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ABSTRACT
We improve the state-of-the-art method for the compression
of web and other similar graphs by introducing an elegant
technique which further exploits the clustering properties
observed in these graphs. The analysis and experimental
evaluation of our method shows that it outperforms the cur-
rently best method of Boldi et al. by achieving a better com-
pression ratio and retrieval time. Our method exhibits vast
improvements on certain families of graphs, such as social
networks, by taking advantage of their compressibility char-
acteristics, and ensures that the compression ratio will not
worsen for any graph, since it easily falls back to the state-
of-the-art method.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and Networks; E.4 [Coding
and information theory]: Data compaction and compres-
sion; H.2.8 [Database Applications]: Data Mining

Keywords
Graph Compression; Compact Graph Representation; Social
Network Graphs; Graph Clustering

1. INTRODUCTION
Real-world systems and phenomena that involve interac-

tions among various entities are being modelled using graphs
for decades now. The recent explosive growth of large-scale
systems that are traditionally modelled as graphs, the world-
wide web and social networks being typical examples, has
intensified the need for compact, yet efficient, representa-
tions of graphs. In particular, we need compressed graph
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representations that allow mining without decompressing
the graph. In this way, algorithms and applications with
tasks that correspond to graph mining problems can take ad-
vantage of such representations to boost their performance.
In particular, serving adjacency queries or maintaining and
querying low-cost snapshots for archival purposes are com-
mon operations in such critical applications, and can benefit
from the use of in-memory representations of graphs.

The graphs we are interested in representing share some
common features. First, they represent huge networks ex-
tending to millions of nodes, but the degrees (in/out-degrees)
of the latter are power law distributed [9,11], rendering the
graphs to be rather sparse [14]. Moreover, the graphs ex-
hibit the locality of reference property: nodes tend to have
successors that are ‘close’ to them in a sense that depends
on the context and the nature of the network. For instance,
web pages often contain links to pages of the same web site
or domain, and people in social networks are often friends
with individuals from the same neighbourhood, university,
or work. Furthermore, these graphs exhibit the copy pro-
perty (or similarity property), which denotes that nodes
occurring close to each other tend to have many common
successors.

These properties induce various types of redundancy in
the graphs’ representations, and are taken into account when
designing compression methods. The state-of-the-art ap-
proach to the compact representation of graphs is the method
of Boldi and Vigna [7], further improved using a reordering
of the graph [5] before compressing it. Several other ap-
proaches have been proposed, but they are slower, i.e., they
improve the results of [7] only in terms of compression ra-
tios and not in terms of access times of the graph’s elements,
they are efficient for small graphs only, or they are methods
solely based on some usually computationally expensive re-
ordering of the input graph. We note here that reordering a
given graph results in an isomorphic graph, in which redun-
dancy can be (hopefully) exploited by the algorithm more
effectively. For example, in [5, 6] the authors introduce re-
orderings for which the Boldi and Vigna method yields an in-
creased compression of web and social network graphs, when
compared with the compression obtained using the graphs
in their initial form. Hence, the reorderings can favour any
compression algorithm that takes the aforementioned pro-
perties into account.

The web and social graphs may share the above proper-
ties, but feature a substantial difference in the way they are
represented: while it is easy to order the nodes of a web
graph in a meaningful way which favours its compression,



there is no such obvious ordering for general networks, in-
cluding social ones. As it is noted in [11], there exists some,
yet unexplained, topological difference between social net-
works and web graphs that results in a less effective com-
pression of the former, i.e., a larger compression ratio.

1.1 Related work
The need for compact representation of graphs emerged

with the explosion of the size of the worldwide web, so the
first such attempts focused on compressing web graphs. In
the last dozen of years graph compression has turned into
a very active research area and many algorithms have been
proposed, some of them designed for more general graphs
like the social network ones. Most algorithms in this direc-
tion try to offer a good space/time trade-off.

The structures traditionally used for the representation
of graphs are the adjacency list and the adjacency matrix.
The former is preferred for sparse graphs, i.e., graphs whose
number of edges is O(n), where n denotes the number of the
graph’s nodes, while the latter is used for dense graphs, i.e.,
graphs with Θ(n2) edges. The locality of reference property,
as well as the node similarity property, have been observed
in most of the graphs we are interested in, and are often
met in graphs that represent networks created by human
activity. The central idea in graph compression algorithms
is that they try to diminish the inner redundancy in the
representation using the above structures, by exploiting the
aforementioned properties.

The graph compression algorithms that have been pro-
posed so far can be classified in the following three main ca-
tegories: (i) algorithms for compressing web graphs, (ii) al-
gorithms for compressing (also) more general graphs (mostly
social network graphs), and (iii) algorithms that include or
employ reordering of the graph in order to favour higher de-
gree of compression. It is also very often the case that spe-
cific web graph compression algorithms were later enriched
with new techniques in order to be able to compress social
graphs as well.

In [22] the authors take into account the locality of refe-
rence and the copy properties for the case of the web and
initiate research on web graph compression by maintaining
compressed forms of the graph’s adjacency lists. The high-
est compression ratios are achieved by the method of Boldi
and Vigna [7], combined with a reordering using label propa-
gation [5]. The WebGraph compression method introduced
in [7] is indeed the most successful member of a family of
approaches [1, 9, 21, 26] for compressing web graphs based
on the statistical properties described in the introduction.
In [7] Boldi and Vigna exploit the similarity of adjacency
lists and the locality of reference of nearby pages using URL
ordering for nodes. We present the techniques of the Web-
Graph framework briefly in Section 2.1.

