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Abstract Dung’s argumentation framework consists of a set of arguments and an

attack relation among them. Arguments are evaluated and acceptable sets of them,

called extensions, are computed using a given semantics. Each extension represents a

coherent position. In the literature, several proposals have extended this framework in

order to take into account the strength of arguments. The basic idea is to ignore an

attack if the attacked argument is stronger than (or preferred to) its attacker. Semantics

are then applied using only the remaining attacks.

In this paper, we show that those proposals behave correctly when the attack re-

lation is symmetric. However, when it is asymmetric, conflicting extensions may be

computed leading to unintended conclusions. We propose an approach that guarantees

conflict-free extensions. This approach presents two novelties: the first one is that it

takes into account preferences at the semantics level rather than the attack level. The

idea is to extend existing semantics with preferences. In case preferences are not avail-

able or do not conflict with the attacks, the extensions of the new semantics coincide

with those of the basic ones. The second novelty of our approach is that a seman-

tics is defined as a dominance relation on the powerset of the set of arguments. The

extensions (under a semantics) are the maximal elements of the dominance relation.

Such an approach makes it possible not only to compute the extensions of a frame-

work but also to compare its non-extensions. We start by proposing three dominance

relations that generalize respectively stable, preferred and grounded semantics with

preferences. Then, we focus on stable semantics and provide full characterizations of

its dominance relations and those of its generalized versions. Complexity results are

provided. Finally, we show that an instance of the proposed framework retrieves the

preferred sub-theories which were proposed in the context of handling inconsistency in

weighted knowledge bases.
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1 Introduction

Argumentation is a reasoning model based on the construction and the evaluation of

arguments. An argument gives a reason to believe a statement, to perform an action,

or to choose an option, etc. Due to its explanatory power, argumentation has gained

increasing interest in Artificial Intelligence, namely for handling inconsistency (e.g. [5,

19,46]), making decisions (e.g. [10,20]), learning concepts (e.g. [11,40]) and modeling

different types of dialogues (e.g. [9,36,42,47]).

Most of the models that treat the cited applications are instantiations of an ab-

stract framework developed in [29]. This framework consists of a set of arguments and

a binary relation that captures attacks among them. Different acceptability semantics

were proposed in the same paper. A semantics defines sets of acceptable arguments,

called extensions. Each extension is intended to represent a “coherent” position (or

point of view). This notion of coherence is captured by conflict-freeness in accept-

ability semantics. Indeed, a basic requirement for each semantics is that it ensures

conflict-free extensions, that is each extension does not contain an argument and its

attacker. Note that violating conflict-freeness leads to counter-intuitive results meaning

that the framework fails to meet its objectives. Let us assume that an argumentation

framework is built for reasoning with defeasible/inconsistent information gathered in

a knowledge base. In this case, attacks capture the inconsistency of the knowledge.

If conflict-freeness is violated, then the framework may have extensions that support

contradictory conclusions, and thus it may accept a conclusion and its contrary. This

means that the framework collapses.

There is a clear consensus in the literature that arguments do not necessarily have

the same strength. It may be the case that an argument relies on certain information

while another argument is built from less certain ones, or that an argument promotes

an important value while another promotes a weaker one. In both cases, the former

argument is clearly stronger than the latter. These differences in arguments’ strengths

make it possible to compare them. Consequently, several preference relations between

arguments have been defined in the literature (e.g. [7,18,27,44,46]). There is also a

consensus on the fact that preferences should be taken into account in the evaluation

of arguments (see [6,17,38,44,46]).

Surprisingly, there are divergent opinions on whether the attack relation in Dung’s

framework already takes into account the strengths of arguments or should be aug-

mented by a preference relation which captures these strengths. It is worth mentioning

that in [29], there is no answer to this question. The only thing which is mentioned in

that paper is that an argument can attack another argument meaning that it disqual-

ifies this argument, and the two arguments cannot survive together.

According to some researchers like Kaci [33,35], the attack relation in Dung’s frame-

work is a combination of a symmetric conflict relation and a preference relation between

arguments. The author argues that a conflict between two arguments should always

be symmetric, and since Dung’s attack relation may be asymmetric, this means that a

preference relation is applied between the two arguments in order to solve the conflict.

According to other researchers [4], an argument can attack another argument by

undermining one of its three basic components, that is its conclusion, a premise of

its support, or a link between a premise and a conclusion. The formal definition of

the first kind of attack induces a symmetric relation (the so-called rebut [32]), the

two other kinds of attack induce asymmetric relations called respectively assumption
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attack [32] and undercut [41]. Thus, the conflict relation mentioned by Kaci can be

either symmetric or asymmetric. Besides, in a recent paper [1], Amgoud and Besnard

have shown that the choice of an attack relation is crucial for ensuring sound results,

and should not be arbitrary. They have studied how to choose an attack relation when

arguments are built using any logic satisfying Tarski’s axioms [48]. The results confirm

that an attack relation should not be symmetric, in particular when the knowledge

base from which arguments are built contains at least one minimal inconsistent subset

with a cardinality higher than 2. Indeed, symmetric relations lead to the violation of

the rationality postulates identified in [24]. This means that the point of view defended

by Kaci is wrong, and thus Dung’s framework should be extended by preferences at

least for those applications which use Tarski’s logic for building arguments.

In [6], a first abstract preference-based argumentation framework was proposed. It

takes as input a set of arguments, an attack relation, and a preference relation between

arguments which is abstract and can be instantiated in different ways. This proposal

was generalized in [38] in order to reason even about preferences. Thus, arguments

may support preferences about arguments. Another work which considers preferences

between arguments is that proposed in [37]. This work is largely inspired from [6] and

its notion of strict defeat. The last extension, proposed in [17], assumes that each

argument promotes a value, and a preference between two arguments comes from the

importance of the respective values that are promoted by the two arguments. Whatever

the source of the preference relation is, the idea is to ignore an attack if the attacked

argument is stronger than its attacker. Dung’s semantics are applied on the remaining

attacks.

In this paper, we show that while the above idea seems meaningful, the exist-

ing frameworks (namely [6,17,38]) may return conflicting extensions leading thus to

unintended results when the attack relation is asymmetric. Then, we propose a new

approach that guarantees conflict-freeness of extensions. This approach introduces two

novelties. The first one concerns the level at which it takes into account preferences.

Contrarily to existing approaches which combine the preference relation with the at-

tack relation and produce a new relation, called defeat, the solution we propose in this

paper takes into account preferences at the semantics level. The idea is thus to define

new acceptability semantics that are based on the attack and preference relations. In

case preferences are not available or do not conflict with the attacks, the extensions

of the new semantics should coincide with those of the basic semantics proposed by

Dung in [29]. Our aim is not to define new semantics but to improve existing ones by

preferences.

The second novelty of our approach is that a semantics is defined as a dominance

relation on the powerset of the set of arguments. The extensions (under such a se-

mantics) are the maximal elements of the corresponding dominance relation. Thus,

contrarily to existing semantics which partition the powerset of the set of arguments

into two subsets: the extensions and the non-extensions, our approach provides more

information since it compares all the subsets of arguments. Such information may be

useful for instance in dialogues in order to compare the sets of arguments advanced by

agents, or in a decision making problem for ordering a set of alternatives instead of

returning only the best one (e.g. [8]).

The paper contains two main parts: in the first part we propose three dominance

relations that improve respectively grounded, preferred and stable semantics with pref-
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erences. In the second part of the paper we focus only on stable semantics. We show

that it can be improved by different dominance relations. We provide a full characteri-

zation of these dominance relations through a set of postulates. The most general and

the most specific dominance relations are identified. We also show that the differences

between those relations are not significant, as we prove that they all return the same

maximal elements (which correspond to extensions). We provide theorems which de-

scribe the extensions of the new semantics without referring to any dominance relation.

Then, we show that the computation complexity of different reasoning tasks remains

the same as in the basic framework (i.e. without preferences). Finally, we show that

an instance of our PAF recovers the preferred sub-theories proposed by Brewka in [21]

for handling inconsistency in prioritized knowledge bases.

The paper is organized as follows: Section 2 recalls Dung’s argumentation frame-

work as well as its extensions with preferences. Section 3 shows through an example the

limits of existing PAFs. Section 4 introduces our new approach. Section 5 defines three

new acceptability semantics that generalize respectively stable, preferred and grounded

semantics with preferences. Section 6 deeply studies the different ways of generalizing

stable semantics. Section 7 shows how an instance of the PAF computes the preferred

sub-theories of a prioritized knowledge base. Section 8 compares our approach with

existing works. Section 9 is devoted to some concluding remarks and perspectives. The

last section is an appendix containing the proofs or all our results.

2 Dung’s framework and its extensions

In the seminal paper [29], an argumentation framework (AF) is a pair (A,R), where A
is a set of arguments and R is a binary relation between arguments representing attacks

among them (R ⊆ A×A). The notation (a, b) ∈ R or aRb means that the argument

a attacks the argument b. Different acceptability semantics have been proposed in the

same paper for evaluating arguments. Each semantics describes what are the “good”

subsets of arguments, called extensions. Depending on the semantics, an argumentation

framework may have none or one or several extensions. An extension represents a

coherent position or a coherent point of view. Thus, it should be conflict-free (i.e. it

does not contain two conflicting arguments) and it should defend its elements. These

two requirements are formally defined below.

Definition 1 (Conflict-freeness, Defense) Let F = (A,R) be an AF and B ⊆ A.

– B is conflict-free iff � a, b ∈ B such that aRb.

– B defends an argument a iff ∀b ∈ A if bRa, then ∃c ∈ B such that cRb.

The main semantics introduced in [29] are recalled below.

Definition 2 (Acceptability semantics) Let F = (A,R) be an AF and B ⊆ A.

– B is admissible iff it is conflict-free and defends all its elements.

– B is a preferred extension iff it is a maximal (wrt set ⊆) admissible set.

– B is a stable extension iff B is conflict-free and ∀a ∈ A \ B, ∃b ∈ B such that bRa.

– B is a grounded extension iff B is the least fixpoint of a function C where C(S) =

{a ∈ A | S defends a}, for S ⊆ A.
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Notation: Let F = (A,R) be an AF. Extx(F) denotes the set of extensions of F under

semantics x. When the semantics is clear from the context, we will use Ext(F) for

short.

Several other acceptability semantics have been proposed in the literature (for in-

stance, semi-stable semantics [25], ideal semantics [30], recursive semantics [16]). It is

worth mentioning that conflict-freeness is at the heart of all those new semantics. For

the purpose of this paper, we only focus on Dung’s semantics.

In [6], a first extension of Dung’s framework has been proposed. It takes as input

a set A of arguments, an attack relation R, and a (partial or total) preorder (i.e. a

reflexive and transitive binary relation) ≥ on A. This preorder represents a preference

relation between arguments. The expression (a, b) ∈ ≥ or a ≥ b means that the argu-

ment a is at least as strong as (or as preferred as) b. The symbol > denotes the strict

relation associated with ≥. Indeed, a > b iff a ≥ b and not (b ≥ a). Finally, when two

arguments are equally preferred (i.e. a ≥ b and b ≥ a), they are denoted by a ≈ b.

The proposal of [6] takes into account preferences at the level of the attack relation.

The idea is to look for the critical attacks and to remove them from the attack relation.

An attack (a, b) ∈ R is critical iff b > a. Formally this is done by defining a new binary

relation, denoted by Def, as follows: a Def b iff aRb and not (b > a). Thus, the relation

Def contains all the attacks of R except the critical ones (thus, Def ⊆ R). In order to

evaluate the acceptability of the arguments of A, Dung’s acceptability semantics are

applied to the framework (A, Def).

In [38], the preference relation ≥ is given by arguments. The idea is that an argu-

ment may support a preference between two other arguments. Two attack relations are

assumed: a classical one denoted by R, and another relation, D, that ranges from an

argument of A to an element of R. An expression (a, (b, c)) means that the argument a

supports a preference of c over b. This preference conflicts with the fact that b attacks

c. A new relation, Def, is defined as follows: a DefS b iff aRb and �c ∈ S such that

(c, (a, b)) ∈ D, where S ⊆ A. In [38], the author argues that his framework generalizes

the one proposed in [6]. To put it differently, the framework proposed in the former

work is grounded on the latter one.

