order in which variables are assigned by a backtracking search algorithm
such as MAC has been recognized as a key issue for a long time. Using different
variable ordering heuristics to solve a CSP can lead to drastically different results
in terms of efficiency. Traditional dynamic variable ordering heuristics benefit
from information about the current state of the search such as current domain
sizes and current variable degrees. For instance, dom/ddeg [2] involves selecting
first the variable with the smallest ratio current domain size to current dynamic
degree. One limitation of this approach is that no information about previous
states of the search is exploited.

In [4], inspired from [25–27], it is proposed to record such information by
associating a counter with any constraint of the problem. These counters are used

as constraint weighting. Whenever a constraint is shown to be unsatisfied (during
the constraint propagation process), its weight is incremented by 1. Using these
counters, it is possible to define a new variable ordering heuristic, denoted wdeg,
that gives an evaluation called weighted degree of any variable. The weighted
degree of a variable V corresponds to the sum of the weights of the constraints
involving V and at least another uninstantiated variable. In order to benefit, at
the beginning of the search, from relevant information about current variable
degrees, all counters are initially set to 1. Finally, combining weighted degrees
and domain sizes yields dom/wdeg, an heuristic that selects first the variable
with the smallest ratio current domain size to current weighted degree. The
experimental results of [4, 13] show that MAC-wdeg and MAC-dom/wdeg, i.e.,
MAC combined with wdeg or dom/wdeg (called conflict-directed heuristics), is a
generic backtracking approach which is quite robust to solve constraint networks.

Value-ordering heuristics have received less attention than variable ordering
heuristics. Apart from lexico, mc [8] (see also [24, 9]) is certainly the most em-
ployed heuristic. It involves selecting the value which has the highest number of
compatible values in the domains of other variables.

For the competition, we have used the variable ordering heuristic dom/wdeg
and a static version [23] of the value ordering heuristic mc. Note that our solvers
use a binary branching scheme. At each node of the search tree, two alternatives
are successively tried: the first one corresponds to an assignment while the second
one corresponds to the refutation of the assignment. A mechanism of restarts
has been used (see below). Whatever the instance, the cutoff value is initially
set to 10 backtracks and is increased at each new run by 50%. From one run to
the next one, weighted degrees are not reinitialized.

3.2 Nogood Recording from Restarts

In [10], Gomez et al. have shown that runtime distributions of backtrack search
algorithms exhibit on some instances a large variability in performance and are
characterized by long tails with some infinite moments, called heavy-tailed phe-
nomena. They also show that it is possible to boost search by introducing ran-
domization and restarts. The principle is that if the search algorithm does not
terminate within some number of allowed backtracks (or any other related cri-
terion), referred as the cutoff value, the current run is stopped and a new run is
started. Introducing randomization allows that runs behave differently. It can be
used when breaking ties of variables to be selected, for example, and initialized
with a random seed associated with each run. It is important to note that the
cutoff value can be updated from one run to the next one. In particular, when it
is systematically increased, the completeness of the backtrack search algorithm
is preserved.

Using weighted degrees of variables is an alternative to randomization. In-
deed, it suffices to keep the weighted degrees from one run to the next one. When
restarting, one can expect to solve the instance with more facility when the hard
part of the instance, i.e. the back-door, do correspond to variables with highest
weighted degrees.