In another line of work, Brisaboa et al. [8] propose a com-
pact representation of the adjacency matrix that represents
the graph. They partition the matrix in boxes and store each
box in a way that allows quick access to it. In particular,
they use a k2-ary tree that records at each level which chil-
dren contain at least one edge. The most important feature
of this work is that it allows both forward and backward na-
vigation of the graph. However, experiments show that even
for the smallest possible value of k, viz., 2, which results in
4-bit sized leaves, the total compressed size wasted on leaves
of the tree alone, is significantly greater than that achieved

by other methods for graphs of greater size than the ones
tested. The approach we propose in this work is to some
extent similar to [8], in the sense that we represent parts of
the adjacency matrix of a given graph. The difference with
our approach is that we represent only some dense parts of
the graph, those that are close to the main diagonal, and
that we do not introduce extra overhead by using trees as
indices.

Asano et al. [3] reorganize the adjacency matrix of the
graph to bring the inter-host links close to the intra-host
ones, and incorporate six different kinds of patterns to cover
it. The compression ratio reported is impressive, but the
additional cost imposed for the matching of the original in-
dices of the inter-host links with the new local indices used
is not considered in the presented results. This approach is
similar to our proposed method, with the difference that in
our method no overhead for lookup tables is introduced.

Claude et al. in [13] use a different compression scheme
for web graphs that does not achieve better compression ra-
tios than [7], but allows for faster navigation on the graph.
However, their approach does not scale up due to the large
amount of memory and long time required during the com-
putationally expensive compression phase. Later on, Claude
et al. combined this algorithm with the techniques of [8], par-
titioning the input graph and applying a separate technique
to each part (i.e., applying [13] on one part and [8] on the
other), to compress web as well as social network graphs [12].
A similar partitioning is applied in our approach as well, but
the methods used to compress the subgraphs are entirely dif-
ferent.

In [11] Chierichetti et al. view the problem of graph com-
pression from a theoretical point of view and study the ex-
tent to which a large social network can be compressed.
They show that the compressibility of social networks is very
different than that of web graphs. Their proposed method,
however, is a compression scheme rather than a compressed
data structure, as noted in [5], i.e., it aims solely at mini-
mizing the size of the compressed graph (bits/edge) instead
of providing fast access to each edge.

The locality of reference property of a graph reflects on its
adjacency matrix in the following way: using a proper orde-
ring of the nodes’ labels, i.e., an ordering in which labels of
densely connected nodes are close to each other, many edges
fall close to the main diagonal of the adjacency matrix. Such
orderings are preferred in practice, but finding the ordering
that minimizes the distance of the edges from the main di-
agonal is NP-hard [25]. Intuitively, if we have some good
clustering of the graph, based solely on the link structure,
and assign consecutive labels to the nodes in each cluster,
the lexicographic ordering of the labels is rather good in the
above sense.

Such an extrinsic ordering appears naturally in the case
of worldwide web. Web graph representations assume that
each URL corresponds to some identifier. Moreover, it is
assumed that URLs are alphabetically sorted [4], and this
naturally puts together the pages of the same domain. As
a result, the locality of reference translates into closeness of
page identifiers. However, extrinsic orderings are not ob-
vious for all graphs, so for social or bibliographic citation
graphs, finding a good ordering is a challenging issue. In [6]
Boldi et al. test some known orderings of the nodes and
propose some new ones, and study their effect on the com-
pression of web and social graphs. They show that using



these orderings for the input non-web social graphs, the
WebGraph framework [7] yields results that are very close
to the results of [11]. In [5] the authors introduce a reor-
dering algorithm called Layered Label Propagation (LLP),
and employ it to compress social networks. This algorithm
is based on clusterings and orderings and can reorder very
large graphs quite fast. The experimental evaluation of this
approach shows that combining the ordering produced by
LLP with the WebGraph framework outperforms all cur-
rently known techniques, both for web graphs and for social
networks. Some methods that claim to yield lower bits/edge
ratios [10, 11, 20] do not address the issue of retrieving the
edges fast. In [16] the authors introduce SlashBurn, an
ordering method that offers the best bits per egde ratio ac-
cording to the information theoretic lower bound, among
other competing methods.

Buehrer and Chellapilla [10] exploit complete bipartite
subgraphs (bicliques) on web graphs, i.e., groups of pages
that share the same outlinks, and replace them with vir-
tual nodes. However, the compression they achieve is not
better than the compression of [7] while they also fail to be
competitive speedwise, since they fall into the class of com-
pression schemes rather than compressed data structures [5].
In computing the compressed size they do not take into ac-
count the offset, which, however, increases significantly with
the increase of the compression ratio.

Clustering according to some meaningful measure natu-
rally brings together nodes that are connected with the loca-
lity of reference or copy property. This is particularly useful
in social networks where there is no apparent numbering of
the nodes that brings them close to each other. In [20] the
authors decompose the graph into small dense subgraphs,
which can be represented more efficiently in terms of space.
Their comparison with [7] is based on the naive approach
of maintaining both the original graph and its transposed
version, whereas a more sophisticated approach, indicated
in [5], outperforms them. In [15] the authors generalize
on [10, 20], where the authors find bicliques and cliques re-
spectively, and adapt clustering algorithms to find broader
constructions that lie in between. They show that these
more general dense subgraphs appear sufficiently more of-
ten than cliques and bicliques, thus designing a more general
compact representation for them pays off.

Apostolico and Drovandi [2] visit the graph in a breadth-
first fashion while compressing, and exploit locality and simi-
larity by referencing the previous successor of the same node,
or the successor of the previous list that is in the same ordi-
nal position. The blocks of identical successors are recorded
only once. However, their method is outperfomed by [5],
and by a big margin as far as social network graphs are
concerned.

In [23] Safro and Temkin present a multiscale approach
for the network minimum logarithmic arrangement problem,
i.e., the problem of finding an intrinsic ordering that opti-
mizes directly the sum of the logarithms of the gaps (nu-
merical difference between two successive neighbours). The
resulting ordering may be used for graph compression if com-
bined with a compression scheme like the WebGraph frame-
work [7]. According to [5], some preliminary tests show that
these orderings are promising especially on social networks;
however, the implementation does not scale well for datasets
with more than a few millions of nodes and so it is imprac-
tical for compressing large-scale graphs.