The extension proposed in [17] assumes that a set V of values is available. Each

argument in A promotes one value given by a function val (i.e. val : A �→ V).

Values may not have the same importance and this is captured by a binary rela-

tion Pref. This latter is assumed to be irreflexive, asymmetric and transitive. Like

in [6], a new relation, called defeats, is defined as follows: a defeats b iff aRb and

(val(b),val(a)) /∈ Pref, thus defeats ⊆ R. Dung’s acceptability semantics are applied

to the framework (A, defeats). In [34], a comparative study of the different approaches

for taking into account preferences in argumentation frameworks has been carried out.

This study reveals that the value-based framework is a particular instantiation of the

framework proposed in [6] where the preference relation ≥ in [6] comes from the im-

portance of values.

In sum, the value-based framework is a particular case of the framework proposed

in [6] which is in turn at the heart of the framework developed in [38]. Thus, if the

framework developed in [6] suffers from any limit, then it is so for the two other works.
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For simplicity reasons, we will use the framework proposed in [6] in order to illustrate

the limits of existing approaches.

3 Critical examples

The three approaches [6,17,38] look for critical attacks, remove them from the attack

relation, and then evaluate arguments on the basis of the remaining attacks. While

this seems meaningful, removing attacks may lead to conflicting extensions in case of

non-symmetric attack relations.

Example 1 Assume that A = {a, b} and R = {(a, b)} (R being not symmetric like

undercut in [41]). Assume also that b > a (because, for instance, the value promoted

by b is more important than the value promoted by a). It can be checked that Def = ∅
and {a, b} is a stable extension of the framework. Note that this extension is not

conflict-free in the sense of R. This is certainly in contradiction with the fact that an

extension represents a coherent point of view.

In what follows, we show through a simple example that violating conflict-freeness

is dangerous since it may lead to the violation of the rationality postulates proposed

in [24].

Let Σ = {x,¬y, x → y} be a propositional knowledge base such that the formula x is

more certain than the two other formulas. In what follows, an argument is defined as

follows:

Definition 3 (Argument) Let Σ be a propositional knowledge base. An argument

is a pair a = (H, h) s.t.

– H ⊆ Σ

– H is consistent

– H 
 h

– �H ′ ⊂ H such that H ′ is consistent and H ′ 
 h.

The set H is the support of the argument and h is its conclusion. The following
arguments are thus built from the base Σ.

a1 : 〈{x}, x〉 a2 : 〈{¬y},¬y〉
a3 : 〈{x → y}, x → y〉 a4 : 〈{x,¬y}, x ∧ ¬y〉
a5 : 〈{¬y, x → y},¬x〉 a6 : 〈{x, x → y}, y〉

The question now is which attack relation to choose? According to [1], the relation

should not be symmetric since propositional logic is a particular case of Tarski’s mono-

tonic logics. Moreover, the knowledge base Σ contains a ternary minimal conflict (the

three formulas of the base). Thus, we need an asymmetric one like assumption attack

which has been proposed in [32] as follows:

Definition 4 (Assumption attack) An argument (H,h) attacks an argument (H ′, h′),
denoted by (H,h) Ras (H ′, h′), iff ∃h′′ ∈ H ′ s.t. h ≡ ¬h′′.

Moreover, it has been shown in [26] that the corresponding argumentation frame-

work ensures sound results. Indeed, each stable extension of the framework returns a

maximal consistent subbase of Σ. This result has been generalized to any Tarskian

logic in [2].

The figure below depicts the attacks between the six above arguments with respect to

assumption attack.
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a4 a3

a1 a5 a6 a2

One may argue that other arguments (like 〈{x}, x∨y〉, 〈{x}, x∧x〉, . . .) can be built

from Σ, and thus the graph is bigger. This is certainly true. However, in a recent study

[3], we have shown that when arguments are built from a propositional knowledge base

and assumption attack is used, then the framework has a finite core of arguments which

is sufficient to get the expected results. For instance, in the above example, it can be

checked that the six arguments are sufficient to return the three maximal consistent

subbases of Σ (of course when the priorities between the three formulas are ignored).

Assume now that the six arguments are compared using a relation which prefers

strictly the argument a1 to all the other arguments and which equally prefers the five

other arguments. An example of such a relation is the one based on the weakest link

principle [18]. According to this principle, an argument a is preferred to an argument

b if the least certain formula in the support of a is more certain than the least certain

formula in the support of b. In this case, the base Σ is stratified into Σ1∪ . . .∪Σn such

that formulas of Σi have the same certainty level and are more certain than formulas

in Σj where j > i. The stratification of Σ enables to define a certainty level of each

subset S of Σ. It is the highest number of stratum met by this subset. Formally:

Level(S) = max{i | ∃ x ∈ S ∩ Σi} (with Level(∅) = 0).

The above certainty level is used in [18] in order to define a total preorder on the set of

arguments that can be built from a stratified knowledge base. The preorder is defined

as follows:

Definition 5 (Weakest link principle) Let Σ = Σ1 ∪ . . . ∪ Σn be a propositional

knowledge base. An argument (H,h) is preferred to another argument (H ′, h′), denoted

by (H,h) ≥WLP (H ′, h′), iff Level(H) ≤ Level(H ′).

The three existing approaches [6,17,38] for preference-based argumentation remove

the attack from a5 to a1 and obtain B = {a1, a2, a3, a5} as a stable extension. Note

that if we use the framework proposed in [38], then supplementary arguments, which

specify that the argument a1 is stronger than the others, should be added. However,

the framework will also compute the extension B. This extension is not conflict-free

with respect to the attack relation Ras. Worse yet, it contains two arguments with

contradictory conclusions (x and ¬x). It is clear that this problem is due to the addition

of preferences since as said before, when preferences are ignored the framework ensures

sound results. What happens is that when an argument is stronger than its attacker, the

attack is completely removed from the graph. By so doing an important information

is lost. This information is the conflict that exists between the two arguments and

consequently the two arguments may belong to the same extension. Note that this

observation holds for any asymmetric relation and not only assumption attack. Thus an

approach which removes attacks is not acceptable since it does not guarantee conflict-

free extensions.
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4 A new approach for PAFs

The previous section has highlighted the limits of existing preference-based argumen-

tation frameworks. Even if the idea pursued by these frameworks is meaningful, their

results may violate the key property of conflict-freeness wrt the attack relation R. This

problem is mainly due to the fact of removing critical attacks from the framework.

In this section, we propose a new approach for preference-based argumentation

which prevents the above problem. We consider a new line of research. Instead of

changing the original attack relation, we take into account preferences when evaluat-

ing the arguments, i.e. at the semantics level. Our aim is not to define new acceptability

semantics but to generalize the existing ones with preferences. Hence, when there is

no critical attack, the extended semantics should return the same results as the basic

ones (without preferences).

Our approach presents another novelty which consists of defining a semantics as

a dominance relation on the powerset of the set A of arguments. The best elements

wrt this relation are the acceptable sets of arguments, i.e. the extensions. Recall that

existing semantics divide the powerset of A into two subsets: extensions and non-

extensions. The former are better than the latter, but they do not say anything about

non-extensions. However, in some applications, one may want to compare some sets of

arguments. For instance, after a dialogue between two agents, an observer may want to

compare the two sets of arguments exchanged by the two agents. Another important

application in which the comparison of sets of arguments is crucial is decision making.

Let us consider the following example.

Example 2 Assume that A = {a, b, c, d}, a ≈ c, a > b, d > a and let the attack relation

be as depicted in the figure below.

a b

c d

Assume that both arguments a and c support an option o1, the argument b supports

an option o2 and the argument d supports an option o3. Note that in this example there

is no critical attack. Thus, the whole graph is considered for evaluating the arguments.

According to Dung’s semantics, the set {a, c, d} is the only stable extension of this

framework, and it is thus preferred to all the other subsets of A. This set contains

arguments concerning the two options o1 and o3. Thus, these latter are seen as equally

preferred. However, it is clear from the preference relation ≥ that the set {d} is preferred

to {a, c}, thus option o3 is better than option o1. Note also that it is not possible to

conclude that the set {a, c} is preferred to the set {b}, and thus that option o1 is

preferred to option o2. It is neither possible to conclude that the set {d} is preferred

to {b}, thus that option o3 is preferred to o2.

Note that in [10], an argument-based decision framework has been proposed. It fol-

lows a two steps process: it computes first all the acceptable arguments (using Dung’s

semantics) then it applies a decision principle in order to rank-order options. As argued

in [8], with such an approach the output of the argumentation framework is not yet
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the output of the decision process. Thus, it is not possible to benefit from the whole

powerful of argumentation theory (namely proof procedures). In [8], a one step ap-

proach where the argumentation framework returns directly the best option has been

developed. However, in that paper, only one decision principle (the pessimistic quali-

tative criterion) has been encoded. Moreover, it returns only the best option. Thus, in

case of Example 2, it is not possible for such a framework to conclude that option o1

is better than option o2. This information is important in negotiation dialogues where

agents make concessions (i.e. proposes less preferred options). It is also useful in any

application where a complete ordering on a set of options is required.

In sum, we think that defining a semantics as a preference relation allows the com-

parison of any pair of subsets of arguments (on the basis of attacks and argument

orderings). Such an approach is very suitable for decision making and solves the prob-

lems encountered by existing decision models [8,10].

Before defining formally the new semantics, let us first introduce some notations

and concepts. The set A and the two relations R and ≥ constitute a preference-based

argumentation framework (PAF).

Definition 6 (PAF) A PAF is a tuple (A,R,≥) where A is a set of arguments,

R ⊆ A×A an attack relation, and ≥ ⊆ A×A a (partial or total) preorder.

Assumptions: Without loss of generality, the following assumptions are made through-

out the paper. For a PAF (A,R,≥):

1. A is finite.

2. R does not contain self-attacking arguments.

Notation: Let T = (A,R,≥) be a PAF. CF(T ) denotes the conflict-free (wrt R) sets

of arguments. At some places, we abuse notation and use CF(F) to denote the

conflict-free sets of arguments of a basic framework F = (A,R).

As already explained, a semantics for evaluating arguments of a PAF is defined as a

binary relation on the powerset P(A) of A. Such a relation will be denoted by �.

Definition 7 (New semantics) A semantics is a binary relation � on the powerset

P(A) of A. For E ,E ′ ∈ P(A), writing (E ,E ′) ∈ � (or equivalently E � E ′) means that

the set E is at least as good as the set E ′. The relation � is the strict version of �,

that is for E ,E ′ ∈ P(A), E � E ′ iff E � E ′ and not (E ′ � E).

The maximal elements of such a relation are defined as follows.

Definition 8 (Maximal elements) Let E ∈ P(A) and � ⊆ P(A) × P(A). E is

maximal wrt � iff:

1. ∀E ′ ∈ P(A), E � E ′,
2. No strict superset of E verifies (1).

Let �max denote the set of maximal sets wrt �.

Like existing acceptability semantics, preference-based semantics should satisfy

some basic requirements. Thus, not any relation � can be used for evaluating ar-

guments in a PAF. An appropriate relation should satisfy at least three postulates.

Before presenting them, let us introduce a useful notation.
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Notation: The writing X1...Xn
Y means that if X1 . . . and Xn hold, then Y holds as

well.

The first postulate states that any conflict-free set of arguments should be strictly

preferred to any conflicting one. This is natural since a conflict-free set represents a

coherent point of view while a conflicting set represents conflicting views.

Postulate 1 (P1) Let T = (A,R,≥) be a PAF and E ,E ′ ∈ P(A).

E ∈ CF(T ) E′ /∈ CF(T )
E � E′

Postulate P1 ensures conflict-freeness for the extensions of any PAF. Indeed, the

best elements of any dominance relation satisfying this postulate are conflict-free.

Property 1 Let T = (A,R,≥) be a PAF. If a dominance relation � satisfies postulate

P1, then each element of the set �max is conflict-free wrt R.

The second postulate describes the role of the attack relation. It shows that an

attack should win when it is not critical. This is in some sense the basic idea behind

all existing semantics in the literature.

Postulate 2 (P2) Let T = (A,R,≥) be a PAF and a, a′ ∈ A.

aRa′ ¬(a′Ra) ¬(a′>a)
{a} � {a′}

The third postulate ensures that preferences are privileged in critical attacks. This

is in fact the idea defended in previous works on PAFs (e.g. [6,17]). Indeed, if an

argument a attacks another argument a′ and a′ > a, then the set {a′} is privileged.