In [18], nogood recording is investigated for CSP within the randomization
and restart framework. The goal is to avoid the same situations to occur (that is
to say to explore several times the same part of the search space) from one run
to the next ones. Nogoods are recorded when the current cutoff value is reached,
i.e. before restarting the search algorithm. Such a set of nogoods is extracted
from the last branch of the current search tree and exploited using the lazy
data-structure of watched literals originally proposed for SAT. We prove that
the worst-case time complexity of extracting such nogoods at the end of each run
is only O(n2d) where n is the number of variables of the constraint network and
d the size of the greatest domain, whereas for any node of the search tree, the
worst-case time complexity of exploiting these nogoods to enforce Generalized
Arc Consistency (GAC) is O(n|B|) where |B| denotes the number of recorded
nogoods. As the number of nogoods recorded before each new run is bounded
by the length of the last branch, the total number of recorded nogoods is poly-
nomial in the number of restarts. Interestingly, the minimization of the nogoods
is envisioned with respect to an inference operator φ, and it is possible to di-
rectly identify some nogoods that cannot be minimized. For φ = AC (i.e. for
MAC), the worst-case time complexity of extracting minimal nogoods is slightly
increased to O(en2d3) where e is the number of constraints of the network. Ex-
perimentations over a wide range of CSP instances demonstrate the effectiveness
of this approach. Recording nogoods (and in particular, minimal nogoods) from
restarts significantly improves the robustness of the solver.

For the competition, we have used nogood recording from restarts.

3.3 Transposition Tables

In [19], we provided the proof of concept of the exploitation, for constraint satis-
faction, of a well-known technique widely used in search: pruning from transpo-
sitions. This has not been addressed so far since, in CSP, contrary to search, two
branches of a search tree cannot lead to the same state (that is to say the same
domains for each variable of a given constraint network). This led us to define
some reduction operators that keep partial information from each node of the
search tree, sufficient to detect some nodes that do not need to be explored. We
actually addressed the theoretical and practical aspects of how to exploit these
operators in terms of equivalence between nodes.

Note that one can associate a constraint network with each node of a search
tree. The reduction operator we used for the competition (called ρred), extracts
a constraint subnetwork from each node proved to be the root of an unsatisfi-
able subtree. Theses subnetworks are recorded in a so-called transposition table.
The reduction operator removes some selected variables with either a singleton
domain involved in constraints binding at most one non-singleton domain vari-
able or with a domain that remains unchanged (after taking a set of decisions
and applying an inference operator). Interestingly enough, when a constraint
network P ′′ is extracted with the ρred operator from a binary CN P ′, variables
of P ′′ satisfy the following property : 1 < |domP ′

(X)| < |domP (X)| where P is
the initial constraint network.

The transposition table is implemented as a hash table, and before expanding
a new node we just check if the current constraint network (associated with the
current node) is equivalent (or not) to another one previously recorded in the
transposition table. This approach allows us to dynamically break some kinds
of symmetries (e.g. neighborhood interchangeability) and prune similar states
of the search space. On some series, when no inference is performed using this
approach, the extraction procedure is stopped and the memory (allocated to the
transposition table) is released.

For the competition, we have used transposition tables for constraint satis-
faction.

4 What about Max-CSP?

In order to participate to the part of the competition dedicated to Max-CSP, we
have implemented in Abscon a variant of the PFC-MRDAC algorithm [12]. This
variant lies between PFC-MRDAC and PFC-MPRDAC [11].

For preprocessing, we have used a tabu search algorithm in order to obtain
an initial lower bound of good quality. For (complete) search, we have used
our PFC-MRDAC variant and exploited nogood recording from restarts. The
variable ordering heuristic was dom/wdeg while the value ordering heuristic
selects the value with the smallest number of inconsistencies computed during
filtering (as in [12, 11]).

Unlike AbsconMax 109 PFC, AbsconMax 109 EPFC integrates a mecha-
nism similar to existential SAC and adapted to PFC. Also, last-conflict based
reasoning [17] has been used.

5 Conclusion

In this paper, we have presented the strategies of the two solvers that we have
submitted to the second CSP solver competition. They are derived from Abscon,
a generic constraint programming platform which has been developed in Java
(J2SE 5.0). You will find:

– the executable at:
http://www.cril.univ-artois.fr/∼lecoutre/research/tools/abscon.html

– the results obtained at the 2006 competition at:
http://www.cril.univ-artois.fr/CPAI06

Acknowledgements

This paper has been supported by the CNRS, the “programme COCOA de la
Région Nord/Pas-de-Calais” and by the “IUT de Lens”.