Our approach benefits from the reordering that results
after applying Layered Label Propagation [5] on the input
graph; we could also take advantage of other orderings such
as the ones examined in [6, 16].

1.2 Short description of results
In this paper, we concentrate on the compression of web,

social network and other similar graphs. Since the highest
compression ratios are achieved by the state-of-the-art algo-
rithm of Boldi et al. [5,7], we build on it, making the follow-
ing contributions: (i) we improve the compression scheme
of Boldi and Vigna (BV) [7] by exploiting the locality of re-
ference property observed in these kinds of graphs in a diffe-
rent way than in [7] and, thus, go beyond the state-of-the-art
in graph compression, and (ii) we evaluate experimentally
our algorithm and show that it achieves a better compres-
sion ratio than BV, while allowing the retrieval of elements
of the graph faster than BV.

1.3 Organization
The organization of this paper is as follows. In Section 2

we present the overview of our approach along with some
theoretical analysis. In Section 3 our algorithm is presented
and its complexity is discussed. In Section 4 we evaluate our
approach experimentally. Finally, in Section 5 we conclude
and give directions for future research.

2. OVERVIEW OF OUR APPROACH
This section presents our approach for compressing di-

rected graphs. Our approach builds on and improves the
Boldi and Vigna compression method of the WebGraph fra-
mework [7]. For the sake of simplicity, we will refer to the
Boldi and Vigna method as BV throughout the paper. We
first review the BV techniques (Section 2.1), then we iso-
late a dense subgraph of the input graph (Section 2.2), in
particular a stripe around its main diagonal, and provide an
explanation of how we can compress it separately along with
a theoretical analysis of this approach (Section 2.3).

2.1 The Boldi et al. techniques
In [7], Boldi and Vigna propose a number of techniques

that exploit locality and similarity, two properties that are
known to appear in the links of a web graph [22].

The adjacency lists of a graph are pictured firstly using
a modified gap representation, that utilizes the locality pro-
perty, and then as bit vectors, named copy lists, that take
advantage of the fact that the adjacency lists share large
subsequences of edges (similarity property). Copy lists are
further compressed with a variation of run-length encoding,
since they tend to contain runs of 0s and 1s.

The number of previous adjacency lists that are examined
in order to discover possible reference lists is called window,
and its size poses a tradeoff between compression ratio and
compression/decompression time. The maximum reference
count is a second parameter used by this scheme, that im-
poses a limit on the lengths of reference chains.

The remaining extra nodes exhibit consecutivity as well.
Hence, integer intervals are used for their compression, but
only for the subsequences that correspond to intervals whose
length is not below a certain threshold (Lmin in [7]). The
list of the residuals (remaining integers) is compressed in a
differential manner.
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Figure 1: Percentage of edges contained in the diagonal area
of web, road network and social network graphs.

In [5], Boldi et al. apply a reordering algorithm that brings
the graph to a state where the aforementioned properties can
be further exploited.

2.2 Exploiting the dense part of the graph
We improve the state-of-the-art algorithm BV for the com-

pression of web graphs [7], by proposing to store separately
the denser part of the graph, i.e., the part of the graph cor-
responding to the edges that are close to the main diagonal
of the graph’s adjacency matrix.

Graphs created by human activity usually possess the lo-
cality of reference property and the copy property, which are
surfaced after applying LLP [5] on them, or any other clu-
stering technique, e.g., [6, 16], that permutes the graph in a
similar fashion. We exploit these properties to improve the
compressed data structure. Due to the above properties,
an edge is with high probability close to the main diago-
nal of the adjacency matrix representing the graph. Hence,
given that these graphs are generally rather sparse due to
the power law distributed nodes’ degrees (indegrees and out-
degrees) [14], the graph corresponding to the main diagonal
and the area around it is denser than the rest of the graph.
We call this area the diagonal stripe, and formally define it
as follows:

Definition 1. For a graph G = (V,E) and k ∈ Z+, the
k-diagonal stripe of G comprises the following set of entries:
{(i, j) | i− k ≤ j ≤ i + k and i, j ∈ {0, . . . , |V |}}.

To illustrate, in the left part of Figure 2 we present within
a bold line the 3-diagonal stripe of an example adjacency
matrix.

In the graphs we examined experimentally, large number
of edges tend to be in the diagonal stripe, meeting our ex-
pectations regarding the locality of reference property. This

trend for k ∈ {1, 2, 3, 4} for the graphs of our dataset, de-
scribed in detail in Section 4.2, is illustrated in Figure 1.

As k increases, the bits/edge ratio required to store the
stripe increases as well. The density of edges in the diagonal
stripe decreases as we are moving farther away from the
diagonal, where edges are met less frequently. However, even
a stripe of smaller density is sometimes useful, as it may lead
to higher compression of the whole graph.

The computation of the bits/edge needed to represent the
diagonal stripe is straightforward if we know the percentage
of edges in it: Consider k ∈ Z+ and a graph G = (V,E) with
a percentage p of E belonging in the k-diagonal stripe. These

edges are represented with (2k+1)|V |
p|E| bits/edge. For example,

graph roadNet-PA of our dataset, described in Section 4.2,
has 68.41% of its edges in the 7-diagonal. Therefore these

edges are represented with 15|V |
0.6841|E| = 7.76 bits/edge.

Isolating the diagonal stripe in a way similar to [19] and
the rest of the graph as explained in [7], achieves better
compression than using the method presented in [7] alone,
as we later demonstrate experimentally (Section 4). Table 1
presents the compression ratio achieved by BV for the re-
maining graph for various diagonal stripe widths, which is
essentially the lower bound of our overall compression.

2.3 Compressing the diagonal stripe
In this section we describe the motivation and sketch the

techniques behind isolating a dense subgraph of the input
graph, in particular a stripe around its main diagonal, and
compressing it separately. We also present some theoretical
analysis for our proposed approach.