Thus, {a′} should be strictly preferred to {a}. However, if the two arguments are

equally preferred or incomparable or even a > a′, then the set {a} should be strictly

preferred to {a′}.

Postulate 3 (P3) Let T = (A,R,≥) be a PAF and a, a′ ∈ A.

aRa′ a′>a
{a′} � {a}

We are now ready to define what is a semantics for evaluating the arguments of a

PAF. It is a binary relation (called also dominance relation) on the powerset of the set

of arguments which satisfies the above postulates. The acceptable sets of arguments

are the best elements of the dominance relation.

Definition 9 (Semantics for PAFs) An acceptability semantics for a PAF (A,R,

≥) is defined by a dominance relation � ⊆ P(A) × P(A) which satisfies postulates

P1, P2 and P3. The acceptable sets of arguments (or extensions) of (A,R, ≥) are the

elements of �max.

5 Generalizing Dung’s semantics with preferences

In this section, we propose three new semantics which generalize respectively stable,

preferred and grounded semantics introduced in [29]. Before presenting them, let us

first define formally how a semantics can generalize another one.
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Definition 10 (Generalizing a semantics) A dominance relation � generalizes

semantics x iff for all PAF (A,R,≥), if � a, b ∈ A such that aRb and b > a, then

�max = Extx(F) where F = (A,R).

Informally speaking, a dominance relation generalizes a given semantics iff its best

elements are exactly the extensions of the basic framework (i.e. without preferences)

wrt that semantics in case there are no critical attacks.

5.1 Generalizing stable semantics

In the previous section, we have shown that our new semantics are defined as dominance

relations on the powerset of the set of arguments. Before showing how to extend stable

semantics with preferences, it is important to encode this semantics in the new setting,

i.e. to define it as a dominance relation on the powerset of the set of arguments. The

following theorem characterizes the dominance relations that encode stable semantics.

Theorem 1 Let F = (A,R) be an AF and � ⊆ P(A) × P(A). The equality Ext(F)

= �max holds iff ∀E ∈ P(A),

1. if E /∈ CF(F) then ∃E ′ ∈ P(A) s.t. not(E � E ′), and

2. if E ∈ CF(F) and ∀a′ /∈ E , ∃a ∈ E s.t. aRa′, then ∀E ′ ∈ P(A), E � E ′, and

3. if E ∈ CF(F) and ∃a′ ∈ A \ E s.t. �a ∈ E and aRa′, then ∃E ′ ∈ P(A) s.t.

not(E � E ′).

It is worth mentioning that there are several relations � that encode stable seman-

tics. All these relations return the same maximal elements (i.e. the stable extensions).

However, they compare in different ways the remaining sets of arguments. An example

of a relation that encodes stable semantics is the following:

Relation 1. Let F = (A,R) be an AF and E ,E ′ ∈ P(A). E �1 E ′ iff

– E ∈ CF(F) and E ′ /∈ CF(F), or

– E ,E ′ ∈ CF(F) and ∀a′ ∈ E ′ \ E , ∃a ∈ E \ E ′ s.t. aRa′.

Let us illustrate this relation on the following simple example.

Example 3 Consider the argumentation framework depicted in the figure below.

a b

It is clear that: {a}, {b} �1 {} �1 {a, b}. The two sets {a} and {b} are equally preferred.

The maximal elements of �1 (its stable extensions) are {a} and {b}.

Note that Dung’s approach returns only two classes of subsets of arguments: the

extensions and the non-extensions. In Example 3, the two sets {a} and {b} are stable

extensions while it does not say anything about the sets {a, b} and {}. Our approach

compares even the non-extensions. According to relation �1, the set {} is preferred to

the set {a, b}.

In what follows, we present a new semantics, called Pref-stable, that generalizes

stable semantics. This amounts to define a dominance relation which will be denoted
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by �s and its best elements by �s,max. The idea behind this relation is the following:

given two conflict-free sets of arguments, E and E ′, we say that E is better than E ′ iff

any argument in E ′ \ E is weaker than at least one argument in E \ E ′ or is attacked by

it. Moreover, a conflict-free set of arguments is strictly preferred to a conflicting one,

while conflicting sets are all incomparable. In fact, the relation �s extends the relation

�1 with preferences.

Definition 11 (Pref-stable semantics) Let T = (A, R, ≥) be a PAF and E , E ′ ∈
P(A). It holds that E �s E ′ iff:

– E ∈ CF(T ) and E ′ /∈ CF(T ), or

– E ,E ′ ∈ CF(T ) and ∀a′ ∈ E ′ \E , ∃a ∈ E \E ′ s.t. (aRa′ and not(a′ > a)) or (a > a′).

Let us illustrate this definition through the following simple example.

Example 4 Let A = {a, b, c}, a > b and R is as depicted in the figure below:

a b c

The conflict-free sets of arguments are: E1 = ∅, E2 = {a}, E3 = {b}, E4 = {c}, and

E5 = {a, c}. It can be checked that the following relations hold: E2 �s E1, E3 �s E1,

E4 �s E1, E5 �s E1, E5 �s E4, E5 �s E2, E5 �s E3, E4 �s E3, E3 �s E4, and E2 �s E3.

It can also be checked that �max= {E5}.

The relation �s is in conformity with Definition 9. Indeed, it satisfies the three

postulates P1, P2 and P3.

Property 2 The relation �s satisfies postulates P1, P2 and P3.

Since the relation �s satisfies postulate P1, its extensions are conflict-free. The

following result shows that they are even maximal (for set inclusion). Indeed, the

relation �s privileges maximal sets.

Property 3 Let E ,E ′ ∈ P(A). If E � E ′ then E ′ �s E (i.e. E ′ �s E and not (E �s E ′)).

However, not any maximal conflict-free set of arguments is an extension (i.e. an

element of �s,max) as shown by the following example.

Example 4 (Continued): The set E3 is maximal conflict-free but does not belong

to �s,max.

From Property 3, it follows that Definition 8 can be simplified as follows: E ∈
�s,max iff ∀E ′ ∈ P(A), E �s E ′. It is worth mentioning that this simplification is

not possible for semantics that generalize preferred and grounded semantics. Finally,

notice that the relation �s is not transitive. Indeed, in the previous example, E2 �s E3

and E3 �s E4 however, the two sets E2 and E4 are incomparable wrt �s.

The following theorem shows that Pref-stable semantics, i.e. the relation �s, gen-

eralizes stable semantics. Recall that this means that the two semantics coincide in

case any attacked argument is not stronger than its attacker.

Theorem 2 The relation �s generalizes stable semantics.
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Finally, we can show that the proposed approach handles correctly the example

discussed in Section 3. Namely, it can be checked that the corresponding PAF has

exactly two extensions: {α1, α2, α4} (whose base is {x,¬y}) and {α1, α3, α6} (whose

base is {x, x → y}), and that both of them are conflict-free and support consistent

conclusions. This example will be treated in detail in Section 7.

5.2 Generalizing preferred semantics

In this section, we propose a new semantics, called Pref-preferred, that generalizes

preferred semantics with preferences. It is defined by a dominance relation, denoted

by �p. The basic idea behind this relation is that a set E of arguments is better than

another set E ′ of arguments iff for every attack from E ′ to E which does not fail, E is

capable to defend the attacked argument and that for every attack from E to E ′ which

fails, there is another attack from E which defends the argument which failed in its

attack.

Definition 12 (Pref-preferred semantics) Let T = (A, R, ≥) be a PAF and

E ,E ′ ∈ P(A). It holds that E �p E ′ iff:

– E ∈ CF(T ) and E ′ /∈ CF(T ), or

– E ,E ′ ∈ CF(T ) and ∀a ∈ E , ∀a′ ∈ E ′, if (a′Ra and not(a > a′)) or (aRa′ and

a′ > a), then ∃b ∈ E such that (bRa′ and not(a′ > b)) or (a′Rb and b > a′).

Let us illustrate this definition through the next example.

Example 4 (Continued): It holds that E2 �p E3, E3 �p E4, E4 �p E3, E5 �p E3, . . ..

It can also be checked that �p,max= {E5}.

Note that the relation �p is not transitive. However, it can be checked that it satisfies

the three postulates P1, P2 and P3. Thus, it encodes a semantics in the sense of

Definition 9.

Property 4 The relation �p satisfies postulates P1, P2 and P3.

The above property ensures that the extensions of a PAF under Pref-preferred seman-

tics are conflict-free. The following result shows that this semantics generalizes Dung’s

preferred semantics.

Theorem 3 The relation �p generalizes preferred semantics.

In Dung’s basic framework, every stable extension is a preferred one. We show

that the same link holds in our setting. Namely, every pref-stable extension is a pref-

preferred extension.

Theorem 4 For any PAF (A,R,≥), it holds that �s,max ⊆ �p,max.
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5.3 Generalizing grounded semantics

In this section, we focus on grounded semantics and we generalize it with preferences.

The new semantics is called Pref-grounded and is defined by a dominance relation

which is denoted by �g. The basic idea behind this relation is that a set is not worse

than another if it can strongly defend all its arguments against all attacks that come

from the other set.

Before giving the formal definition of �g, let us first generalize the notion of strong

defense by preferences. The idea is that an argument has either to be preferred to its

attacker or has to be defended by arguments that themselves can be strongly defended

without using the argument in question.

Definition 13 (Strong defense) Let E ⊆ A. E strongly defends an argument a from

attacks of a set E ′, denoted by sd(a,E ,E ′), iff ∀b ∈ E ′ if (bRa and not(a > b)) or (aRb

and b > a), then ∃c ∈ E \ {a} such that ((cRb and not(b > c)) or (bRc and c > b)) and

sd(c, E \ {a}, E ′).
If the third argument of sd is not specified, then sd(a, E) ≡ sd(a,E ,A).

Let us illustrate this notion through the following example.

Example 4 (Continued): sd(a, {a}, {b}) holds since a is strictly preferred to b thus it

can defend itself. However, we have ¬sd(b, {b}, {c}) since b cannot defend itself against

c. On the other hand, sd(c, {a, c}, {b}) holds since a can defend c against b and a is

protected from b since it is strictly preferred to it.

The relation �g prefers subsets that strongly defend all their arguments. Namely,

E �g E ′ iff E strongly defends all its arguments against attacks from E ′.

Definition 14 (Pref-grounded semantics) Let T = (A, R, ≥) be a PAF and E ,E ′

be two subsets of A. It holds that E �g E ′ iff:

– E ∈ CF(T ) and E ′ /∈ CF(T ), or

– ∀a ∈ E , it holds that sd(a,E ,E ′).

Example 5 Let A = {a, b, c}, b > a, and R is as depicted in the figure below:

a b c

One can check that there is exactly one subset of A which is preferred to all other

subsets of arguments wrt �g . This set is the empty one. While we do have {b} �g {a},
we have ¬({b} �g {c}), so {b} is not an extension of this PAF. We have also ¬({a} �g

{b}), ¬({c} �g {b}) and ¬({a, c} �g {b}). This is expected and a natural output since

neither b nor c are capable to defend strongly themselves and, on the other hand, it

can be said that a is the worst argument in this framework, thus not strong enough to

be better than b.

The relation �g has exactly one best element, i.e. the set �g,max contains only

one set of arguments. This is not surprising since Pref-grounded semantics intends to

generalize the principle underlying Dung’s grounded semantics.

Property 5 The equality | �g,max | = 1 holds.
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The following result shows that the relation �g satisfies the three postulates P1, P2

and P3. Thus, its unique extension is conflict-free.

Property 6 The relation �g satisfies postulates P1, P2 and P3.

Finally, the dominance relation �g generalizes grounded semantics.

Theorem 5 The relation �g generalizes grounded semantics.

In Dung’s basic framework, the grounded extension is a subset of the intersection of

all preferred extensions. The same link exists between pref-grounded and pref-preferred

extensions:

Theorem 6 For any PAF (A,R,≥), �g,max ⊆
⋂

Ei where Ei ∈�p,max.

6 Characterizing Pref-stable semantics

In the previous section, we have proposed three particular semantics which generalize

respectively stable, preferred and grounded semantics with preferences. What is worth

mentioning is that the three corresponding dominance relations are not unique. There

exist, for instance, other relations which may generalize stable semantics by preferences.

