
Mistral

1 Introduction

Mistral is a constraint library written in C++. It was created as an evolution,
or rather a simplification of EFC, adapted to find super solutions. EFC (for Ex-
tended Forward Checking) was originally written by Fahiem Bacchus and later
developed by George Katsirelos. The current version of Mistral was entirely
rewritten, and thus it now shares very little with EFC. The initial idea was to
write a light weight constraint solver, implementing Maintain Arc Consistency
as well as the usual techniques that made the success of constraint programming
(variable and value ordering heuristics, global constraint, etc). Over time, some
additional features, such as restarts and branch & bound search were added. Be-
sides a few global constraints, there is no major novelty implemented in Mistral.

2 Implementation

2.1 Problem Modelling

Mistral is a constraint library and not a language, hence if offers very limited
modelling shortcut or syntactic sugar. Figure 1 illustrates a typical implementa-
tion of the Nqueens problem. The types IntVar and SVar correspond respec-
tively to a general integer variable, and to a specific implementation. A model
usually involves three steps. First, the CSP and the variables are declared (lines
4 to 9). Next the constraints are posted (lines 11 to 18). Finally a solver is de-
clared and the method solve() is called (lines 20 to 22), effectively solving the
model.

1 int main(int argc, char *argv[]) {
2 int N = (argc > 1 ? atoi(argv[1]) : 50);
3

4 // model and variables
5 CSP model;
6 IntVar* queens[N];
7 for(int i = 0; i < N; ++i)
8 queens[i] = new SVar(N);
9 model.add(queens, N);

10

11 // constraints
12 model.post(new AllDiffConstraint(queens, N));
13 for(int i=0; i<N-1; ++i)
14 for(int j=i+1; j<N; ++j) {
15 IntVar *scope[2] = {queens[i], queens[j]};
16 model.post(new DiagonalConstraint(scope,
17 queens[i]->id-queens[j]->id));
18 }
19

20 // solver

21 MACSolver s(&model, "dom/deg");
22 s.solve();
23 }

Fig.1 A model for the NQueens problem in Mistral.

2.2 Data Structures

Four different types of variables are implemented in Mistral, all subclasses of
IntVar, in other words all are finite domain integer variables.

Integer Variables as bit-vectors (SVar) In this implementation, domain D(x) is
represented as vector of bits. All set operations, such as union, intersection or
difference can be performed in O(n/32) where n = max(D(x))−min(D(x)). Of
course membership, insertion and deletion can be performed in constant time.

For each variable, an array of size min(maxlevel, |D(x)|) of such domains
is created (memory is statically allocated befor search begins). Whenever the
domain change for the first time for a given level in the search tree, it is first
copied in the next available index of this array. The space complexity for each
variable implemented in this way is therefore:

min(maxlevel, |D(x)|).max(D(x)) − min(D(x))
32

Integer Variables as lists (LVar) In this implementation, a domain D(x) is rep-
resented both as vector of bits mainly for checking membership, and as a doubly
linked list for faster iteration. Notice that the order of the values in the list is not
guaranteed to be lexicographical. This is because when backtracking, the list of
deleted values is appended at the head of the domain list. Deletion of multiple
values at once (such as setting the maximum or the minimum) will tend to be
more expensive in this representation, however, iterating through the values of
a domain is linear in the number of values.

For each variable, an array of size min(maxlevel, |D(x)|) of int is created.
Whenever the domain change at a given level, the value is removed form the
domain list, appended to the head of delta list which is pointed by next available
index in this array. When backtracking to this level, the delta list appended to
the head of the domain list. The space complexity for each variable implemented
in this way is therefore:

min(maxlevel, |D(x)|) + (max(D(x)) − min(D(x)))

Boolean Variables (BVar) Boolean variables have their own specific implemen-
tation for optimisation purpose. For instance, the variable does not store any
data for backtracking.

Their space complexity is therefore constant (in O(1)).

Interval Variables (RVar) In this implementation, only a lower bound and an
upper bound are stored in order to represent large intervals.

However, two array of integers (one for the lower bound and one for the
upper bound) of size maxlevel are allocated. The space complexity of an interval
variable is therefore O(maxlevel).

2.3 Algorithms

Binary Backtrack Search A standard two-ways branching algorithm is imple-
mented. It is given in integrality in Figure 2. First, the termination conditions
are checked. If either the cutoff is reached (lines 2,3) or a solution is found (lines
4,5) then the status is changed accordingly and the search ends. In lines 6 to
8, the variable and value ordering heuristic is called and the next decision is
selected. This decision (that is, a left branch) is explored in lines 10 to 18. When
this branch is explored exhaustively, the complementary right branch is explored
in line 20 to 28. Notice that when the left branch was unsuccessful because the
cutoff was reached, the right branch is not explored (condition in line 22). When
both branches were unsuccessful, a backtrack occurs (lines 30 to 32).