Adjacency matrix format.
In order to exploit the high concentration of edges in the

diagonal stripe, and, thus, take advantage of the locality of
reference property, we store it separately from the rest of the
graph in the format of an adjacency matrix. We opted for
the adjacency matrix representation of the diagonal as the
high concentration of edges in the diagonal forms a dense
graph. Formally, a graph G = (V,E) is dense if |E| =
Θ(|V |2).

Data compression.
Using data compression techniques that exploit the redun-

dancy of the diagonal stripe, represented by an adjacency
matrix as described above, allows us to reduce the size of the
stripe significantly. Shannon’s source coding theorem states
that it is impossible to compress with an average number
of bits per symbol less than the entropy of the source. We
present a proposition that imposes an upper bound to that
limit, and provides us with an estimation of the space re-
quirements of our method for the dense part of the graph.
Comparing this estimation for various widths of the diago-
nal stripe of a graph, to the compression ratio of the state-
of-the-art method, allows us to assess the overall room for
improvement and the optimal width of the stripe. However,
the estimation on the latter is far from accurate due to the
delicate balance between easing the task of compressing the
rest of the graph by including as many edges as possible in
the diagonal stripe and minimizing its ratio.

Proposition 1. Consider k ∈ Z+ and a graph G = (V,E)
with a percentage p of its edges belonging in the k-diagonal



graph BV lower bound of our compression
k = 1 k = 2 k = 3 k = 4

cnr-2000 3.71 3.37 3.28 3.22 3.16
web-Stanford 4.06 3.76 3.63 3.56 3.48
roadNet-CA 13.30 10.39 9.31 8.89 8.58
roadNet-PA 12.86 10 8.85 8.41 8.09
dblp2010 8.63 7.47 6.75 6.37 6.02

cit-Patents 14.72 14.21 13.88 13.67 13.51
amazon-2008 10.77 10.32 9.93 9.62 9.29
ljournal-2008 11.84 11.60 11.47 11.39 11.31
twitter-2010 14.52 14.41 14.35 14.32 14.29

Table 1: Lower bound of our compression: The bits/edge required by BV for the graph apart from the diagonal stripe.

stripe. The minimum expected compression ratio of the di-

agonal stripe is upper bounded by
log ((2k+1)|V |

p|E| )
p|E| bits/edge.

Proof. The diagonal stripe consists of (2k + 1)|V | bits
and exactly p|E| of them represent edges. We model the

stripe as a random variable X ∈ {0, 1}(2k+1)|V |.
Shannon’s source coding theorem states that the mini-

mal possible expected length of codewords, which in our
case is the best attainable compressed size of the diagonal
stripe, is no less than the entropy of the input word (diago-
nal stripe) [24].

The entropy of X is H(X) = −
∑n

i=1 pi log pi, where n
is the number of all possible diagonal stripes and pi is the
probability of stripe i. As n =

(
(2k+1)|V |

p|E|

)
, and assuming

that all possible stripes are equally likely, the maximum en-
tropy becomes

H(X) = log

(
(2k + 1)|V |

p|E|

)
.

According to Shannon, the minimal expected wordlength
S is E[S] = H(X). Thus, since we have p|E| edges, the
minimum expected compression ratio is

H(X)

p|E| =
log
(
(2k+1)|V |

p|E|

)
p|E| .

For example, for the graph roadNet-PA the upper bound
of the minimum expected compression ratio of the 7-diagonal

stripe is
log ( 15|V |

0.6841|E|)
0.6841|E| = 2.98 bits/edge.

Minimizing the compression ratio with techniques such as
Huffman or Arithmetic coding [27] may have a negative im-
pact on the time needed to access the elements of the graph,
as we will then need to decompress large parts, or even the
whole diagonal stripe, in order to answer simple queries. We
wish to retain the ability to access the elements of the stripe
in constant time after compressing them. Thus, we encode
them using a form of lossy, but fixed-length encoding to pre-
serve the direct access of the edges.

3. COMPRESSING THE GRAPH
This section presents BV+, an algorithm for compressing

directed graphs that is the product of our line of thinking in
Section 2. BV+ is outlined in Algorithm 1. BV+ receives as

input a directed graph G = (V,E), and parameters k and b,
and gives as output a compressed representation of G.

Algorithm 1: BV+(G, k, b)

input : A directed graph G = (V,E), and parameters
k and b.

output: A compressed representation of G.
1 begin
2 setNonD ← set();
3 k-diagonalStripe ← array(array([000 . . . 0]︸ ︷︷ ︸

2k+1 bits

)× |V |);

4 foreach (u, v) ∈ E do
5 if u− k ≤ v ≤ u + k then
6 k-diagonalStripe[u][v] ← 1;
7 else
8 setNonD ← setNonD ∪ (u, v);

9 seqDict ← dict();
10 foreach seq ∈ k-diagonalStripe do
11 if seq 6∈ seqDict then
12 seqDict[seq] ← 1;
13 else
14 seqDict[seq]++;

15 foreach (key, value) ∈ seqDict do
16 seqDict[key] ← value × # of 1s ∈ key;

17 seqDict ← sort seqDict by value (desc. order);

18 seqSet ← {first 2b − 1 sequences (keys) of seqDict};
19 foreach seq ∈ k-diagonalStripe do
20 if seq ∈ seqSet then
21 use b bits to compress seq ;
22 else
23 bestSeq ← bestSubset(seqSet, seq, k);
24 use b bits to compress bestSeq ;
25 setNonD ← setNonD ∪ {edges of seq that

were left out of bestSeq};

26 compress setNonD using BV;

As a first step, the algorithm constructs the k-diagonal
stripe of graph G and the set of all edges that do not belong
in the k-diagonal stripe (lines 2-8). The k-diagonal stripe
can be considered as an array of bit arrays where each bit
array consists of exactly 2k+ 1 elements and corresponds to
a row of the diagonal stripe as illustrated in Figure 2. The
value of an element equal to 1 signifies the presence of an
edge. Likewise, the value of an element equal to 0 signifies
the absence of an edge. The first and last rows in the k-
diagonal stripe are complemented with 0s to fix the number
of 2k + 1 elements for each row.