Not surprisingly, the same is true for preferred and grounded semantics. This remark

opens many new questions: How many dominance relations that generalize a given

semantics do exist? Are some of them “better” than others? What are their properties?

What are the differences between them? In the rest of the paper we focus on stable

semantics and give a formal and precise answer to these questions.

6.1 Postulates

In this subsection, we characterize all the dominance relations � that generalize stable

semantics with preferences. For that purpose, we identify a set of postulates that such

relations should satisfy. It is clear that the three postulates P1, P2 and P3 are in

that set. Postulate P1 ensures that the extensions of a PAF are conflict-free wrt the

attack relation. This is important since an extension represents a coherent point of

view. Postulates P2 and P3 describe when the attack relation should take precedence

over the preference relation and when this latter is privileged. These two postulates are

generalized by two other postulates in such a way to include the principle behind Dung’s

stable semantics. The first postulate describes when a set should not be preferred to

another. The idea is that: if an argument of a set E cannot be compared with arguments

in another set E ′ (since it is neither attacked nor less preferred to any argument of that

set), then E cannot be preferred to E ′.

Postulate 4 (P4) Let T = (A,R,≥) be a PAF, and E , E ′ ∈ CF(T ) such that E∩E ′ =

∅.
(∃a′ ∈ E′)(∀a ∈ E) ¬(aRa′∧¬( a′>a)) ∧ ¬(a>a′)

¬(E � E′)
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The second postulate describes when a set is preferred to another. The idea is that

if for any argument of a set, there is at least one argument in another set which ‘wins

the conflict’ with it, then the latter should be preferred to the former. There are two

situations in which an argument a wins a conflict against a′: either a attacks a′ and

a′ does not defend itself since it is not stronger than a wrt ≥, or a′ attacks a but a is

strictly preferred to a′.

Postulate 5 (P5) Let T = (A,R,≥) be a PAF and E , E ′ ∈ CF(T ) such that E ∩E ′ =

∅.
(∀a′ ∈ E′)(∃a ∈ E) s.t. (aRa′∧ ¬(a′>a)) or (a′Ra ∧ a>a′)

E � E′

It can be checked that if a dominance relation satisfies the two postulates P4 and

P5, then it satisfies also P2 and P3.

Property 7 Let � ⊆ P(A) × P(A). If � satisfies postulates P4 and P5, then it also

satisfies postulates P2 and P3.

The following requirement ensures that a dominance relation is entirely based on

the distinct elements of any two subsets of arguments.

Postulate 6 (P6) Let T = (A,R,≥) be a PAF, and E ,E ′ ∈ CF(T ). Then,

E � E′
E\E′ � E′\E and

E\E′ � E′\E
E � E′

Now that the postulates are introduced, we are ready to define the pref-stable

semantics.

Definition 15 (Pref-stable semantics) Let T = (A, R, ≥) be a PAF. A relation

� ⊆ P(A) × P(A) encodes pref-stable semantics iff it satisfies postulates P1, P4, P5

and P6.

Throughout the paper, a relation that encodes pref-stable semantics will be called

pref-stable relation, and its maximal elements are called pref-stable extensions.

It can be checked that the relation �s given in Definition 11 is a pref-stable relation

and satisfies the four postulates.

Property 8 �s is a pref-stable relation.

Like stable semantics, there are several relations that encode pref-stable semantics.

However, they all return the same pref-stable extensions.

Theorem 7 Let T = (A,R,≥) be a PAF and �,�′ ⊆ P(A)×P(A). If � and �′ are

pref-stable relations, then �max = �′
max.

Note that postulates P1, P4, P5 and P6 encode important properties of stable

semantics enriched with preferences. However, it is worth noticing that no relation

which generalizes stable semantics and verifies P1 and P5 is transitive. Note that this

is not surprising since P5 describes one of the basic properties of stable semantics,

which is that a set attacking another one should win. This notion is not necessarily

transitive since it is based on an attack relation which does not exhibit any property.

Indeed, an attack relation is generally not a preorder.
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Property 9 There exists no transitive relation which generalizes stable semantics and

satisfies postulates P1 and P5.

Finally, we can show that a pref-stable semantics generalizes stable semantics. This

means that when preferences do not conflict with attacks in a given PAF, then pref-

stable relations are a subset of those encoding stable semantics (i.e. they satisfy the

three conditions of Theorem 1).

Theorem 8 Let T = (A,R,≥) be a PAF. Any pref-stable relation � ⊆ P(A)×P(A)

generalizes stable semantics.

6.2 General and specific pref-stable relations

As already said, there are several relations that encode pref-stable semantics. The aim

of this subsection is to define the upper and lower bounds of these relations. The most

general pref-stable relation, denoted by �gn, returns E �gn E ′ if and only if it can be

proved from the four postulates that E must be preferred to E ′.

Definition 16 (General pref-stable relation) Let T = (A,R,≥) be a PAF and

E ,E ′ ∈ P(A). E �gn E ′ iff:

– E ∈ CF(T ) and E ′ /∈ CF(T ), or

– E ,E ′ ∈ CF(T ) and ∀a′ ∈ E ′ \ E ,∃a ∈ E \ E ′ such that (aRa′ and not(a′ > a)) or

(a′Ra and a > a′).

Property 10 �gn is a pref-stable relation.

The most specific pref-stable relation, denoted by �sp, returns E �sp E ′ if and only

if from the four postulates, it cannot be proved that ¬(E �sp E ′).

Definition 17 (Specific pref-stable relation) Let T = (A,R,≥) be a PAF and

E ,E ′ ∈ P(A). E �sp E ′ iff:

– E ′ /∈ CF(T ), or

– E ,E ′ ∈ CF(T ) and ∀a′ ∈ E ′ \ E ,∃a ∈ E \ E ′ such that (aRa′ and not(a′ > a)) or

(a > a′).

Property 11 �sp is a pref-stable relation.

Let us illustrate the differences between the three particular relations �s, �sp and

�gn on the following example.

Example 6 Let A = {a, b, c},R = {(a, b)} and a ≥ c. For example, it holds that

{a} �s {c}, {a} �sp {c} and ¬({a} �gn {c}). That is, for relations �s and �sp the

strict preference between a and c is enough to prefer {a} to {c}. For relation �gn,

since c is not attacked by a, there is no preference between the sets {a} and {c}. The

fact that a is stronger is not important, because there is no conflict between those

arguments.

Another difference is that for the relation �sp, all conflicting sets are equally pre-

ferred. For example, {a, b, c} �sp {a, b} and {a, b} �sp {a, b, c}. Besides, relations �s

and �gn encode the idea that a contradictory point of view cannot be accepted as a

standpoint. Thus, it is not even possible to compare two contradictory sets of argu-

ments. For example ¬({a, b, c} �s {a, b}).
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The next result shows that any pref-stable relation is “between” the general and

the specific relations.

Theorem 9 Let T = (A,R,≥) be a PAF and E ,E ′ ∈ P(A). Let � be a pref-stable

relation.

– If E �gn E ′ then E � E ′.
– If E � E ′ then E �sp E ′.

A simple consequence of the previous result is that, if E �gn E ′ and E �sp E ′, then

for any pref-stable relation �, it holds that E � E ′.

6.3 Characterizing pref-stable extensions

As already said, the new approach for taking into account the strengths of arguments

in an argumentation framework is sound and rich. It is sound since it guarantees

conflict-free extensions, and it is rich since it provides more information than existing

approaches. Indeed, not only it computes the acceptable sets of arguments, but it

also compares the remaining ones. This comparison is of great importance in some

applications like decision making and dialogues. However, it is less crucial in some

other applications like handling inconsistency in knowledge bases. In this case, one

looks only for the sets of arguments which support ‘good’ conclusions and does not

bother about the other arguments. It is thus important to be able to characterize the

extensions under a given semantics without comparing all the subsets of arguments,

and thus without referring to pref-stable relations. The next theorem gives such a

characterization.

Theorem 10 Let T = (A,R,≥) be a PAF and � be a pref-stable relation.

E ∈ �max iff:

– E ∈ CF(T ), and

– ∀a′ ∈ A \ E , ∃a ∈ E such that (aRa′ and not(a′ > a)) or (a′Ra and a > a′).

Another way to compute the pref-stable extensions of a PAF is to “invert” the

direction of attacks when they are not in accordance with the preferences between

arguments. We apply then stable semantics on the basic framework that is obtained.

More precisely, we start with a PAF T = (A,R,≥). We compute an AF F = (A,R′)
where R′ is defined as follows:

{
If (a, b) ∈ R and not (b > a) then (a, b) ∈ R′

If (a, b) ∈ R and b > a then (b, a) ∈ R′

then we apply stable semantics on the new framework (A,R′). This result is proved in

the following theorem.

Theorem 11 Let T = (A,R,≥) be a PAF and � be a pref-stable relation. Let R′ =

{(a, b) | a, b ∈ A, (aRb and not(b > a)) or (bRa and a > b)}. It holds that �max =

Ext((A,R′)).

Let us illustrate this result through an example.

Example 7 Let A = {a, b, c, d, e} and R is as depicted in figure below:
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a b c

d e

Assume that b > a, b > c and e > d. Note that this framework has two critical

attacks: (a, b) and (c, b).

It can be checked that any pref-stable relation will return exactly one pref-stable ex-

tension: �max= {{b, d, e}}.
Let us now consider the following argumentation framework that is obtained after

inverting the arrows of the two critical attacks.

a b c

d e

It is easy to check that the only stable extension of this framework is the set {b, d, e}.

In [31], Dunne has investigated the computational properties of Dung’s argumenta-

tion framework. He has shown that deciding whether a given set of arguments is a stable

extension of AF can be performed in polynomial time. However, deciding whether an

argumentation framework has a stable extension is NP-complete. The problems of de-

ciding whether an argument is in some stable extension or in every stable extension are

respectively NP-complete and coNP-complete. An important question is whether these

results remain the same in our approach. The following result shows that the answer

is yes. This is mainly due to the result of Theorem 11 which translates in a polynomial

time a PAF into a basic argumentation framework.

Theorem 12 Let T = (A,R,≥) be a PAF and E ⊆ A.

– Deciding whether E is a pref-stable extension of T is polynomial.

– Deciding whether the PAF T has a pref-stable extension is NP-complete.

– Deciding whether an argument is in some pref-stable extension of T is NP-complete.

– Deciding whether an argument is in every pref-stable extension of T is coNP-

complete.

7 Computing preferred sub-theories with PAFs

An important problem in the management of knowledge-based systems is the handling

of inconsistency. Classical logic has many appealing features for knowledge representa-

tion and reasoning, but unfortunately when reasoning with inconsistent information,

i.e. drawing conclusions from an inconsistent knowledge base, the set of classical conse-

quences is trivialized. To solve this problem, a coherence-based approach was initiated

in [45]. It proposes to give up some formulas of the knowledge base in order to get

one or several consistent subbases of the original base. Then plausible conclusions may

be obtained by applying classical entailment on these subbases. In [26], it has been

shown that the results of this approach can be recovered within Dung’s argumentation

framework [29]. Indeed, there is a full correspondence between the maximal consistent
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subbases of a given inconsistent knowledge base and the stable extensions of the ar-

gumentation system built over the same base. In [45], the formulas of the knowledge

base are assumed to be equally preferred. This assumption has been discarded in [21].

Indeed, a knowledge base is equipped with a total preorder. Thus, instead of com-

puting the maximal consistent subbases, preferred sub-theories are computed. These

sub-theories are consistent subbases that privilege the most important formulas.

In this section, we show that there is a full correspondence between the preferred

sub-theories proposed in [21] and the pref-stable extensions of an instance of our PAF.

The correspondence is obtained by choosing appropriately the main components of a

PAF: the definition of an argument, the attack relation, and the preference relation

between arguments.

7.1 Coherence-based approach for handling inconsistency

The coherence-based approach for handling inconsistency in a propositional knowledge

base Σ follows two steps: At the first step, some subbases of Σ are chosen. In [45], these

subbases are the maximal (for set inclusion) consistent ones. At the second step, an

inference mechanism is chosen. This latter defines the inferences to be made from Σ.