1 // // End of search?
2 if(limitsExpired())
3 return (status = LIMITOUT);
4 if(allAssigned())
5 return solutionFound();
6

7 // // Select a variable and a value
8 int idx, value = Variable::NOVAL;
9 Variable *curvar = future[(idx = heuristic->select(value))];

10

11 // // Left branch
12 curvar->makeDecision(value);
13 if(curvar->assigned)
14 bound(idx);
15 if(filtering()) {
16 ++level;
17 if(genericBacktrack() == SAT) return SAT;
18 --level;
19 }
20

21 // // Right branch
22 restoreTo(level-1);
23 if(status != LIMITOUT) {
24 if(curvar->makeComplementary(value) && filtering()) {
25 ++level;
26 if(genericBacktrack() == SAT) return SAT;
27 } else ++level;
28 // // Backtrack
29 restore();
30 ++BACKTRACKS;
31 } else ++level;
32

33 return status;

Fig.2 Mistral ’s backtracking procedure.

Generic Arc Consistency Algorithm The arc consistency algorithm used for ex-
tensionally defined constraints is a slightly modified version of the simple AC3
algorithm. This modification is sometime called residual AC3 [7]. Whenever a
support is found for a given pair 〈 variable, value 〉, it is stored. Then the next
time a support need to be found for this pair, the stored support is checked for va-
lidity (i.e., whether the values involved in this support are still in their respective
domains). If not, the regular AC3 algorithms proceeds as normal. Since nothing
needs to be done when backtracking (as opposed to AC2001 for instance), the
overhead in time complexity is marginal, whilst the gain is in practice noticeable.

3 Solver Competition

3.1 Representations of Variables

The different implementations of variables were used according to heuristic rules.
The simplest one being that Boolean Variables were always represented using
BVar. The range variables (RVar) were only used when extra variables with very
large domains (larger than “maxlevel”) were required. This is explained in more
detail in Section 3.2. Finally the choice between SVar and LVar was down to the
size and the density of the domain. The list implementation LVar is intuitively
better when the ratio D(x)

max(D(x))−min(D(x)) is low, since being able to iterate in
linear time through a sparse domain is valuable. Moreover, when the size of the
domain increase, the space used for the list is outbalanced by the conciseness of
the backtracking structure (a single integer as opposed to a domain for SVar).
Therefore LVar was used for large and/or sparse domains, whilst SVar was used
in all other cases.

3.2 Representations of Constraints

Relations Relations are represented as an n dimensional matrix flattened into
a vector of bits. The worst case space complexity is not very good, since sparse
or dense matrix have the same size. Moreover, in order to keep the membership
operation in constant time, the size of a binary relation between x and y is
stored using (max(D(x))−min(D(x))).(max(D(y))−min(D(y))) bits, instead
of |D(x)|.|D(y)|. However this was never a problem during the first round of the
competition.

Predicates Two different representations of predicates were used, both of them
pretty standard. During the first round of the competition only the first version
was implemented, and comported several bugs. Given a tree of binary and unary
predicates, a set of as many respectively ternary and binary reified constraints
and extra variables are created. For instance for the predicate:

eq(add(mul(X0, X1), X2), X3)

the following constraints will be posted:

mul(X0, X1, Y0)
add(Y0, X2, Y1)

eq(Y1, X3)

where Y0 and Y1 are extra variables; mul(X0, X1, Y0) constrains the product of
X0 and X1 to be equal to Y0; add(Y0, X2, Y1) constrains the sum of Y0 and X2 to
be equal to Y1; and eq(Y1, X3) will substitute X3 to Y1 in all other constraints.
Notice that the latter substitution is only possible because the constraint eq is
at the root of the predicate tree, otherwise a ternary constraint eq(Y1, X3, Y2)
would be posted, constraining Y2 to be the truth value of the relation Y1 = X3.

The second representation is used for low arity constraints encoded as a
predicates tree. In this case instead of extra variables and constraints, a unique
constraint is posted. This constraint is propagated using the generic arc consis-
tency algorithm, that is, the algorithm used for extensional constraints. However,
instead of implementing constraint checks using a Boolean matrix, the predicate
tree is stored and queried at each constraint check. This is essentially equivalent
to transforming the predicate into a table constraint, albeit with slightly worse
time complexity and better space complexity.

3.3 Search Strategy

No specific value heuristic was used in the competition, the values are therefore
visited in lexicographical order for SVar, RVar and BVar and in an undefined
order for LVar. The variable ordering heuristic is a slightly modified version of
domain over weighted degree [4]. As in the regular framework, each constraint
C(V) over a set of variable V is associated with a weight w(C) and the variable
with minimum ratio domain size over sum of neighbouring constraints weights
is chosen:

choose x such that
|D(x)|∑

x∈V w(C(V))
is minimum

However, on failure during the GAC closure procedure, the constraint responsible
for the failure gets its weight incremented by maxlevel− level instead of 1. The
intuition behind this choice is that a failure early in the search is more meaningful
than a failure later, since less decisions have been taken.