0 0 0 1 0 1 1 0 0 0 1 0 0 0 0

0 0 1 1 1 0 1 0 1 0 0 0 0 0

0 1 1 1 0 1 0 1 0 1 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0
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1 0 0 1 0 0 0 0 1 0 1 0 0 0 0

0 0 1 1 0 1 0 1

1 1 0 1 1 0 1 0
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0011101 11

1110111 10

0111010 01

0000000 00

1: 1, 3, 4, 8
2: 7
3: 7, 9
4: 1, 4
5: 1, 11
8: 1, 2, 4
10: 2, 11
11: 8, 9, 11
12: 1, 4, 9, 11

BV( )
BV+

Figure 2: Compressing the graph with BV+.

Function: bestSubset(seqSet, seq, k)

input : A set of candidate sequences, seqSet,
parameter k, and a given sequence seq.

output: Best available sequence bestSeq.
1 begin
2 bestSeq ← array([000 . . . 0]︸ ︷︷ ︸

2k+1 bits

);

3 max ← 0;
4 foreach candidateSeq ∈ seqSet do
5 counter ← 0;
6 flag ← False;
7 foreach i ← 1 to 2k + 1 do
8 if candidateSeq[i] = 0 and seq[i] = 1 then
9 flag ← True;

10 if candidateSeq[i] = seq[i] = 1 then
11 counter++;

12 if counter ≥ max and !(flag) then
13 bestSeq ← candidateSeq;
14 max ← counter;

15 return bestSeq ;

Diagonal stripe compression.
As already mentioned, the k-diagonal stripe consists of |V |

rows where each row comprises 2k + 1 elements. We create
a dictionary to hold information about our rows (line 9).
Every row, that is, every sequence of (0, 1)-elements, yields
an integer value. We have empirically observed that the
frequencies of these integer values tend to follow a power law
distribution, so we decided to pick the values that contain
the higher volume of information.

We iterate over the set of rows, and store each distinct
(2k+ 1)-bit array along with its frequency in the set of rows
in the k-diagonal stripe in our dictionary (lines 10-14). We
do not rest on using the (2k + 1)-bit arrays met most fre-
quently among the rows, but we also take into account the
number of edges they represent. More explicitly, let us sup-
pose we had used k = 3 and we had observed the sequences
0001000 and 0010110 occurring 500 and 300 times respec-
tively. While the first sequence is more frequent, it fails to
represent more than one edge. Hence, the second sequence
is in fact preferable. The multiplication of the frequencies
with the number of bits that are set guarantees that the
chosen representations will not only occur often in the par-
ticular diagonal, but will represent a significant amount of
edges as well, thus minimizing the overall bits per edge ratio
(lines 15-16).

Then, we choose an integer number b of bits to use for
their representation and represent only the 2b − 1 most ap-
propriate of these sequences, each one using a binary num-
ber of b bits. This is done by sorting these sequences by the
product of their frequency times the number of edges each
one contains (line 17), i.e., the number of 1s in their binary
representation, and then picking the first 2b − 1 of them
(line 18). In this way, we make sure that we will pick not
just the most frequent values in the diagonal, but also the
most important ones, because picking representations that
hold a limited number of edges would lead to a waste of bits.
The role of b is to determine the channel capacity, and with
it, the loss rate of our scheme. The optimal value for b is
highly dependent on the distribution that the frequencies of
the values follow. We keep one b-bit binary number to de-
note the absence of edges in a specific row of the diagonal
stripe.

As a final step, we iterate again over the set of rows of the
k-diagonal stripe, and for each row of the diagonal stripe we
use its compressed representation if the corresponding se-
quence exists among the ones picked in the aforementioned
step (lines 20-21), or the compressed representation of the
best available sequence and add the missing edges to the set
of edges that do not belong in the k-diagonal stripe (lines 22-
25). In the latter case, by best available, we denote the se-
quence that has the most 1s in the same position with the
sequence in question from the ones picked, and does not have
a single 1 where this sequence has a 0. The best available
sequence is provided by function bestSubset, which receives
as input a set of candidate sequences, parameter k, and a
given sequence. Function bestSubset first initializes a best
sequence candidate, represented by a bit array, with 2k + 1
number of 0s (line 2), and it also initializes a counter that
holds the number of 1s that two sequences have in common
(line 3). The best available sequence, i.e., the one whose set
of positions of 1s in it is the best (maximal) subset of the
sequence in question, is then calculated by iterating the set
of candidate sequences and performing some checks (lines 4-
14), and, finally, returned (line 15). Note that even if no
best available sequence is found among the set of candidate
sequences, the initialized best available sequence candidate
(line 2) will be returned. In the aforementioned example,
suppose that the second sequence, viz., 0010110, was in-
deed elected among the 2b − 1 ones, while another sequence
0011110 was not. We utilize their similarity by using the
representation of the former one for the latter one as well,
and manage to capture 3 of its 4 edges without extra cost.



In the upper right part of Figure 2 we can see the mapping
of the selected values to their b-digit representation and the
compressed diagonal that results after applying the actions
described above.

The edges that are excluded during this step are added
to the ones existing outside of the diagonal stripe. These
edges will be then compressed using BV, thus, our overall
method is lossless. In Figure 2 the edges of the diagonal
that are compressed as described above are contained in
dark grey cells, while those that are compressed using BV
are in light grey cells. When every row has been substituted
with a compressed representation, the compressed diagonal
is ready.