References

1. C. Bessiere and R. Debruyne. Optimal and suboptimal singleton arc consistency
algorithms. In Proceedings of IJCAI’05, pages 54–59, 2005.

2. C. Bessiere and J. Régin. MAC and combined heuristics: two reasons to forsake
FC (and CBJ?) on hard problems. In Proceedings of CP’96, pages 61–75, 1996.

3. C. Bessiere and J. Régin. Arc consistency for general constraint networks: prelim-
inary results. In Proceedings of IJCAI’97, pages 398–404, 1997.

4. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search
by weighting constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

5. F. Boussemart, F. Hemery, and C. Lecoutre. Revision ordering heuristics for the
Constraint Satisfaction Problem. In Proceedings of CPAI’04 workshop held with
CP’04, pages 29–43, 2004.

6. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Support inference for generic
filtering. In Proceedings of CP’04, pages 721–725, 2004.

7. R. Debruyne and C. Bessiere. Domain filtering consistencies. Journal of Artificial
Intelligence Research, 14:205–230, 2001.

8. D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction
problems. In Proceedings of IJCAI’95, pages 572–578, 1995.

9. P.A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems.
In Proceedings of ECAI’92, pages 31–35, 1992.

10. C.P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in sat-
isfiability and constraint satisfaction problems. Journal of Automated Reasoning,
24:67–100, 2000.

11. J. Larrosa and P. Meseguer. Partition-Based lower bound for Max-CSP. Con-
straints, 7:407–419, 2002.

12. J. Larrosa, P. Meseguer, and T. Schiex. Maintaining reversible DAC for Max-CSP.
Artificial Intelligence, 107(1):149–163, 1999.

13. C. Lecoutre, F. Boussemart, and F. Hemery. Backjump-based techniques versus
conflict-directed heuristics. In Proceedings of ICTAI’04, pages 549–557, 2004.

14. C. Lecoutre and S. Cardon. A greedy approach to establish singleton arc consis-
tency. In Proceedings of IJCAI’05, pages 199–204, 2005.

15. C. Lecoutre and F. Hemery. A study of residual supports in arc consistency. In
Proceedings of IJCAI’07, pages 125–130, 2007.

16. C. Lecoutre and P. Prosser. Maintaining singleton arc consistency. In Proceedings
of CPAI’06, pages 47–61, 2006.

17. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Last conflict-based reasonning. In
Proceedings of ECAI’06, pages 133–137, 2006.

18. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Recording and minimizing no-
goods from restarts. Journal on Satisfiability, Boolean Modeling and Computation
(JSAT), 1:147–167, 2007.

19. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Transposition Tables for Constraint
Satisfaction. In Proceedings of AAAI’07, pages 243–248, 2007.

20. C. Lecoutre and R. Szymanek. Generalized arc consistency for positive table con-
straints. In Proceedings of CP’06, pages 284–298, 2006.

21. C. Lecoutre and J. Vion. Enforcing arc consistency using bitwise operations. Sub-
mitted, 2007.

22. O. Lhomme and J.C. Régin. A fast arc consistency algorithm for n-ary constraints.
In Proceedings of AAAI’05, pages 405–410, 2005.

23. D. Mehta and M.R.C. van Dongen. Static value ordering heuristics for constraint
satisfaction problems. In Proceedings of CPAI’05 workshop held with CP’05, pages
49–62, 2005.

24. S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Minimizing conflicts: a
heuristic repair method for constraint-satisfaction and scheduling problems. Arti-
ficial Intelligence, 58(1-3):161–205, 1992.

25. P. Morris. The breakout method for escaping from local minima. In Proceedings
of AAAI’93, pages 40–45, 1993.

26. B. Selman and H. Kautz. Domain-independent extensions to GSAT: solving large
structured satisfiability problems. In Proceedings of IJCAI’93, pages 290–295, 1993.

27. J.R. Thornton. Constraint weighting local search for constraint satisfaction. PhD
thesis, Griffith University, Australia, 2000.