An example of inference mechanism is the one that infers a formula if it is a classical

conclusion of all the chosen subbases. Several works have been done on choosing the

subbases, in particular when Σ is equipped with a (total or partial) preorder � (� ⊆
Σ × Σ). Recall that when � is total, Σ is stratified into Σ1 ∪ . . . ∪ Σn s.t. ∀i, j with

i �= j, Σi ∩ Σj = ∅. Moreover, Σ1 contains the most important formulas while Σn

contains the weakest ones.

In [21], the knowledge base Σ is equipped with a total preorder. The chosen sub-

bases privilege the most important formulas.

Definition 18 (Preferred sub-theory) Let Σ be stratified into Σ1 ∪ . . . ∪ Σn. A

preferred sub-theory is a set S = S1 ∪ . . . ∪ Sn such that ∀k ∈ [1, n], S1 ∪ . . . ∪ Sk is a

maximal (for set inclusion) consistent subbase of Σ1 ∪ . . . ∪ Σk.

Example 8 (Example of Section 3 cont.) The knowledge base Σ = Σ1 ∪Σ2 with Σ1 =

{x} and Σ2 = {x → y,¬y} has two preferred sub-theories: S1 = {x, x → y} and

S2 = {x,¬y}.

It can be shown that the preferred sub-theories of a knowledge base Σ are maximal

(wrt set inclusion) consistent subbases of Σ.

7.2 Computing sub-theories with a PAF

This section shows how an instance of our PAF computes the preferred sub-theories of

a propositional knowledge base Σ.

Assumption: In the rest of this paper, we assume that a knowledge base Σ contains

only consistent formulas.

Before presenting the instance, let us first introduce some useful notations.
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Notations: Let a = (H,h) be an argument (in the sense of Definition 3). The functions

Supp and Conc return respectively the support H and the conclusion h of the

argument a. For S ⊆ Σ, Arg(S) = {(H,h) | (H,h) is an argument in the sense

of Definition 3 and H ⊆ S}. Thus, Arg(Σ) denotes the set of all the arguments

that can be built from the whole knowledge base Σ. Finally, for E ⊆ Arg(Σ),

Base(E) =
⋃
Supp(a) where a ∈ E .

The following result summarizes some useful properties of the two functions: Arg and

Base.

Property 12

– For any consistent subbase S ⊆ Σ, S = Base(Arg(S)).

– For any E ⊆ Arg(Σ), E ⊆ Arg(Base(E)).

– A set S ⊆ Σ is consistent iff Arg(S) is conflict-free.

The instance uses all the arguments that can be built from Σ using Definition 3

(i.e. the set Arg(Σ)), the attack relation Ras given in Definition 4, and the preference

relation ≥WLP introduced in Definition 5. Recall that the relation ≥WLP is based on

the weakest link principle and privileges the arguments whose less important formulas

are more important than the less important formulas of the other arguments. The PAF

that will be used is thus (Arg(Σ),Ras,≥WLP ).

The first result shows that from a preferred sub-theory, it is possible to build a

unique pref-stable extension of the PAF (Arg(Σ), Ras, ≥WLP ).

Theorem 13 Let Σ be a stratified knowledge base. For all preferred sub-theory S of

Σ, it holds that:

– Arg(S) is a pref-stable extension of (Arg(Σ), Ras, ≥WLP )

– S = Base(Arg(S))

Similarly, we show that each pref-stable extension of (Arg(Σ), Ras, ≥WLP ) is built

from a unique preferred sub-theory of Σ.

Theorem 14 Let Σ be a stratified knowledge base. For all pref-stable extension E of

(Arg(Σ), Ras, ≥WLP ), it holds that:

– Base(E) is a preferred sub-theory of Σ

– E = Arg(Base(E))

The next result shows that there exists a one-to-one correspondence between the

preferred sub-theories of Σ and the pref-stable extensions of (Arg(Σ), Ras, ≥WLP ).

Corollary 1 Let T = (Arg(Σ), Ras, ≥WLP ) be a PAF over a stratified knowledge

base Σ. The pref-stable extensions of T are exactly the Arg(S) where S ranges over the

preferred sub-theories of Σ.

From the above result, it follows that the PAF (Arg(Σ), Ras, ≥WLP ) has at least

one pref-stable extension.

Corollary 2 The PAF (Arg(Σ), Ras, ≥WLP ) has at least one pref-stable extension.

Example 9 (Example of Section 3 cont.) Figure 1 shows the two preferred sub-theories

of Σ as well as the two corresponding pref-stable extensions of the PAF.

The results of this section show that our approach is sound. It recovers the well-

known preferred sub-theories.
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Fig. 1 Preferred sub-theories of Σ + Pref-stable extensions of (Arg(Σ), Ras, ≥WLP )
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8 Related work

Preferences play a key role in nonmonotonic reasoning [23]. They are used in order to

narrow down the number of possible belief sets of a base theory. To say it differently,

from a given base theory, a first set of standard solutions (belief sets) is computed,

then a subset of those solutions (called preferred solutions) is chosen on the basis of

available preferences. Thus, preferences refine the standard solutions.

In [14], we have shown that preferences intervene twice in an argumentation framework.

They are mandatory for: i) computing the standard solutions of an AF, and then ii)

for narrowing the number of those solutions. We have also shown that the two roles

of preferences are completely independent since none of them can be modeled by the

other one.

The first role has largely been discussed in existing literature. It goes back to the

paper [46]. In that work, the authors have defined an AF in which arguments are built

from a propositional knowledge base. Arguments grounded on specific information are

stronger than the ones built from more general information. This preference is used

to solve dilemmas between any pair of conflicting arguments. Thus, it is used for

handling critical attacks. The idea of this paper has been generalized in [6] then in

[17] to any AF and to any preference relation. Unfortunately, the approach followed

in [6,17] delivers correct results only when the attack relation is symmetric. When

the attack relation is not symmetric, the approach suffers from two main drawbacks:

the first is that it may return conflicting extensions as shown in Example 2 since it

may put two conflicting arguments in the same extension. One of these arguments is

clearly undesirable. The second drawback is a consequence of the first one. Indeed, since

an undesirable argument may be accepted, then all the arguments that are defended
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by this argument are accepted as well at the detriment of good ones. Our approach

overcomes these limits.

Another work which handles correctly the problem of critical attacks is that proposed

in [43,39]. In that paper, Prakken has proposed a logic-based instantiation of Dung’s

framework in which three kinds of attacks are considered: rebuttal, assumption attack

and undercut. For each relation, the author has found a way to avoid the problem of

critical attack and ensured conflict-free extensions. We think that our work is more gen-

eral since we solved the problem at an abstract level. This avoid the user who wants

to use another attack relation to look for new ways to avoid conflicting extensions.

Moreover, our approach is axiomatic, meaning that it is well founded.

To the best of our knowledge, the only work on refinement (i.e. the second role of pref-

erences) is that appeared in [28]. However, in that work the attack relation is assumed

to be symmetric. Finally, we would like to mention the work done in [33]. In this paper,

the author made a survey of the critics presented in [12,28] against existing approaches

for PAFs. The author concluded that one should use a symmetric attack relation in

order to avoid the problem of conflicting extensions and then to refine the result with

the preference relation already mentioned in [28]. The first suggestion is certainly not

realistic, especially in light of new results in the literature stating that symmetric re-

lations should be avoided in logic-based argumentation systems. In our paper, we have

proposed a framework which handles correctly critical attacks. The results returned by

this framework can then be refined by the relation proposed in [28].

Answer set programming is closely related to argumentation theory. Indeed, some cor-

respondences can be made between the two theories. In [22], an axiomatic approach

was proposed in order to take into account priorities between rules in an answer set

program. Two principles were particularly introduced. If we translate them into an

argumentation context, they would be defined as follows:

Principle 1. Let T = (A,R,≥) be a PAF. Let E1 and E2 be two extensions

of the AF (A,R) such that E1 = E ∪ {a} and E2 = E ∪ {b}. If a > b, then E1

should be the only extension of T .

This postulate is suitable for the second role of preferences and not for handling

critical attacks as shown by the following example.

Example 10 Let T = (A,R,≥) be a PAF such that A = {a, b, c, d}, b > a, c > d and

R is as depicted in the figure below.

a b

c d

The AF (A,R) has two stable extensions: {a, c} and {a, d}. According to the above

postulate, the set {a, c} should be the only extension of the PAF T . This is not realistic

since the attack from a to b is critical. Thus, the argument b should win. According to

our approach, the only extension of this PAF is the set {b, c}.

The second principle states that adding a rule which is not applicable in a preferred

belief set can never render this belief set non preferred unless new preference informa-

tion changes preferences among some of the old rules (e.g. via transitivity). In other
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words, a belief set is not blamed for not applying rules which are not applicable. The

following example shows again that this principle is not suitable in an argumentation

context.

Example 11 Let T = (A,R,≥) be a PAF such that A = {a, b, c, d}, a ≈ b ≈ c and R
is as depicted in the figure below.

a d

c b

The only preferred extension of this PAF is the empty set (∅). If now we learn that

d > a, thus the new PAF has a non-empty preferred extension which is {d}.

The two principles introduced in [22] allow to refine the results got in the flat

case (without priorities) with priorities. However, a PAF does not necessarily refine

the results of a basic argumentation framework. Thus, the principles that should be

applied in both approaches should be different.

9 Conclusion

Several proposals have been made in the literature on integrating preferences in an

argumentation framework. They argue that an attack may fail if the attacked argument

is stronger than its attacker. They then suggest to remove such an attack from the

argumentation framework and to evaluate the arguments on the basis of the remaining

attacks. In this paper, we have shown that those proposals behave correctly when the

attack relation is symmetric, however they may return unintended results when it is

not. The reason is that by removing an attack, a crucial information is lost. Besides, a

recent study ([1]) has shown that symmetric relations should be avoided when plugging

Dung’s approach upon a logical formalism. Indeed, if arguments are built from a logical

knowledge base using a consequence operator which satisfies Tarski’s axioms, then

the framework with symmetric attack relation violates the rationality postulate on

consistency. This latter is among the three basic properties that any argumentation

framework should verify. Thus, a new approach for dealing with critical attacks is

needed.

We have proposed here a novel approach which prevents the above limitations. Its

idea is to take into account preferences at the semantics level, and to define thus new

acceptability semantics that take into account both attacks and preferences between

arguments. Existing semantics specify in a declarative way when a set of arguments is

an extension (i.e. an acceptable set), but do not say anything on the subsets of argu-

ments which are not extensions. However, in some applications like decision making,

this information may be useful for comparing pairs of options. Thus, in this paper

we have proposed a new line of research. A semantics is defined by a binary relation,

called dominance relation, on the powerset of the set of arguments. The extensions

of a PAF are the maximal elements of this relation. Thus, a semantics may compare

any pair of subsets of arguments. Of course, not any binary relation can be used as

a semantics. We have proposed three main postulates that any semantics should sat-

isfy. The first one ensures the conflict-freeness of the extensions. It states that any
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conflict-free set of arguments should be strictly preferred to a conflicting one. The two

other postulates describe respectively the role of the attack relation and the role of

the preference relation in a PAF. An attack should win if the attacked argument is

not stronger than its attacker while a preference should win in case the attacked argu-

ment is stronger than its attacker. Another main contribution of our paper consists in

generalizing Dung’s acceptability semantics with preferences, namely preferred, stable

and grounded semantics. The idea is to retrieve those semantics in case preferences do

not conflict with the attacks. We have proposed a particular relation for each seman-

tics, and we have shown that the links between Dung’s semantics are preserved between

their generalizations. We have also provided full characterizations of any relation which

generalizes stable semantics as well as their extensions without referring to dominance

relations. We have shown that integrating preferences does not change the worst-case

complexity of different reasoning tasks under stable semantics. Finally, we have shown

that our approach is valid since it allows to make a bridge between preference-based

argumentation and coherence-based approach for handling inconsistency in weighted

propositional knowledge bases. Namely, we have established full correspondences be-

tween the preferred sub-theories defined by Brewka in [21] and the generalized versions

of stable extensions.

An extension of this work would be to characterize the different dominance relations

that generalize preferred semantics and those which generalize grounded semantics. A

similar work can be done on those semantics proposed in [16], ideal semantics [30]

and semi-stable semantics [25]. Another future work consists of studying how the new

semantics can be used in a decision making context in order to rank order a set of

alternatives.