As a result of using the above procedure, for the graph
roadNet-PA the compression ratio of the 7-diagonal stripe
with b set to 2 is 1.95 bits/edge. However, even a compres-
sion ratio greater than the upper bound of the minimum
expected (2.98 bits/edge as obtained in the example in Sec-
tion 2.3 for roadNet-PA), and in any case smaller than that
of the uncompressed graph, would be acceptable as we do
not need to decompress the whole stripe to access the de-
sired edges, in contrast to more compact entropy encoding
approaches, such as Huffman or Arithmetic coding [27].

Non Diagonal part compression.
The final step for algorithm BV+ is to compress the rema-

ining edges, i.e., the edges that initially belonged outside of
the k-diagonal stripe (line 8), together with the edges that
were left out during the compression of the diagonal stripe
(line 25), with the BV method (line 26). As shown in Figure
2, the output of BV+ is the lossy compressed representation
of the diagonal stripe plus the output of BV for the rema-
ining elements. Besides using exclusively the BV method,
the straightforward nature of our approach and the struc-
ture of our algorithm makes it an attractive technique that
any compression scheme can benefit from.

3.1 Size of the compressed graph
Let n be the number of nodes in the graph (i.e., n = |V |)

and b be the parameter that ultimately defines the width
of a compressed representation of the diagonal stripe, as
described earlier. The size of the compressed graph is equal
to bn + SBV bits, where SBV is the size of the set of edges
that are outside of the diagonal stripe plus the set of edges
that were left out of the fixed length encoding of the diagonal
(during the compression of the diagonal), compressed using
the BV algorithm.

3.2 Time Complexity
Here, we discuss the time complexity of BV+ and com-

pare it to the complexity of BV. The diagonal stripe is com-
pressed in linearithmic time in the worst case (O(n logn))
and the remaining edges in time less than with BV, as they
form a graph that is smaller than the initial one.
• The time complexity of verifying the existence of a specific

edge is O(1) if the edge belongs in the compressed diagonal
stripe, and less than that of BV otherwise1.
• The time complexity of retrieving all neighbours of some

node is O(b) for the neighbours that belong in the com-
pressed diagonal stripe, and less than that of BV for the
rest of the neighbours1.

1
Since edges have to be retrieved from a compressed by BV graph,

which is initially smaller than the input graph.

(a) cnr-2000 (b) web-Stanford (c) roadNet-CA

(d) roadNet-PA (e) dblp-2010 (f) cit-Patents

(g) amazon-2008 (h) ljournal-2008 (i) twitter-2010

Figure 3: Heat maps of the adjacency matrices of web (a,
b), road network (c, d), citation (e, f), and social network
(g, h, i) graphs.

The efficiency of our approach benefits from the existence of
multi-core processors, since in any multi-core (e.g., 2-core)
machine the aforementioned queries in and outside the di-
agonal stripe take place in parallel, thus, the makespan is
the longer among the two tasks.

We infer that BV+ outperforms BV in terms of time needed
for searching/retrieving edges in a graph compressed using
any one of them, and we also show this experimentally later
in Section 4.

The high compression of BV has a negative impact on the
time needed to access some of the graph’s elements: the
retrieval of the incoming edges of a specific node becomes
involved [7]. BV+ induces an improvement in this aspect,
as part of the graph’s edges, i.e., the part that belongs in
the diagonal stripe, is accessed in constant time.

4. EXPERIMENTAL EVALUATION
We implemented and tested our approach on a wide vari-

ety of large scale graphs. In Section 4.1 we list the techni-
cal specifications of the machine used for implementing and
testing our algorithm, while in Section 4.2 we describe the
dataset used for our experiments. We present the results of
our experiments, i.e., compression ratios and times, in Sec-
tions 4.3 and 4.4 respectively, and discuss the role of the
algorithm’s input parameters in Section 4.5.

4.1 Technical specifications
We implemented and ran algorithm BV+ using Java 7;

our code is available upon request. The experiments were
carried out on a computer with an Intel R©CoreTM 2 Duo
CPU E8400, with a CPU frequency of 3.00GHz, a 6MB L2



graph # nodes # edges # edges in compression BV+
compressed diagonal ratio (bits/edge) parameters

BV BV+ k b

cnr-2000 325, 557 3, 216, 152 194, 639 3.71 3.62 17 2
web-Stanford 281, 903 3, 985, 272 270, 220 4.06 3.90 1 2
roadNet-CA 1, 965, 206 5, 533, 214 3, 569, 145 13.30 10.58 7 6
roadNet-PA 1, 088, 092 3, 083, 796 2, 062, 741 12.86 10.07 7 6
dblp-2010 326, 186 1, 615, 400 928, 702 8.63 7.2 24 7
cit-Patents 3, 774, 767 33, 037, 894 6, 303, 138 14.72 14.25 9 6
amazon-2008 735, 323 5, 158, 388 3, 057, 268 10.77 10.07 23 15
ljournal-2008 5, 363, 260 79, 023, 142 6, 045, 619 11.84 11.78 2 4
twitter-2010 41, 652, 230 1, 468, 365, 182 37, 906, 525 14.52 14.42 17 6

Table 2: Comparison with BV method.

cache and a total of 8GB DDR2 800MHz RAM. Only one
of the CPU cores was used for the experiments.