Two versions of Mistral were submitted in the competition, one of them
implementing a geometric restart policy. The initial cutoff was set to 2

3 .maxlevel,
and then multiplied by 1 + 1

3 upon every restart. It is worth noticing that a
very limited form of nogood learning naturally happens when restarting the
basic backtracking procedure illustrated in Figure 2. Indeed, the procedure is
called with the level set to 1. When a left branch, for instance the decision
X = v, is unsuccessful on level 1, then the complementary decision x 6= 1
is explored. However, this decision is globally consistent and therefore never
withdrawn, therefore x 6= 1 is a unary nogood, reused upon subsequent restarts.
Moreover, observe that arbitrarily many left branches and many variables may be
chosen at level 1. Therefore, several unary nogood, involving different variables
may be “learnt”.

4 Features

Some novel global constraint propagation algorithm have been implemented in
Mistral in order to perform empirical evaluation. The NValue constraint, for
example, as described in [2] is implemented in Mistral.

The NValue constraint counts the number of distinct values used by a vector
of variables. It is a generalisation of the widely used AllDifferent constraint
[5, 8]. It was introduced in [6] to model a musical play-list configuration problem
so that play-lists were either homogeneous (used few values) or diverse (used
many). There are many other situations where the number of values used are
limited. For example, if values represent resources, we may have a limit on the
number of values used at the same time. A NValue constraint can thus aid
both modelling and solving many real world problems.

Definition 1. NValue(N, [X1, . . . , Xm]) holds iff N = |{Xi| 1 ≤ i ≤ m}|

Enforcing generalised arc consistency (GAC) on the NValue constraint is
NP-hard [3]. One way to deal with this intractability is to decompose the con-
straint or to approximate the pruning. The NValue constraint can be decom-
posed into two other global constraints: the AtMostNValue and the Atleast-
NValue constraints. Unfortunately, while enforcing GAC on the AtLeast-
NValue constraint is polynomial, enforcing GAC on the AtMostNValue
constraint is also NP-hard. We will therefore focus on various approximation
methods for propagating the AtMostNValue constraint.

Mistral features three new approximations. Two are based on graph theory
while the third exploits a linear relaxation encoding. These algorithms compare
favourably to a previous approximation method due to Beldiceanu based on
intervals that runs in O(n log(n)) [1]. The two new algorithms based on graph
theory are incomparable with Beldiceanu’s, though one is strictly tighter than
the other. Both algorithms, however, have an O(n2) time complexity. However,
the linear relaxation method dominates all other approaches in terms of the
filtering, but with a higher computational cost.

References

1. N. Beldiceanu. Pruning for the Minimum Constraint Family and for the Number
of Distinct Values Constraint Family. In Toby Walsh, editor, Proceedings of the
7th International Conference on Principles and Practice of Constraint Program-
ming (CP-01), volume 2239 of Lecture Notes in Computer Science, pages 211–224,
Paphos, Cyprus, 2001. Springer-Verlag.

2. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. Filtering Algorithms
for the NValue Constraint. In Roman Barták and Michela Milano, editors, Proceed-
ings of the 7th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR-05),
volume 3524 of Lecture Notes in Computer Science, pages 79–93, Prague, Czech
Republic, 2005. Springer-Verlag.

3. C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. Tractability of Global Constraints.
In Mark Wallace, editor, Proceedings of the 10th International Conference on Princi-
ples and Practice of Constraint Programming (CP-04), volume 3258 of Lecture Notes
in Computer Science, pages 716–720, Toronto, Canada, 2004. Springer-Verlag. Short
paper.

4. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting Systematic Search by
Weighting Constraints. In Ramon López de Mntaras and Lorenza Saitta, editors,
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI-04),
pages 482–486, Valencia, Spain, August 2004. IOS Press.

5. M. Dincbas, P. van Hentenryck, H. Simonis, and A. Aggoun. The Constraint Logic
Programming Language CHIP. In Proceedings of the International Conference on
Fifth Generation Computer Systems, pages 693–702, Tokyo, Japan, 1988.

6. P. Roy F. Pachet. Automatic Generation of Music Programs. In Joxan Jaffar,
editor, Proceedings of the 5th International Conference on Principles and Practice
of Constraint Programming (CP-99), volume 1713 of Lecture Notes in Computer
Science, pages 331–345, Alexandria, VA, USA, 1999. Springer-Verlag.

7. C. Likitvivatanavong, Y. Zhang, J. Bowen, and E.C. Freuder. Arc Consistency in
MAC: a new perspective. In Mark Wallace, editor, Proceedings of the 10th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP-04),
volume 3258 of Lecture Notes in Computer Science, pages 93–107, Toronto, Canada,
October 2004. Springer-Verlag.

8. J.C. Régin. A Filtering Algorithm for Constraints of Difference in CSPs. In Barbara
Hayes-Roth and Richard E. Korf, editors, Proceedings of the 12th National Confer-
ence on Artificial Intelligence (AAAI-94), pages 362–367, Seattle, WA, USA, 1994.
AAAI Press.