Appendix

Proof Property 1. Let T = (A,R,≥) be a PAF. Assume that � is a dominance

relation which satisfies postulate P1. Let us show that each element of the set �max

is conflict-free wrt R.

Assume that E ∈ �max. Thus, ∀E ′ ∈ P(A), E � E ′. In particular, E � ∅. Since

∅ ∈ CF(T ), then from Postulate P1, E ∈ CF(T ).

Proof Theorem 1. Let F = (A,R) be an AF and � ⊆ P(A) × P(A).

I. Assume that Ext(F) = �max and let us prove that the three conditions are

satisfied.

1. Assume that E ∈ P(A) and E /∈ CF(F). So, E /∈ Ext(F), consequently, E /∈ �max.

Thus, ∃E ′ ∈ P(A) s.t. ¬(E � E ′).
2. Assume that E ∈ CF(F) and that ∀x′ /∈ E , ∃x ∈ E s.t. xRx′. Thus, E is a stable

extension of (A,R), and thus E ∈ �max. Consequently, ∀E ′ ∈ P(A), E � E ′.
3. Assume that E ∈ CF(F) and ∃x′ ∈ A \ E s.t. �x ∈ E and xRx′. It is obvious that

E is not a stable extension of (A,R), thus E /∈ Ext(F). Since Ext(F) = �max, it

follows that E /∈ �max. Thus, ∃E ′ ∈ P(A) s.t. not (E � E ′).

II. Assume that a relation � satisfies the three conditions and let us prove that

Ext(F) = �max.

– Let E be a stable extension of (A,R) and let E ′ ∈ P(A). From the second condition,

E � E ′. Thus, E ∈ �max.
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– Assume that E ∈ �max. Thus, for all E ′ ∈ P(A), E � E ′. From the first condition,

it follows that E is conflict-free. Assume that E /∈ Ext(F). Thus, ∃x /∈ E and E
does not attack x. From the third condition, ∃E ′ ∈ P(A) s.t. not E � E ′. This

contradicts the fact that E ∈ �max.

Proof Property 2. Let us show that the relation �s satisfies postulates P1, P2 and

P3. From the first condition of Definition 11, it is clear that postulate P1 is satisfied.

Let x and x′ be two arguments. Since we assumed throughout the paper that there

are no self-attacking arguments, then {x} and {x′} are conflict-free. Assume now that

xRx′, ¬(x′Rx) and ¬(x′ > x). From the second condition of Definition 11, it follows

that {x} �s {x′}. Thus, �s satisfies postulate P2.

Assume now that xRx′ and x′ > x. From the second condition of Definition 11, it

follows that {x′} �s {x}, however, not {x} �s {x′}. Thus, {x′} �s {x}. Consequently,

postulate P3 is satisfied by �s.

Proof Property 3. Let T = (A,R,≥) be a PAF and E ,E ′ ∈ CF(T ). Assume that

E � E ′. Let us show that E ′ �s E . Since E \ E ′ = ∅, then E ′ �s E . Let us now show

that not(E �s E ′). Since E � E ′, then ∃x′ ∈ E ′ \ E . But, since E \ E ′ = ∅, we conclude

that �x ∈ E \ E ′ s.t. (x, x′) ∈> or ((x, x′) ∈ R ∧ (x′, x) /∈>).

Proof Theorem 2. Let us show that the relation �s generalizes stable semantics.

T = (A,R,≥) be a PAF. Assume that �a, b ∈ A s.t. aRb and b > a. Assume that

E ′ ∈�s,max and let us show that E ′ is a stable extension of (A,R).

– Since E ′ ∈�s,max then it is conflict-free.

– We will now prove that E ′ defends all its elements. Let us suppose that (∃a ∈ E ′)
(∃x ∈ A) s.t. (x, a) ∈ R ∧ (�y ∈ E ′) (y, x) ∈ R. Since E ′ is conflict-free, then x /∈ E ′.
Let E = {x} ∪ {t ∈ E ′ | (x, t) /∈ R ∧ (t, x) /∈ R}. It is clear the E is conflict-free

since E is the union of two conflict-free sets which do not attack one another. Since

E ′ ∈�max then E ′ �s E . In particular, since x ∈ E \ E ′, then (∃x′ ∈ E ′ \ E) s.t.

((x′, x) ∈ R ∧ (x, x′) /∈>) ∨ (x′, x) ∈>. Since (�y ∈ E ′) (y, x) ∈ R, then it must

be the case that (x′, x) /∈ R and (x′, x) ∈>. Since x′ ∈ E ′ and x′ /∈ E then, with

respect to definition of E , from x′ /∈ E we have that (x, x′) ∈ R or (x′, x) ∈ R.

Since we have just seen that (x′, x) /∈ R, it must be that (x, x′) ∈ R. Recall that we

have (x′, x) ∈>. But we supposed that (�z, z′ ∈ A) s.t. (z, z′) ∈ R and (z′, z) ∈>.

Contradiction. Thus, E ′ defends its arguments.

– We have just shown that E ′ is admissible, i.e., it is conflict-free and it defends all its

arguments. We will now prove that E ′ attacks all arguments in A \ E ′. Let x /∈ E ′

be an argument and suppose that (�y ∈ E ′) (y, x) ∈ R. Either x attacks some

argument of E ′ or not. If it is the case, i.e., (∃a ∈ E ′) s.t. (x, a) ∈ R then, since E ′

defends all its elements, it holds that (∃y ∈ E ′) s.t. (y, x) ∈ R. Contradiction. So, it

must be that (�a ∈ E ′) s.t. (x, a) ∈ R. This means that E = E ′∪{x} is conflict-free.

According to Property 3, it holds that ¬(E ′ �s E). Contradiction with the fact that

E ′ ∈�s,max.

So, E ′ is conflict-free and it attacks all arguments in A \ E ′. This means that E ′ is

a stable extension of the framework (A,R).

Let E ′ be a stable extension of the framework (A,R) and let us prove that E ′ ∈�s,max.

– Since E ′ is stable then it is conflict-free.
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– We will prove that for an arbitrary conflict-free set of arguments E it holds that

E ′ �s E . Let E ⊆ A be a conflict-free set. If E \ E ′ = ∅ the proof is over. If it is not

the case, let x ∈ E \E ′. Since x /∈ E ′ and E ′ is a stable extension, then (∃x′ ∈ E ′) s.t.

(x′, x) ∈ R. We supposed that (�z, z′ ∈ A) s.t. (z, z′) ∈ R and (z′, z) ∈>. Thus,

(x, x′) /∈>. Since x ∈ E \ E ′ was arbitrary, it holds that E ′ �s E .

– From Property 3, it follows that E ′ ∈�s,max.

Proof Property 4. Let us show that the relation �p satisfies postulates P1, P2 and P3.

The definition of �p implies that P1 is ensured. Let us now suppose that for x, x′ ∈ A
we have xRx′, ¬(x′Rx) and ¬(x′ > x). Since there are no self-attacking arguments,

both {x} and {x′} are conflict-free. From Definition 12, we obtain {x} �p {x′} and

¬({x′} �p {x}). Thus, P2 is verified. Let xRx′ and x′ > x. From the same definition,

this time we have that ¬({x} �p {x′}) and {x′} �p {x}. In other words, {x′} �p {x},
which means that P3 is verified.

Proof Theorem 3. We will prove that preferred extensions of (A,R) are exactly

maximal elements of relation �p. Since we supposed that (�x, y ∈ A) s.t. (x, y) ∈ R
∧ (y, x) ∈> then E ′ �p E iff (∀x′ ∈ E ′) (∀x ∈ E) if (x, x′) ∈ R then (∃y′ ∈ E ′) s.t.

(y, x) ∈ R.

⇐ Let E ′ be a preferred extension of (A,R).

– Since E ′ is a preferred extension then it is conflict-free.

– Let us prove that E ′ ∈�p,max. Suppose the contrary. This means that one of the

following is true:

1. (∃E ⊆ A) s.t. E is conflict-free and ¬(E ′ �p E)

2. (∃E ⊆ A) s.t. E is conflict-free ∧ E ′ � E ∧ (∀E ′′ ⊆ A) E �p E ′′

Let (1) be the case. Since ¬(E ′ �p E) then (∃x′ ∈ E ′)(∃x ∈ E) s.t. (x, x′) ∈ R ∧
(�y′ ∈ E ′) s.t. (y′, x) ∈ R. This leads to the conclusion that E ′ does not defend

its arguments, thus it cannot be a preferred extension. Contradiction. So, it must

be that (2) holds. Since E ′ is preferred and E ′ � E then E is not admissible. From

the fact that E is conflict-free, one concludes that it does not defend its arguments.

Thus, (∃x′′ ∈ E ′′ \ E ′) s.t. (∃y ∈ A) s.t. (y, x′′) ∈ R ∧ (�z′′ ∈ E ′′) s.t. (z′′, y) ∈ R.

Hence, ¬(E ′′ �p {y}). Contradiction.

Let E ′ ∈�p,max. We will prove that E ′ is a preferred extension of Dung’s argumen-

tation framework (A,R).

– Since E ′ ∈�p,max then it is conflict-free.

– Let us prove that E ′ defends all its arguments. Suppose not. This means that

(∃y ∈ A) s.t. (y, x′) ∈ R ∧ (�z′ ∈ E ′) s.t. (z′, y) ∈ R. This means that ¬(E ′ �p {y}).
Contradiction.

– We have just seen that E ′ is admissible. Let us prove that E ′ is a preferred extension

of (A,R). Suppose the contrary, i.e., (∃E ⊆ A) s.t. E is a preferred extension and

E ′ � E . Since E ′ ∈�p,max then E /∈�p,max. On the other hand, since E is a preferred

extension, then E ∈�p,max, as we have proved in the first part of this theorem.

Contradiction.

Proof Theorem 4. We will prove that for any (A,R,≥), every pref-stable extension

of this system is a pref-preferred extension of that system. In order to simplify the

notation, we will write xDy instead of (xRy and not (y > x)) or (yRx and x > y).

It has been proved in [13] that if E ∈�s,max then E is a Dung’s stable extension of
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the system (A,D). Then, from [29], we obtain that E is Dung’s preferred extension

of the system (A,D). Now, we only have to prove that E ∈�p,max. It is obvious that

E ∈ CF . Let E ′ ⊆ A. One can easily see that E �p E ′; this is a direct consequence

of Definition 12. Let us prove that �E ′′ s.t. E � E ′′ and ∀E ′, E ′′ �p E ′. Suppose the

contrary; this would mean that E ′′ is admissible in (A,D) which contradicts the fact

that E is a preferred extension of (A,D). Thus, it must be that E ∈�p,max, which ends

the proof.

Proof Property 5. In the proof of this property, we will use Properties 50 and 51 from

[15] which imply that for any argumentation system (A,R), for any x ∈ A, we have

that x ∈ GE iff sd′(x,GE), where GE is the standard notation for grounded extension

which will be used throughout the proof and sd′ is the notion of strong defense as

defined in Definition 13 in [15]. Note that for any a ∈ A, for any A ⊆ E , we have that

sd(a,E) iff (∀b ∈ A if bDa then ∃c ∈ E \ {a} s.t. cDb and sd(c, E \ {a})), where we use

xDy as abbreviation for (xRy and not (y > x)) or (yRx and x > y). This proof will be

based on the fact that we have sd(a,E) in (A,R,≥) if and only if we have sd′(a, E) in

(A,D). Thus, when we write sd(a, E), we refer to system (A,R,≥), and when we use

the function sd′ and write sd′(a, E), we refer to the corresponding system (A,D). By

using this equivalence, we will prove that any set E ⊆ A is a pref-grounded extension

of (A,R,≥) iff E is the grounded extension of (A,D).

⇐ Let E be the grounded extension of (A,D). It is obvious that E ∈ CF . Let E ′ ⊆ A.

Since E is a grounded extension of (A,D), then from [15], we have x ∈ E ⇒ sd′(x, E).