4.2 Dataset
The dataset that we used to apply and test our compres-

sion technique, comprises nine well-studied [5, 7, 11, 18, 20]
web, road network, citation, and social network graphs. Fi-
gure 3 provides an illustration of their adjacency matrices,
where one can clearly see how the diagonal stands out for
all the graphs. The origin and characteristics of our graphs
are summarized in the following list:
• cnr-2000: a web graph from a crawl of the Italian CNR

domain. It comprises 325, 557 nodes and 3, 216, 152 edges.2

• web-Stanford: a web graph from Stanford University, col-
lected in 2002. It comprises 281, 903 nodes and 3, 985, 272
edges.3

• roadNet-CA: the road network of California. It comprises
1, 965, 206 nodes and 5, 533, 214 edges.3

• roadNet-PA: the road network of Pennsylvania. It com-
prises 1, 088, 092 nodes and 3, 083, 796 edges.3

• dblp-2010: an undirected scientific collaboration network
graph from the DBLP bibliography service. Each vertex
represents an author and an edge links two vertices if they
have worked together. It comprises 326, 186 nodes and
1, 615, 400 edges.2

• cit-Patents: a citation graph which includes all citations
made by U.S. patents granted between 1975 and 1999. It
comprises 3, 774, 767 nodes and 33, 037, 894 edges.3

• amazon-2008: a symmetric graph describing similarity
among books as reported by the Amazon store. It com-
prises 735, 323 nodes and 5, 158, 388 edges.2

• ljournal-2008: LiveJournal is a virtual community so-
cial site started in 1999; in this social network friendship
is non-symmetric so the graph is directed. It comprises
5, 363, 260 nodes and 79, 023, 142 edges.4

• twitter-2010: Twitter is a social networking and mi-
croblogging service; To the best of our knowledge, this
is the largest available social network graph. It comprises
41, 652, 230 nodes and 1, 468, 365, 182 edges.5

The aforementioned graphs vary in category, size, and
type, and are therefore very good candidates for examining
the effectiveness of our proposed method.

2
Collected by LAW: http://law.di.unimi.it/

3
Collected by SNAP: http://snap.stanford.edu/snap/

4
Collected in [11], retrieved from LAW: http://law.di.unimi.it/

5
Collected in [17], retrieved from LAW: http://law.di.unimi.it/

method graph compression
ratio (bits/edge)
other BV+

[2]

ljournal-2008 14.97 11.78
amazon-2008 12.39 10.07
dblp-2010 7.47 7.2

[20]6
web-Stanford 9.88 3.90
cit-Patents 25.69 14.25

Table 3: Comparison with other methods.

4.3 Compression ratio comparison
We compared our approach with BV as well as with other

graph compression methods. The results are outlined in
Tables 2 and 3 respectively.

Table 2 shows the number of nodes and edges of each
graph, the compression ratio achieved by the BV technique
[7], and the one achieved by our proposed method (BV+)
for all the graphs tested. The number of edges that was
ultimately included in the compressed diagonal stripe and
its parameters are also displayed.

For the two web graphs, we observed an improvement
of 2.4% for cnr-2000 and 3.9% for web-Stanford. Our
method attained impressive results for the two road network
graphs. An improvement of 20.5% and 21.7% was achieved
with the use of BV+ for roadNet-CA and roadNet-PA respec-
tively. Regarding the citation and social network graphs, our
method had a large impact on dblp-2010 and amazon-2008,
achieving a 16.6% and a 6.5% compression ratio improve-
ment over the compression ratio of BV respectively, and of-
fered smaller, but significant nonetheless, compression ratio
improvements for the other three graphs.

The higher levels of compression for certain graphs is due
to the fact that a higher percentage of their edges exist in
the diagonal stripe, as opposed to the rest of the graphs.
However, even with the less intense clustering, our technique
manages to reduce the compression ratio of BV significantly.
As it can be seen in Figure 1, these graphs are roadNet-CA,
roadNet-PA, dblp-2010, and amazon-2008. The somewhat
smaller impact of BV+ on the compression ratio of web-

Stanford, cnr-2000, cit-Patents, twitter-2010, and even
ljournal-2008 is due to the fact that BV does not leave
enough room for improvement, as Table 1 illustrates. That
is, the remaining edges that are assigned to BV, occupy most

6
In [20] the algorithm provides both predecessors and successors

but a simple strategy proposed in [5] indicates that less than double

bits per link are needed for a fair comparison.



graph cnr-2000 roadNet-CA ljournal-2008

Edge Exists

BV+ (D) 645 600 663
BV+ (Non-D) 2, 286 832 4, 373
BV+ (total) 2, 187 728 4, 089

BV 2, 397 923 4, 518

Successors

BV+ (D) 643 668 627
BV+ (Non-D) 1, 947 849 1, 940
BV+ (total) 1, 868 768 1, 840

BV 2, 159 891 2, 009

Table 4: Access times (in ns) for a web, a road network, and a social network graph.

of the final compressed file. The lower bound essentially sig-
nifies the compression that we would be able to achieve if we
could represent the stripe using 0 bits/edge. For the latter
graphs the lower bound does not deteriorate at a satisfying
rate as k increases, i.e., it remains almost stable.

In case our method provided no improvement for a given
graph, it could easily fall back to BV instead of BV+ by
setting b to zero.

Table 3 shows the comparison of our approach to two other
recent methods [2, 20]. The methods were examined in [5]
and were shown to be inferior than BV, but we chose to
include this comparison for reasons of completeness.

We also evaluated BV+ for graphs of our dataset after
SlashBurn [16] had been applied on them. Even though
the reordering of SlashBurn favoured BV+ over BV for
the graphs tested, the compression ratio achieved using this
representation was significantly larger, as exploiting Slash-
Burn does not seem to aid the compression techniques of
BV.

4.4 Access time comparison
Table 4 presents the results obtained by the comparison

of BV and BV+ as far as access times are concerned. We
tested the responsiveness of the two methods when asking
if a node is a successor of another one (Edge Exists), and
when inquiring all the successors of a node (Successors).

For the former query, we searched for every edge present
in the graph and calculated the mean average of those that
were held in the compressed diagonal representation and of
those that were compressed using the BV method. In the
first case, a simple test –if the corresponding bit of the un-
compressed diagonal representation is set– is enough. In the
second case, we iterate over the successors of a node using a
LazyIntIterator, until we find the edge or run out of them.

For the latter query, we asked for the successors of all
nodes of each graph in Table 4 and calculated the mean ave-
rage time of the responses. The built-in successors() method
of class BVGraph was used for the part of the graph that
was compressed with the BV method. For the rest of the
edges, i.e., the edges belonging in the compressed diagonal
stripe, a list was populated by adding the successors whose
corresponding bits in the original diagonal stripe are set.

We took into account the percentage of edges existing in
the diagonal of each graph to the total edges of the graph
(calculated using the data in Table 2), to estimate a me-
dian access time of operations EdgeExists and Successors in
our experimental setup. This median access time combines
the access times of operations EdgeExists and Successors by
considering the probability of an edge existing either in the
compressed diagonal stripe or in the rest of the graph, and

is represented by BV+ (total) in Table 4. Of course, we also
present the average time these queries needed when the full
graph is compressed using the BV method.

The tests were applied to a web (cnr-2000), a road net-
work (roadNet-CA), and a social network (ljournal-2008)
graph. The k and b parameters of BV+ were the ones used
in Table 2. We see that BV+ can answer both queries in con-
stant time as far as the edges in the compressed diagonal are
concerned. This time is much smaller than the time needed
for the BV method to answer for the rest of the edges. In
addition to this, we notice that for all graphs the BV method
benefits from having to compress less edges. Unsurprisingly,
the time needed to answer the two queries is larger when all
the edges of the graph are compressed with the BV method.
The BV+ method needs to address queries for both cases
(edge lies inside or outside the compressed diagonal), but
this does not impose an additional overhead to any non-
single core environment, as the tasks are clearly separated.
Thus, BV+ outperforms BV as far as access times are con-
cerned for all the graphs tested. The better access times for
edges belonging either to the diagonal stripe or to the rest of
the graph reflect to BV+ (total). In particular, operations
EdgeExists and Successors run faster with BV+ than with
BV by 8.75% and 13.48% for graph cnr-2000, by 21.13%
and 13.80% for graph roadNet-CA, and by 9.50% and 8.41%
for graph ljournal-2008 respectively.

As is the case with the compression ratio comparison that
took place in Section 4.3, BV+ outperforms BV regarding
access times too.

4.5 Effect of BV+ parameters
The results illustrated in Table 2 highlight among other

things the important role parameters k and b play in obtai-
ning a good compression ratio for a given graph. We remind
the reader that parameter k determines the width of the di-
agonal stripe of a graph; the width is equal to 2k + 1. For
example, a 3-diagonal stripe of a particular graph is illu-
strated in Figure 2. Parameter b denotes the number of bits
that comprise a row of the compressed diagonal stripe. In
particular, b-digit binary numbers are used to represent the
2b−1 numbers that are met most frequently among the rows
of the diagonal stripe. Using Proposition 1, we can estimate
how much better than the state-of-the-art-method we can
represent the dense part of the graph for a given k, but the
pair that produces the optimal result is highly dependent on
the structure of the graph and parameter b, since there is a
trade-off between keeping the ratio of the compressed diago-
nal stripe low and including as many edges as possible in it.
For example, for the graph roadNet-PA, the best pair turned
out to be {k = 7, b = 6} which gives a ratio of 3.27 bits/edge,



which is worse than the one given for {k = 7, b = 2} (1.95
bits/edge), but includes almost twice as many edges.

The values of parameters k and b are fixed by performing
a statical analysis per given graph prior to its compression.
For the dataset that we have experimented with, we have
found that a good selection of values for parameter k ranges
from 2 to 20 for k, and b should be at most equal to k.
However, for the sake of presenting the best possible results
in this paper, we even went further and tested values that
were outside the aforementioned ranges, to come up with
a pair that results in the best compression ratio for each
graph.

We can see that for graphs dblp-2010 and amazon-2008

the selected value of parameter k is outside the range [2, 20],
thus, seemingly unsettling our initial argument about having
come up with a proper range of k. However, the fact is that
we had obtained a very good compression ratio, very close
to the one presented in Table 2, with a value of k between
2 and 20 for both of these graphs. In particular, for dblp-

2010 we achieved a compression ratio of 7.23 for k = 16
and b = 6, which is only slightly worse to the compression
ratio of 7.20 for k = 24 and b = 7. And for amazon-2008,
we achieved a compression ratio of 10.078 for k = 20 and
b = 15, which is almost identical to the compression ratio of
10.074 for k = 23 and b = 15.

In any case, we chose to use the values of parameters k and
b that provided us with the best compression ratio, since we
felt that it was very important for us to present the best re-
sults obtained in the experimental evaluation of our method.
This goes to say that we have identified a strong trend for
the values of parameters k and b, but not a pattern, as there
are times that our statical analysis proposes values out of
the aforementioned range. The important fact to note is
that by thoroughly testing several graphs for various values
of k we observed that the compression using our algorithm,
viz., BV+, is better than the compression using algorithm
BV for all of the graphs tested.

5. DISCUSSION
We went beyond the state-of-the-art method of Boldi et

al. for the compression of web graphs [5,7] by exploiting the
clustering properties observed in graphs that represent net-
works created by human activity, such as social networks and
the worldwide web, in a way different than in [7]. In partic-
ular, we modified the way [7] represents a dense subgraph of
such graphs, by exploiting their properties, namely, locality
of reference and similarity. Our implementation is very ab-
stract and straightforward and thus comprises a generic fra-
mework which is capable of employing different graph com-
pression schemes. Experimental evaluation of our approach
on a wide and well-studied dataset of graphs shows signif-
icant decrease of the graphs’ compressed size, that reaches
up to 21.7%. Moreover our approach provides up to 21.13%
faster access on the graphs’ elements. In the scope of this
work, we thoroughly investigated the research activity on
compressed data structures for graphs, and presented here
the most eminent of those approaches that managed to intro-
duce significant advances in the field of graph compression.

Choosing an appropriate set for representing values of the
diagonal stripe may become more effective by using a heuri-
stic different than promoting the ones with a high frequency
and a significant amount of edges. Future work consists of
exploring such heuristics for an even better compression of

the graph. Further, we would like to investigate other reor-
dering algorithms that could have a positive impact on our
approach.
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