This means that we have sd(x,E) in (A,R,≥). Thus, sd(x,E ,E ′) for any E ′, which

means that ∀E ′, E �g E ′. Let us prove that �E ′ s.t. E ′ ∈ CF and E � E ′ and ∀E ′′,
E ′ �g E ′′. Suppose the contrary. Suppose also that ∀x ∈ E ′, sd(x,E ′). This means that

∀x ∈ E ′, sd′(x, E ′) in (A,D). Thus, from Proposition 51 of [15], E ′ ⊆ E , since E is the

grounded extension of (A,D). Contradiction, so it must be that ∃x ∈ E ′ s.t. ¬sd(x,E ′).
Thus, ∃y ∈ A s.t. ¬(E �g {y}). Contradiction, so we proved that E ∈�g,max.

⇒ Let E ∈�g,max. It is clear that ∀x ∈ E , sd(x,E) in (A,R,≥). Thus, ∀x ∈ E ,

sd′(x,E) in (A,D). From Proposition 51 of [15] we obtain E ⊆ GE, where GE is the

grounded extension of (A,D). Let us suppose that E � GE. In the first part of this

proof, we have shown that the grounded extension of (A,D) is in �g,max. Contradic-

tion, since we have supposed that E ∈�g,max and we have E � GE. Thus, E = GE.

This shows that E ∈�g,max iff E is the grounded extensions of the system (A,D).

Since it has been shown in [29] that every argumentation system (without preferences)

has exactly one grounded extension, we conclude that �g,max has exactly one element.

Proof Property 6. It is easy to see that P1 is satisfied. Let xRx′, ¬(x′Rx) and

¬(x′ > x). From definition of pref-grounded semantics, we have that {x} �g {x′}
since sd(x, {x}, {x′}). On the other hand, the fact that ¬sd(x′, {x′}, {x}) implies that

¬({x′} �g {x}). Thus, P2 is verified. Let us now prove that �g verifies P3. Let xRx′

a,d x′ > x. In this case, we obtain ¬sd(x, {x}, {x′}) and sd(x′, {x′}, {x}), which means

that {x′} �g {x}.

Proof Theorem 5. We show that the grounded extension of (A,R) is the only maximal

element wrt �g . Since we supposed that (�x, y ∈ A) s.t. (x, y) ∈ R ∧ (y, x) ∈> then

we can simplify Definition 13 which becomes: sd(x,E ′, E) iff (∀y ∈ E) (if (y, x) ∈ R
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then (∃z ∈ E ′ \ {x}) s.t. ((z, y) ∈ R ∧ sd(z,E ′ \ {x}, E))). In this particular case when

no attacked argument is strictly preferred to its attacker, our definition of sd(x,E)

becomes exactly the same as Definition 13 in [15]. Thus, using Proposition 50 and

Proposition 51 of the same paper, we conclude that x ∈ GE iff sd(x,GE), where GE is

the grounded extension of the framework (A,R).

⇐ Let E ′ be the grounded extension of (A,R).

– Since E ′ is the grounded extension then it is conflict-free.

– We will prove that for an arbitrary conflict-free set E ⊆ A it holds that E ′ �g E . Let

E ⊆ A be conflict-free. Since E ′ is the grounded extension then x ∈ E ′ ⇒ sd(x,E ′).
On the other hand, (∀x ∈ E ′) sd(x,E ′) implies that sd(x,E ′, E). Thus, E ′ �g E .

Since E was arbitrary, then (∀E ⊆ A) ((E is conflict-free) ⇒ (E ′ �g E)).

– We will now prove that (�E ⊆ A) s.t. E is conflict-free and E ′ � E and ((∀E ′′ ⊆ A)

(E �g E ′′)). Suppose the contrary. Suppose also that (∀x ∈ E) sd(x,E). If this is

the case, according to Proposition 51 in [15], E ⊆ GE. Contradiction. So, it must

be that (∃x ∈ E) s.t. ¬sd(x,E). Thus, (∃y ∈ A) s.t. ¬sd(x,E , {y}). Consequently,

¬(E �g {y}). Contradiction. So, we have proved that E ′ ∈�g,max.

Let E ′ ∈�g,max and let us prove that E ′ = GE. Since (∀x ∈ A) E ′ �g {x} then (∀x′ ∈ E ′)
sd(x′, E ′). From the fact that (∀x′ ∈ E ′) sd(x′, E ′) and Proposition 51 of [15] we have

that E ′ ⊆ GE. Let us now prove that E ′ = GE. Suppose not, i.e., suppose that E ′ � GE.

We have proved in the first part of this theorem that GE ∈�g,max. Contradiction, since

we have supposed that E ′ ∈�g,max and we have E ′ � GE.

Proof Theorem 6. Let us suppose that E is the pref-grounded extension of (A,R,≥).

By using the same reasoning as in the proof of Property 5, we conclude that E is

the grounded extension of the system (A,D), where xDy is defined as (xRy and not

(y > x)) or (yRx and x > y). In [29], it has been shown that the grounded extension

of any argumentation system is a subset of the intersection of all preferred extensions

of that system. Thus, in order to prove this property, it is sufficient to show that ∀E ,

if E ∈�g,max, then E is a preferred extension of (A,D), since this will imply that the

intersection of preferred extensions of (A,D) is a subset of the intersection of pref-

preferred extensions of (A,R,≥).

Let E ∈�g,max. Obviously, E ∈ CF . Let us prove that E is admissible in (A,D).

Let a ∈ E , a′ /∈ E and a′Da. Since we supposed that E ∈�g,max, then E �p {a′}. Con-

sequently, ∃b ∈ E s.t. bDa′, so E is admissible in (A,D). Let us suppose that ∃E ′ ⊆ A,

s.t. E � E ′ and E ′ is admissible in (A,D). Then, ∀E ′′, we have E ′ �p E ′′. Consequently,

from the second item of Definition 8, we have that E /∈�g,max, contradiction. Thus, it

must be that E is a preferred extension of (A,D). Since every pref-preferred extension

of (A,R,≥) is a preferred extension of (A,D), then⋂
Ei∈�p,max

Ei ⊆
⋂

Ej is a preferred extension of (A,D) Ej , which ends the proof of this

property.

Proof Property 7. Let x, x′ ∈ A. Since there are no self-attacking arguments, then

{x}, {x′} ∈ CF . Let xRx′, ¬(x′Rx) and ¬(x′ > x). From the first part of Postulate 5

we have that {x} � {x′}. From Postulate 4, we have ¬({x′} � {x}). Thus, Postulate 2

is verified. Let xRx′ and x′ > x. From Postulate 5, {x′} � {x}. Furthermore, Postulate

4 implies ¬({x} � {x′}). In sum, {x′} � {x}, which means that Postulate 3 is verified.

Proof Property 8. To show that �s is a pref-stable relation, we show that it satisfies

postulates P4, P5, P6. Postulate 6 is satisfied since from the second item of the same
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definition, when comparing two sets E and E ′, common elements are not taken into

account. The second condition of the definition of �s is exactly the negation of the

condition of Postulate 4. Since Postulate 5 implies the second item of this definition,

then it is verified.

Proof Theorem 7. We prove that all pref-stable relations return the same set of ex-

tensions.

⇒ Let E ∈ �max. We will prove that E �′
max. From Postulate 1, E ∈ CF . Let

E ′ ⊆ A. If E ′ is not conflict-free then, from Postulate 1, E �′ E ′. Else, from Postulate

6, E �′ E ′ iff E \ E ′ �′ E ′ \ E . Let E1 = E \ E ′ and E2 = E ′ \ E . E1 and E2 are

disjunct conflict-free sets. If condition of Postulate 5 is satisfied for E1 and E2, then

E1 �′ E2. Let us study the case when this condition is not satisfied. Condition of

Postulate 4 is not satisfied since E ∈ �max. Thus, it must be that (∃x′ ∈ E2) s.t.

(�x ∈ E1)((x, x′) ∈ R∧(x′, x) /∈>)∨((x′, x) ∈ R∧(x, x′) ∈>) and (∃x ∈ E1)(x, x′) ∈>.

Let X = {x ∈ E1|(x, x′) ∈>}. X is conflict-free. From Postulate 4, ¬(E1 \ X � {x′}).
Postulate 6 implies that ¬(E1 \ X ∪ (X ∪ (E ∩ E ′)) � {x′} ∪ (X ∪ (E ∩ E ′))), i.e.

¬(E � {x′} ∪ (X ∪ (E ∩ E ′))). Contradiction with E ∈ �max. Thus, condition of

Postulate 5 is satisfied for E1 and E2, and E1 �′ E2. Consequently, E �′ E ′. This means

that E ∈�′
max.

⇐ In the first part of proof, we showed that for all pref-stable relations �1,�2, it

holds that if E ∈�1
max then E ∈�2

max. Contraposition of this rule gives specifies that

if E /∈�2
max then E /∈�1

max. Since this was proved for arbitrary relations which satisfy

P1, P4, P5 and P6, we conclude: if E /∈�′
max then E /∈�max.

Proof Property 9. Let us suppose that there exists a transitive relation which satisfies

P1 and P5 and which generalizes stable semantics. Let us now consider a system

depicted in Figure 2. Suppose that attacks are as depicted and that ≥= {(w, w) | w ∈
A}. From P1, we have that for any E ′ /∈ CF , it holds that {x} � E ′. From P5, {x} �

Fig. 2 No transitive relation generalizes stable semantics and verifies P1 and P5.

x

a

y

z

{a}, {a} � {x}, {x} � {y}, {y} � {z}, {x} � ∅. From those relations and transitivity

of �, we have {x} � {x} and {x} � {z}. Thus, {x} ∈ �max. This contradicts the fact

that � generalizes stable semantics, since {x} is not a stable extension of the system

(A,R).

Proof Theorem 8. We will show that extensions of (A,R) coincide with maximal

elements of � for any preference-based argumentation system T , such that (�a, b ∈
A)(a, b) ∈ R ∧ (b, a) ∈>.
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⇒ Let E ∈ Ext(F). We prove that E ∈�max. Let E ′ ∈ P(A). If E ′ /∈ CF then,

from Postulate 1, E � E ′. Let E ′ ∈ CF . Since E ∈ Ext(F) then (∀x′ ∈ E ′ \ E)(∃x ∈
E \E ′)(x, x′) ∈ R. We supposed (�a, b ∈ A)(a, b) ∈ R∧ (b, a) ∈>. Thus, from Postulate

5, E \ E ′ � E ′ \ E . Now, Postulate 6 implies E � E ′. Since E ′ was arbitrary, then

E ∈ �max.

⇐ Let E ∈ �max. We will show that E ∈ Ext(F). From Postulate 1, E ∈ CF . Let

x′ /∈ E . Since E ∈ �max then it must be E � {x′}. From Postulate 4, (∃x ∈ E)(x, x′) ∈
R ∨ (x, x′) ∈>. If (∃x ∈ E)(x,x′) ∈ R, the proof is over. Let us suppose the contrary.

Then (�x ∈ E)(x,x′) ∈ R. Let X = {x ∈ E|x > x′}. From Postulate 4, ¬(E \X � {x′}).
This fact and Postulate 6 imply ¬(E � (X ∪ {x′})). Contradiction with E ∈ �max.

Thus, E ∈ Ext(F).

Proof Property 10. It is easy to show that relation �gn satisfies P1, P4, P5 and P6.

Postulate 1 is satisfied since from the first item of the definition of �gn, any conflict-

free set is preferred to any conflicting set. Postulate 6 is satisfied since from the second

item of the same definition, when comparing two sets E and E ′, common elements are

not taken into account. Postulate 4 implies that the second item of Definition 16 is not

satisfied. Postulate 5 is trivially verified.

Proof Property 11. Let us show that �sp satisfies P1, P4, P5 and P6. We see from the

first item of Definition 17 that all (conflict-free and non conflict-free) sets are better

than non conflict-free sets. A non conflict-free set, however, cannot be better than

conflict-free set. Thus, Postulate 1 is satisfied. Postulates 6, 4 and 5 are verified for the

same reasons as in the case of relation �gn.

Proof Theorem 9. We will show that for any relation � which satisfies P1, P4, P5

and P6, we have that if E �gn E ′ then E � E ′ and if E � E ′ then E �sp E ′.

– Let E �gn E ′. This means that E ∈ CF(T ). If E ′ /∈ CF(T ), then from Postulate 1,

E � E ′. We study the case when E ′ ∈ CF(T ). From Postulate 6, we have E � E ′ iff

E \ E ′ � E ′ \ E . From Definition 16 and Postulate 5, E \ E ′ � E ′ \ E . Thus, E � E ′.
– If E ,E ′ /∈ CF(T ) then, Definition 17 implies E �sp E ′. Case E /∈ CF(T ), E ′ ∈ CF(T )

is not possible because of Postulate 1. If E ∈ CF(T ), E ′ /∈ CF(T ), then from

Definition 17, E �sp E ′. In the non-trivial case, when E , E ′ ∈ CF(T ), from Postulate

6, E \ E ′ � E ′ \ E . Suppose that ¬(E \ E ′ �sp E ′ \ E). Now, Definition 17 implies

(∃x′ ∈ E ′ \ E)(�x ∈ E \ E ′) s.t. ((x, x′) ∈>) ∨ ((x, x′) ∈ R ∧ (x′, x) /∈>). From this

fact and Postulate 4, it holds that ¬(E \ E ′ � E ′ \ E). Contradiction.

Proof Theorem 10.

We will now prove that a set is a pref-stable extension iff it is conflict-free and its

arguments win in all conflicts with exterior ones. Throughout the proof, we will use

notation �gn
max to refer to the set of maximal elements wrt. relation �gn.

Since both relations � and �gn verify Postulates 1, 6, 4 and 5, then from Theorem

7, �max=�gn
max. This means that it is sufficient to prove that E ∈�gn

max iff the two

conditions of theorem are satisfied.

⇒ Let E ∈�gn
max. Since E is a pref-extension, according to Property 1, E ∈ CF .

Let x′ ∈ A \ E . We supposed that (�a ∈ A) s.t. (a, a) ∈ R, so it must be that {x′} is

conflict-free. Since E ∈�gn
max, it holds that E �gn {x′}. Since E and {x′} are conflict-

free, Definition 16 implies (∃x ∈ E) s.t. (((x, x′) ∈ R ∧ (x′, x) /∈>) ∨ ((x′, x) ∈ R ∧
(x, x′) ∈>)).

⇐ Let E be conflict-free set and let (∀x′ ∈ A \ E) (∃x ∈ E) s.t. (((x, x′) ∈ R ∧
(x′, x) /∈>) ∨ ((x′, x) ∈ R ∧ (x, x′) ∈>)). Let us prove that E ∈�gn

max.
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– Since E ∈ CF then for every non conflict-free set E ′ it holds that E �gn E ′.
– Let E ′ ⊆ A be an arbitrary conflict-free set of arguments. If E ′ ⊆ E , the second

condition of theorem is trivially satisfied. Else, let x′ ∈ E ′ \ E . From what we

supposed, we have that (∃x ∈ E \ E ′) s.t. ((x, x′) ∈ R ∧ (x′, x) /∈>) or ((x′, x) ∈ R
∧ (x, x′) ∈>). Thus, E �gn E ′.

From those two items, we have that E ∈�gn
max.

Proof Theorem 11.

We will show that a set is a pref-stable extension iff it is conflict-free and attacks

wrt. R′ all arguments in its exterior. Throughout the proof, we will use notation �gn
max

to refer to the set of maximal elements wrt relation �gn.

Since both relations � and �gn verify Postulates 1, 6, 4 and 5, then from The-

orem 7, �max=�gn
max. This means that it is sufficient to prove that E ∈�gn

max iff

E ∈ Ext(A,R′). Note also that E ∈ CF(T ) iff E is conflict-free in (A,R′). Thus, we

will simply use the notation E ∈ CF to refer to both of those cases since they coincide.

⇒ Let E ∈�gn
max. From Theorem 10, E ∈ CF and (∀x′ ∈ A \ E) (∃x ∈ E) s.t.

(((x, x′) ∈ R ∧ (x′, x) /∈>) ∨ ((x′, x) ∈ R ∧ (x, x′) ∈>)). This means that (∀x′ ∈ A\E)

(∃x ∈ E) s.t. (x, x′) ∈ R′. In other words, E ∈ Ext(A,R′).
⇐ Let E ∈ Ext(A,R′). Trivially, E ∈ CF . Let E ′ ⊆ A. If E ′ /∈ CF , then E � E ′.

Else, let E ′ ∈ CF . Since E ∈ Ext(A,R′), then (∀x′ ∈ A \ E)(∃x ∈ E)(x,x′) ∈ R′. This

is equivalent to (∀x′ ∈ A \ E) (∃x ∈ E) s.t. (((x, x′) ∈ R ∧ (x′, x) /∈>) ∨ ((x′, x) ∈ R
∧ (x, x′) ∈>)). Trivially, (∀x′ ∈ E ′ \ E) (∃x ∈ E \ E ′) s.t. (((x, x′) ∈ R ∧ (x′, x) /∈>) ∨
((x′, x) ∈ R ∧ (x, x′) ∈>)). That means that E ∈ �max.

Proof Theorem 12. Let T = (A,R,≥) be a PAF and B ⊆ A. Let xR′y be defined as

(xRy and not (y > x)) or (yRx and x > y). Let A = {a1, . . . , an}. The graph (A,R′)
can be constructed in polynomial time: it is sufficient to check for any pair (ai, aj) of

arguments whether (aiRaj and not (aj > ai)) or (ajRai and ai > aj) holds or not.

In Theorem 11, it has been proved that E is a pref-stable extension of (A,R,≥) if and

only if E is a stable extension of (A,R′). Thus, this theorem is a direct consequence of

this polynomial transformation and results proved in [31].

Proof Property 12.

– We show that x ∈ S iff x ∈ Base(Arg(S)) where S is a consistent subbase of Σ.

⇒ Let x ∈ S . Since S is consistent, then the set {x} is consistent as well. Thus,

({x}, x) ∈ Arg(S). Consequently, x ∈ Base(Arg(S)).

⇐ Assume that x ∈ Base(Arg(S)). Thus, ∃a ∈ Arg(S) s.t. x ∈ Supp(a). From the

definition of an argument, Supp(a) ⊆ S . Consequently, x ∈ S .

– If a ∈ E where E ⊆ Arg(Σ), then Supp(a) ⊆ Base(E). Consequently, a ∈ Arg(Base(E)).

– Let S ⊆ Σ.

– Assume that S is consistent and Arg(S) is not conflict-free. This means that

there exist a, a′ ∈ Arg(S) s.t. aRasa
′. From Definition 3 of assumption attack,

it follows that Supp(a) ∪ Supp(a′) is inconsistent. Besides, from the definition

of an argument, Supp(a) ⊆ S and Supp(a′) ⊆ S . Thus, Supp(a)∪ Supp(a′) ⊆ S .

Then, S is inconsistent. Contradiction.

– Assume now that S is inconsistent. This means that there exists a finite set

S ′ = {h1, . . . , hk} s.t.

• S ′ ⊆ S
• S ′ 
 ⊥
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• S ′ is minimal (wrt. set inclusion) s.t. previous two items hold.

Since S ′ is a minimal inconsistent set, then {h1, . . . , hk−1} and {hk} are con-

sistent. Thus, ({h1, . . . , hk−1},¬hk), ({hk}, hk) ∈ Arg(S). Furthermore, those

two arguments are conflicting (the former attacks the latter). This means that

Arg(S) is not conflict-free.

Proof Theorem 13. Let S be a preferred sub-theory of a knowledge base Σ. Thus,

S is consistent. From Property 12, it follows that Arg(S) is conflict-free. Assume that

∃a /∈ Arg(S). Since a /∈ Arg(S) and S is a maximal consistent subbase of Σ (according

to [21]), ∃h ∈ Supp(a) s.t. S∪{h} 
 ⊥. Assume that h ∈ Σj . Thus, Level(Supp(a)) ≥ j.

Since S is a preferred sub-theory of Σ, then S1∪ . . .∪Sj is a maximal (for set inclu-

sion) consistent subbase of Σ1∪ . . .∪Σj . Thus, S1∪ . . .∪Sj ∪{h} 
 ⊥. This means that

there exists an argument (S ′,¬h) ∈ Arg(S) s.t. S ′ ⊆ S1∪ . . .∪Sj . Thus, Level(S ′) ≤ j.

Consequently, (S ′,¬h) ≥WLP a. Moreover, (S ′,¬h)Rasa. Thus, (S ′,¬h)Rasa.

The second part of the theorem follows directly from Property 12.

Proof Theorem 14. Throughout the proof, we will use the notation Si = S ∩ Σi.

– We will first show that if S ⊆ Σ, E = Arg(S) and E is a stable extension then

S ∈ PST. We will suppose that S is not a preferred sub-theory and we will prove

that E is not a stable extension. If S is not consistent, then Property 12 implies

that E is not conflict-free. Let us study the case when S is consistent but it is not

a preferred subtheory. Thus, there exists i ∈ {1, . . . , n} such that S1 ∪ . . . ∪ Si is

not a maximal consistent set in Σ1, . . . , Σi. Let i be minimal s.t. S1 ∪ . . . ∪ Si is

not a maximal consistent set in Σ1, . . . , Σi. This means that there exists x /∈ S s.t.

x ∈ Σi and S1 ∪ . . . ∪ Si ∪ {x} is consistent. Let a′ = ({x}, x). Since E is a stable

extension, then (∃a ∈ E) s.t. aRra′. Since S1 ∪ . . . ∪ Si ∪ {x} is consistent then no

argument in E having level at most i cannot be in conflict with a′. Thus, we have

that �a ∈ E s.t. aRra′, which proves that E is not a stable extension.

– We will now prove that if E ⊆ A is a stable extension of (A,R,≥) and S = Base(E)

then E = Arg(S). Suppose the contrary. From Property 12, E ⊆ Arg(Base(E)), thus

E � Arg(Base(E)).

– Let us suppose that S is consistent. Since S is consistent, then Property 12

implies that Arg(S) is conflict-free. Since we supposed that E � Arg(S), then E
is not maximal conflict-free, contradiction.

– Let us study the case when S is inconsistent. This means that there can be

found a set S ′ = {h′
1, . . . , h′

k} s.t.

• S ′ ⊆ S
• S ′ 
 ⊥
• S ′ is a minimal s.t. the previous two conditions are satisfied.

Let us consider the set E ′ containing the following k arguments: E ′ = {a′1, . . . , a′k},
where a′i = (S ′ \ h′

i,¬h′
i). Since (∀h′

i ∈ S ′)(∃a ∈ E) s.t. h′
i ∈ Supp(a) and since

E is conflict-free then (�b ∈ E) s.t. Conc(b) ∈ {¬h′
1, . . .¬h′

k}. Hence, (∀a′i ∈ E ′)
we have that a′i /∈ E . Formally, E ∩E ′ = ∅. This also means that, wrt. R, no ar-

gument in E attacks any of arguments a′1, . . . , a′k. Formally, (∀a′ ∈ E ′)(�a ∈ E)

s.t. aRa′. Since E is a stable extension then arguments of E ′ must be attacked

wrt. Rr. We have just seen that they are not attacked wrt. R. This means that:

(∀i ∈ {1, . . . , k})(∃ai ∈ E)(a′iRai) ∧ (ai > a′i).
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For assumption attacks to exist, it is necessary that:

(∀i ∈ {1, . . . , k}) (h′
i ∈ Supp(ai)) ∧ (ai > a′i).

From (∀i ∈ {1, . . . , k})ai > a′i we have (∀i ∈ {1, . . . , k}) Level({hi}) ≤
Level(Supp(ai)) < Level(Supp(a′i)). This means that:

(∀i ∈ {1, . . . , k}) Level({h′
i}) < maxj �=iLevel({h′

j}).

Let li = Level(h′
i), for all i ∈ {1, . . . , k} and let lm ∈ S ′ be s.t. lm =

max{l1, . . . , lk}. Then, from the previous facts, we have:

l1 < lm

. . .

lm < max({l1, . . . , lk} \ {lm})
. . .

lk < lm

The row m, i.e. lm < max({l1, . . . , lk} \ {lm}) is an obvious contradiction since

we supposed that lm is the maximal value in {l1, . . . , lk}.
– Now, we have proved that:

1. If S ⊆ Σ, E = Arg(S) and E is a stable extension, then S is a preferred sub-

theory.

2. If E is a stable extension then E = Arg(Base(E)).

Let E be a stable extension and let S = Base(E). Then, from (2), E = Arg(S). From

(1), S is a preferred sub-theory.
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